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Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature 

transition on the vehicle surface.  Early transition in turn causes large localized surface heating that could 

damage the thermal protection system.  Experimental measurements as well as numerical computations 

aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance 

sizes and locations have been actively pursued in recent years.  This paper computationally investigates the 

unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel 

model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An 

unstructured mesh, compressible flow solver based on the space-time conservation element, solution element 

(CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness 

element under several wind-tunnel conditions.  For a cylindrical roughness element with a height to the 

boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped 

centerline streak and horse-shoe vortices.  While time-accurate solutions converged to a steady-state for a 

ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5.  Instability waves marked by distinct 

disturbance frequencies were found in the latter two cases.  Both the centerline streak and the horse-shoe 

vortices become unstable downstream.  The oscillatory vortices eventually reach an early breakdown stage 

for the largest roughness element.  Spectral analyses in conjunction with the computed root mean square 

variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced 

back to possible absolute instability in the front-side separation region.    

I. Introduction 

ypersonic Boundary layer transition is one of the active research topics in recent years due to its importance in 

many aerodynamic and aerothermodynamic applications. Laminar-turbulent transition onset and the 

accompanying rapid rise in surface heating can directly impact the performance and safety of hypersonic vehicles.  

From the design standpoint, accurately predicting transition may result in a much more efficient thermal protection 

system (TPS).  In addition to natural transition in response to environmental perturbations, large surface 

irregularities such as protuberances or cavities are known to lead to premature transition on the vehicle surface.  

Large size protuberances thus can potentially cause severe damage due to high surface heating rate. The repair of 

protruding gap fillers by an astronaut to prevent TPS failure during the Shuttle mission STS-114 is one good 

example for such consideration. Due to the lack of a robust and efficient computational tool for flowfield prediction, 

empirical relations based on wind tunnel and flight data are used to estimate transition in the presence of surface 

roughness. In order to enhancing current understanding of the flow physics and physics based prediction tools for 

future hypersonic vehicle design, a combination of experimental measurements and higher fidelity numerical 

computations of viscous flow over large surface irregularities constitutes one of the most important goals in 

hypersonic research.   

 

Most of the computational investigations for the hypersonic roughness element problem use structured mesh Navier-

Stokes equations solvers. To handle the protruding geometry, researchers have used the immersed boundary 
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formulation in conjunction with existing time-accurate compressible Navier-Stokes solvers to calculate the wake 

flowfield [1-4].  The roughness height being simulated is relatively small in these computations due to the limitation 

in handling complex shock patterns of the underlying high-order schemes embedded in these Navier-Stokes solvers.  

In principle, an unstructured mesh is preferred because it offers more flexibility in grid generation and can 

potentially save computational time by avoiding unnecessary grid clustering due to topological constraints common 

in structured meshes.  To handle hypersonic viscous flow over a protruding roughness element in the boundary 

layer, several known numerical issues must be addressed. Most existing unstructured mesh CFD codes are based on 

well-known upwind schemes that utilize a 1D approximate Riemann solver at cell interfaces. Unique flow 

dependent variables determined by the Riemann solver are required at these cell interfaces to integrate the governing 

conservation laws over the discretized domain. When applied to multi-dimensional flows, such one-dimensional 

approximations give rise to undesired numerical problems, especially for triangular or tetrahedral unstructured 

meshes [5].  For hypersonic applications, the carbuncle phenomenon takes place near the blunt nose region [6] and 

accurate computation of viscous flows with tetrahedral meshes remains a challenge [7].  Remedies for these 

numerical issues have been proposed and investigated but in general, lack robustness.   

 

When a large surface roughness is submerged in a hypersonic boundary layer, complex flow physics such as shock-

shock, shock-boundary layer interactions, flow separation, unsteady shear layers and wakes may develop around and 

downstream of the roughness site.  In an attempt to resolve such complex flow physics, a time-accurate, 

unstructured mesh Navier-Stokes solver, ez4d, [8] based on the space-time conservation element, solution element 

(CESE) method [9] was used in our previous study to investigate hypersonic flows over a rectangular prism and 

cylindrical roughness element [10].  Several configurations from NASA Langley wind tunnel experiments [11] were 

computed.  It was shown that at a boundary layer edge Mach number around 4, the wake region becomes unsteady 

for a rectangular fence with a height of about 1.3 times the boundary-layer thickness.  Unlike its low speed 

counterpart, strong vortex shedding was not observed for both rectangular fence and cylindrical roughness elements 

at a Mach number of 4 or 6.5. Relatively coarse hexahedral meshes were used for the cylindrical roughness element 

during  this study.  

 

The main objective of this paper is to continue the 3D Navier-Stokes computations for the cylindrical and the 

Detailed Test Objective (DTO) roughness trips investigated in NASA Langley’s wind tunnel experiments [12].  The 

same cylindrical roughness element with a height of 2 mm and a diameter of 4mm as investigated in [10] is studied 

with a more refined tetrahedral mesh and in addition, for a higher Reynolds number.  Three wind tunnel conditions 

for the cylindrical roughness element are investigated in detail to help build the knowledge base concerning the 

effects of the roughness height and roughness Reynolds number. Flow visualization and unsteady data processing is 

used to explore detailed flow physics and possible instability wave development in the wake region.  The time-

accurate solutions are also analyzed spectrally to understand the nature of the instability waves in the roughness 

wake.  In the following section, a brief description of the numerical method used is given, followed by results and a 

brief summary. 

 

II. Numerical Method 

 

Three-dimensional compressible Navier-Stokes equations in vector form can be written as 
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where the dependent variable vector is defined as Q = (ρ, ρu, ρv, ρw, e) and x, y, z, and t represent spatial 

coordinates and time, respectively. Flow variables ρ, u, v, w, and e represent density, three velocity components, and 

total energy ( 2/)()1/( 222 wvupe   , where p denotes the pressure), respectively. Definitions of 

the inviscid flux vectors F, G, H and viscous flux vectors Fv, Gv, Hv can be found in standard text books and will not 

be included here. The source vector S contains all external forcing or other energy-related source terms. To close the 

system, the perfect gas relation, RTp  , with T representing the temperature, is used in conjunction with eq. (1). 
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The space-time CESE method is formulated in the strong form of the flux equations. The space-time flux h


is 

defined as: 

 

)2(),,,( QHHGGFFh vvv 


 

 

By using Gauss’ divergence theorem in the space-time domain, eq. (1) is rewritten in the following integral form 
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where the space-time flux vector is integrated over the surface T of an arbitrary space-time volume V.  The surface 

normal vector is defined by dAns


 , where dA is the area increment on T, and n


is the outward unit normal 

vector.  Equation (3) is quite general, and in fact, any conservation law with or without a source vector can be cast in 

this form.  Thus, the numerical algorithm devised for eq. (3) can be easily extended to other physical problems. 

 

The space time CESE method is formulated by enforcing flux conservation over a discretized space-time domain. 

This can be illustrated with the triangular elements in a two-dimensional space shown in Fig. 1. Numerical solution 

of the dependent variables within the triangular element BDF is assumed to satisfy the following first order 

equation: 
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where Q0 is the solution vector at the solution point O. The vectors Qt, Qx, Qy, and Qz are analogous to the 

derivatives of the dependent variables.  In contrast to the conventional unstructured mesh method, flux integration is 

carried out not on the triangular element directly.  Instead, three conservation elements (CE) defined by the 

quadrilaterals GBCD, GDEF, and GFAB around three neighbors are used for the integration of the conservation 

laws.  In the space-time domain, these three quadrilateral CEs extend to three quadrilateral prisms.   The solution 

point O is defined as the geometric center of three conservation elements, ABCDEF.   The discretized flux equation 

for all three prisms can be simplified to 
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where A1, A2, and A3 are the surface areas of GBAF, GFED, and GDCB, respectively.  Discretized integrals I1, I2, 

and I3 are flux integrals for outer-side and bottom faces for three surrounding elements.  Source terms in eq. (3) can 

be integrated to form Sv.  Semi-implicit treatment of this source term is usually done to improve solution accuracy 

and avoid stiffness issues.  Equation (5) is an algebraic equation and can be solved easily without any matrix 

inversion.  The use of eq. (4) results in a formally second-order accurate scheme. Discretized equations including all 

geometric details  for the Euler equations can also be found in [13]. 

 

In the above discretized equation, flux integrations are carried out on all faces of the conservation elements shown in 

Fig. 1(b).  Flux vectors are evaluated at faces AB, BC, CD, DE, EF, and FA in the integrals I1, I2, and I3.  These faces 

reside over the smooth regions of all three neighboring elements.  As a result, flux vectors are uniquely defined in 

the discretized equations, thus no exact or approximate Riemann solver is needed.  In light of all the numerical 

issues associated with multi-dimensional upwind methods, this distinct feature of the CESE method offers a 

numerical framework that is superior to other methods in terms of the flux conservation properties in the discretized 

domain.  

 

The derivatives Qt, Qx, and Qy, in Eq. (4) are yet to be determined.  In the non-dissipative a-scheme, these 

derivatives are computed by solving two remaining flux equations (in addition to the summation of all three 

conservation elements, Eq.(5)) in conjunction with the following equation: 
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where A and B are the Jacobian matrices of the flux vectors F and G, respectively.  Thus, there are a total of three 

equations for three unknowns.  Unfortunately, the a-scheme is only neutrally stable for the nonlinear Euler and 

Navier-Stokes equations and cannot be used in general.  Nevertheless, the formulation of such a dissipation-free 

scheme serves as a baseline to gauge how much numerical dissipation is being added in the dissipative scheme used 

in the Euler or Navier-Stokes equations.  In practice, derivatives are evaluated by using solution variations around 

three neighbors.  In the original CESE method, three neighboring solution points are used to obtain three sets of Qx, 

and Qy.  The unique values are determined by applying a weighted average over three sets of derivatives.  The 

weighted average helps to eliminate oscillations around flow discontinuities.  While this approach works well for 

relatively uniform meshes, numerical problems arise for highly non-uniform meshes where the triangles used for 

derivative evaluation are inconsistent with the CE faces.  The edge-based derivative approach suggested in Ref.[8] 

modifies the derivative evaluation procedure to remedy the above shortcomings.  In this approach, the three vertices 

of the triangular elements with dependent variables evaluated by using three neighboring solution elements are used 

to obtain three sets of neighboring derivatives.  The same weighted average procedure of the original CESE 

approach is then used to uniquely determine the derivatives.  There are several weighted average procedures 

suggested by Chang [14].  In this paper, the second weighting function described in Ref. [14] is found to be the most 

effective and robust.  The weighted average is analogous to flux limiters used in conventional upwind schemes.  

However, it should be noted that in the CESE method, one universal weighted average works for all problems.  No 

tuning for shocks or stagnation regions is necessary.  

 

 

 
 

 

The above derivation is valid for 2D triangular elements but it can be extended easily for 3D equations.   There are 

questions often raised concerning the fact that a picture of 3D conservation elements similar to that shown in Fig. 1 

for 2D cases cannot be drawn.  In practice, the CE manifolds need not to be drawn for 3D solutions.   As long as the 

physical time is uniquely defined on each CE face in the flux integration procedure, it is irrelevant how these CE 

manifolds look in a four-dimensional space.  Both hexahedral and tetrahedral meshes are used in the present study 

for hypersonic viscous flow computations. 

 

The other issue often raised concerns the fact that for the CESE method, numerical dissipation increases 

significantly when the CFL number is decreased.  For this reason, steady state calculations are done by using local 

time-stepping, i.e., constant CFL number for all elements.  Normally, a CFL number as close to one as possible is 

used to ensure accuracy.  For time-accurate calculations, a constant time step implies that the CFL number varies 

substantially over the domain if a highly non-uniform mesh is used.   The Courant number insensitive (CNI) method 

[13] should be used to avoid excessive numerical dissipation in the coarse mesh region.  For the edge-based 

derivative approach, the vertices used for derivative calculations are pushed away from the solution point to increase 

numerical dissipation and pushed the opposite direction to reduce the dissipation.  A parameter σ is used to control 
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Figure 1. Conservation elements for a 2D triangular mesh: (a) top view   (b) 
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numerical dissipation.  A σ value of 1 means zero dissipation.   In a CNI scheme, the σ value is very close to 1 in the 

coarse grid region and increases to a larger value (around 1.3~1.5 for subsonic flows, and 5 or higher for supersonic 

flows with shocks) to maintain numerical stability in the highly stretched mesh inside the boundary layer.  

III. Results and Discussion 

 

Hypersonic flows over an isolated cylindrical roughness and the DTO trip are the main focus of the present paper.  

Three flow conditions taken from NASA Langley Research Center’s Mach 10 wind tunnel experiments by Danehy 

et al. [11] were computed for both trips.  The schematic of the experimental setup is shown in Fig. 2 for a cylindrical 

roughness element. The free-stream Mach number is 9.65 and the free-stream temperature is 53.3 K.  The 

conventional Sutherland law is used throughout the computations presented herein.  Since a different viscosity law 

was used to compute the unit Reynolds number reported for the experiment [11], a modified value is used to mimic 

one of the experimental conditions (specifically, condition II defined below) near the roughness element. The free-

stream unit Reynolds number for conditions I and II is 3.513 x 10
6
 per meter, which is calculated based on an 

estimate of the post-shock Reynolds number from the experiment [11].  The free-stream unit Reynolds number for 

condition III, 7.4 x 10
6
/m, corresponds to the largest Reynolds number in the wind tunnel experiment with a 

stagnation pressure of 1350 psi.  The wall temperature is 308 K.  In all the experiments, the roughness element is 

mounted on a flat plate with a free-stream flow incident angle of 10
0
 or 20

0
 for Conditions I and II-III, respectively.  

The corresponding post-shock Mach numbers are 6.52 and 4.16 for an angle of attack of 10
0
 or 20

0
, respectively.  

The cylindrical roughness has a 4 mm diameter and 2 mm height.  The DTO trip geometry to be described later has a 

height around 1 mm. The ratio of roughness height to boundary layer thickness is estimated to be about 0.82, 1.3, 

and 2.5 under Conditions I, II, and III, respectively.  Such roughness height is relevant for many hypersonic 

applications.  The length Reynolds number is about 3.84 x 10
5
, 2.6 x 10

5
, and 5.4 x 10

5
 at the roughness center.  The 

roughness elements are either in the subcritical or slightly larger than the critical Reynolds number at which the 

laminar flow becomes unstable to first- or second-mode instability waves.  Table 1 summarizes relevant parameters 

for the cylindrical roughness under all three conditions in which Me indicates the post shock Mach number, k/δ the 

roughness height to boundary layer thickness ratio, Rex the Reynolds number at the roughness location, Reh the 

roughness height Reynolds number based on the post-shock conditions, and Rek the roughness Reynolds number 

evaluated by using the local flow conditions at the roughness height.  For all computations shown in this paper, only 

half of the domain is computed.  Symmetry conditions are applied at both spanwise boundaries.  In all the 

computations reported in this paper, the inflow boundary is located 75.4 mm upstream of the roughness center (or 

approximately 72.4 mm from the leading edge for experiments with the cylindrical roughness). At the inflow, a 

converged solution obtained by a 2D Navier-Stokes calculation is imposed.  Constant temperature viscous boundary 

conditions and non-reflecting conditions are employed at the wall and the outflow boundaries, respectively. 

 

Time-accurate Simulations of an Isolated Cylindrical Roughness Element 

 

In Ref.[10], hypersonic flows over a cylindrical roughness element were investigated for conditions I and II using 

hexahedral meshes.  For better solution accuracy, a tetrahedral mesh is preferred.  Grid refinement studies were 

perfomed using several tetrahedral meshes with a mesh size ranging from 8 to 33 million elements.  The finest 

tetrahedral mesh shown in Fig. 3 with about 33.1 million tetrahedrons was found to give the best resolution for both 

the horse-shoe vortices and the wake streak for all three flow conditions although the second finest mesh with about 

16.5 tetrahedrons gave very close solutions for condition I.  In general, it is difficult to judge the current solution is 

already grid-converged without an extremely expensive grid-convergence study. Compared to the hexahedral mesh 

used in [10], the current tetrahedral mesh has better grid resolution in both streamwise and spanwise directions. The 

spanwise grid resolution appears to be relatively more important to resolve both the steady and unsteady features of 

the flowfield.   Figure 4 compares the streamwise evolution of velocity contours on the cross planes at four locations 

downstream of the roughness under condition I obtained by using the 5.6 million hexahedral elements and the 

current 33.1 million element tetrahedral mesh.   Substantial improvement in the flow features is evident.  
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Figure 2.  Schematic of the isolated cylindrical roughness element investigated in the LaRC wind tunnel 

experiments 

 

Table 1 Three free-stream conditions investigated for the isolated cylindrical roughness and the 

corresponding Reynolds number based on the height and locations 

Flow Condition Me k / δ Rex Reh Rek  

I 6.52 0.82 3.84 x 10
5
 10,600 5,940 

II 4.16 1.3 2.6 x 10
5
 6,800 6,130 

III 4.16 2.5 5.4 x 10
5
 14,300 13,300 

 

  

      

            

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.  Tetrahedral mesh with 33.1 million elements used for cylindrical roughness element 

computations: (a) 3D domain (b) symmetry plane and wall mesh (c) close up of the roughness element  
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For all time-accurate computations shown here, local time stepping was first employed for 30,000 iterations to have 

a roughly settled solution.  Time-accurate computations were then carried out until the solution either converged to a 

steady state or reached a quasi-steady state for unsteady flows.  Figures 5-7 show time traces of streamwise velocity 

and temperature at five probe points defined in Table 2 obtained from the time-accurate computations under three 

flow conditions.  Condition I apparently reaches a steady state while both conditions II and III remain unsteady 

throughout the time-accurate calculations.   However, solutions at all five probes have reached a large time 

asymptotic state for the latter two cases since the oscillatory time traces are repeated multiple times.   A dominant 

frequency can be discerned in condition II.  In contrast, multiple-frequency waves are present for condition III.  

These unsteady time traces suggest possible flow instability in the wake region which will be discussed in more 

detail later. 

 

 

 

   

Figure 4. Comparison of streamwise velocity contours at four downstream locations for steady-state solutions 

under condition I using two different meshes: (a) 5.6 million hexahedral mesh (b) 33.1 million tetrahedral 

mesh 

Table 2.  Coordinates and locations of the probe points for the cylindrical roughness 

Probe  x y z Location 

P1 -2.13 1.00 1.90 Front side separation region 

P2 3.16 0.92 0.16 Right behind the roughness 

P3 11.18 1.68 0.16 Near wake 

P4 30.83 1.57 3.90 Middle wake 

P5 44.35 2.97 0.16 Far wake 

 

Details of the solution can be better visualized by the numerical Schlieren pictures at the symmetry, the exit, and the  

y = 1.5 mm planes shown in Figs. 8-9.  The leading edge shock, front-side separation region induced shock and the 

wake region recompression shocks are clearly visible.   The signature of the horse-shoe vortex is also visible at the 

exit plane.  The bright white curve at about the same height of the roughness in the wake region in Fig.8 marks the 

boundary of the streak right behind the cylinder.  For conditions II and III, these streaks are unsteady and oscillatory 

along the streamwise direction.  For condition III, additional small structures develop around the oscillatory streak.  

The development of the horse-shoe vortices around the cylinder cross-section can be clearly visualized in Fig. 9.  

(a) (b) 
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For the steady vortices under condition I, these vortices remain straight throughout the computational domain.  In 

contrast, horse-shoe vortices meander downstream for conditions II and III.  It is interesting to note that the streak 

has a spanwise symmetric, vertical-swinging oscillatory motion (a natural outcome of the symmetric boundary 

conditions at the centerline) while the horse-shoe vortices oscillate in a spanwise side-swinging fashion.  While both 

of the larger roughness cases give rise to wake instability, the flow under condition III is apparently much more 

unstable because the oscillatory motion is much more pronounced and some additional structures are present near 

the exit (see Fig. 9(c)).  

The resulting surface limiting streamlines at a selected instant of time are plotted in Fig. 10 for all three conditions 

along with the vorticity magnitude contours at the exit plane.  The limiting streamline patterns, similar to that 

observed in [10], show substantial upstream influences in the front-side separation region.   For condition III, 

limiting streamlines appear to be wavier than the other two conditions.  Solutions presented here are instantaneous 

snapshots, time-average behavior on the surface may not show any waviness.  Again, both the symmetry plane 

streak and horse-shoe vortices are more pronounced at the exit plane in conditions II and III.  Figure 11 depicts the 

normalized surface temperature gradient (normalized by the free-stream temperature and the length unit of 0.001 m) 

distributions.  The images from Fig. 11 further confirm the existence of a streaky pattern around the cylinder with 

more streaks for relatively larger roughness elements.   These streaks are related to vortex formation around the 

cylinder.  More streaks are present for relatively more unstable trips.  This behavior is in line with the surface 

thermography observations for the DTO trip by Danehy et al. [12]. 

 

 

Figure 5. Time histories at five probe points defined in Table 2 for cylindrical roughness element under 

Condition I: (a) streamwise velocity (b) temperature 

To visualize the overall vortex pattern around the roughness, the 3D isosurfaces of the vorticity magnitude are 

shown in Fig. 12.  The vortex pattern in Fig. 12(a) shows a stationary, and fairly straight shape horse-shoe and wake 

streak vortex tubes for condition I.  In contrast, the vortex tube formed by constant vorticity magnitude meanders 

downstream for both conditions II and III.  For the most unstable case, condition III, the vortex evidently breaks 

down near the end of the computational domain.  Smaller structures are generated when the breakdown takes place.  

More grid refinement studies are necessary to determine whether the vortex breakdown process was properly 

resolved in the computations.   Figure 13 shows the slices of vorticity magnitude contours at a horizontal plane, y = 

0.5 mm.  For comparison, the PLIF image from Ref. [11] for the flow at a similar height under condition III is also 

included in the figure.  Similar large disturbances are evident both in computations (Fig. 13(c)) and experiments 

(Fig. 13(d)). It is interesting to note that more streaks upstream and slightly downstream the cylindrical roughness 

element are present as the flow becomes relatively more unstable.   These streaks are also related to the streaky 

patterns in surface heat transfer rate shown in Fig. 11.  The streamwise evolution of the vortex pattern can also be 

viewed from Figs. 14-16 where the vorticity magnitude contours are plotted at four streamwise locations with x = 5, 

25, 45, 65 mm.  All coordinate values (x and z ) present herein are in mm.  The stable case, condition I, has a stable 

and slowly rising horse-shoe vortex and streak.  On the other hand, both the streak and the horse-shoe vortices rise 

(a) (b) 
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up substantially from the wall for conditions II and III.  Signs of horse-shoe vortex breakdown manifested by 

weakened high shear layers on top of the horse-shoe vortices at x = 65 mm are also evident for condition III. 

 

 

Figure 6. Time histories at five probe points defined in Table 2 for cylindrical roughness element under 

Condition II: (a) streamwise velocity (b) temperature 

 

Figure 7. Time histories at five probe points defined in Table 2 for cylindrical roughness element under 

Condition III: (a) streamwise velocity (b) temperature 

 

Stability Analysis of the Flowfield around the Cylindrical Roughness Element 

 

Time traces at the probe locations and the vortex structures described above show strong evidence of instability 

waves for conditions II and III.  Note that these instability waves are self-excited by numerical noise.  Work is 

underway to investigate controlled disturbances input.  In this paper, some preliminary stability analyses for the 

computed flow under condition II were performed to help understand the nature of the self-excited instability waves 

in the cylindrical roughness wake.  During the time-accurate computations, the time-average of all dependent 

variables and their squares were computed and stored. These time-averaged solutions allow stability analyses of the 

mean flowfield. Flow disturbances can also be computed by subtracting the mean values from the instantaneous 

ones.  The root mean square (rms) of the flow disturbances can be obtained by the computed time-averaged values 

(a) (b) 

(a) (b) 
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of square quantities such as u
2
, T

2
, etc.  Figure 17 shows the time-average streamwise velocity contours at x = 40 

mm.  As shown in Refs. [4, 16], a well-formed streak and horse-shoe vortex pattern is expected to give rise to 

instability mechanisms that are similar to crossflow or Görtler vortices.  Highly inflectional profiles in these vortical 

structures are susceptible to inviscid instability.   Similar partial differential equation (PDE) based, 2D eigenvalue 

analysis has been performed for the meanflow shown in Fig. 17 to analyze possible instability modes of these wake 

structures.  The methodology used for this analysis is described in Ref. [16].  For such meanflow, instability waves 

for the streak and horse-shoe vortex have different instability wave characteristics.  Yet, it is non-trivial to separate 

these two flow structures in the 2D eigenvalue analysis.  To isolate the instability of the streak, the spanwise domain 

is truncated to z = 4 mm in the analyses.  There are 32 spanwise Fourier modes and 121 wall-normal points used in 

the calculations.  Only symmetrical modes are analyzed because the time-accurate solutions shown above suggest 

the existence of a symmetrical instability for the streak.  The stability results are shown in Fig. 18.  Temporal 

analyses were performed and then transformed to spatial growth rates using the well-known Gaster transformation 

[17].  Common in flows with highly inflectional profiles, there exist multiple unstable modes with the most unstable 

modes around 90 and 150 kHz (modes 1 and 2 shown in Fig. 18(a)).  The eigenfunction structures are concentrated 

in the high shear region on the top and sides of the mushroom-like streak structure.  Isolating the horse-shoe vortex 

is more difficult.  The domain was truncated at z = 12 mm with most points clustered around the horse-shoe vortex 

between z = 4 and z = 7 mm.  Only anti-symmetric modes were investigated because the time-accurate simulations 

above suggest a spanwise side-swinging mode.  The computed results are shown in Fig. 19.  Due to the relatively 

low resolution, only one good-quality mode was tracked.  The most unstable frequency is around 215 kHz.  The 

eigenfunction structures for this and a lower frequency 41 kHz mode are also shown in the figure.  Most 

perturbations are again in the high shear region.   

 

To facilitate comparison with the above stability results, time traces of streamwise velocity and temperature at a 

probe point P6 = (41.6 mm, 1.9 mm, 5.9 mm) are analyzed spectrally using the discrete Fourier transform.  Figure 

20 shows the time traces and the resulting Fourier spectrum of temperature perturbations at both P6 and P5 (defined 

in Table 2).  The Fourier mode amplitude shown in the figure has been normalized by the corresponding mean 

values.  Point P6 is located very close to the x = 40 mm plane and P5 is further downstream but well within the 

wake streak.  At both locations, there is a clear spectral peak at around 40 kHz.  The second and third peaks are 

around 75 and 115 kHz, respectively.   In fact, the 40 kHz mode is present and dominant throughout most of the 

wake region and right in front of the cylinder.  The second and third peaks are quite close to the first and second 

harmonic of the primary 40 kHz mode.  This self-excited disturbance frequency is lower than that predicted by the 

2D eigenvalue analysis.  However, the eigenvalue analysis results were only valid at one specific streamwise 

location.  To track the most unstable mode, eigenvalue analysis must be carried out at consecutive streamwise 

locations starting from slightly upstream of the roughness, which is quite computationally demanding and beyond 

the scope of this paper.  Refs. [3-4] demonstrate the application of integrated amplification characteristics of wake 

instabilities for the purpose of analyzing transition due to periodic and isolated roughness elements, respectively. 

The computed rms streamwise velocity and temperature amplitude contours at the x = 40 mm plane are shown in 

Fig. 21.  The self-excited disturbances are mainly concentrated in the horse-shoe vortex region, with a weaker 

perturbation sitting on top of the streak.  The rms amplitude contours bear some similarity to those obtained from the 

eigenvalue analyses shown in Figs. 18-19.    

 

Results from the above secondary instability analysis at a representative location downstream of the cylindrical 

roughness above suggest that the most unstable instability mode in the wake region may have a frequency higher 

than the 40 kHz mode observed in the simulations.  But then why is this relatively low frequency mode being 

excited by numerical noise?  To answer this question, time traces at the probe point P1 was further analyzed 

spectrally and plotted in Fig. 22.  Point P1 is located slightly upstream of the cylinder within the front-side 

separation region.  There is a clear spectral peak at 40 kHz for both streamwise velocity and temperature at this 

location.  Although not shown here, other probe points nearby also have an identical peak frequency.  The 

disturbance structure at this dominant frequency can be visualized by the rms amplitude of the streamwise velocity 

plot at a nearby streamwise plane, x = -2 mm, as shown in Fig. 23.  Large disturbances reside in the vicinity of high-

shear regions roughly on top of the negative streamwise velocity separation bubble. The separation region on this 

streamwise plane results in a doubly inflectional profile (with streamwise velocity changing signs twice) around z = 

3-4 mm. Such profiles may (or may not) cause an absolute instability observed in separation regions at low-speed 

boundary layers.   The existence of a distinct disturbance frequency around and after the cylinder and only one 

distinct spectral peak seems to lead to a likelihood of absolute instability.  To trace the origin of this mode further 

upstream, the rms amplitudes of the temperature fluctuations at all grid points on the symmetry plane (z = 0) are 
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plotted in Fig. 24.  In such a plot, values at different wall-normal distances are shown as discrete points. Tracking 

precise evolution of a particular point is difficult but the plot allows inspection of the variation along the streamwise 

direction.  As can be seen, there are two distinct sharp peaks around x = -4 mm and x = -2 mm, respectively.  After 

these spikes, temperature disturbances decay until the second bout of growth takes place around x = 10 mm.  Note 

that the growth rate downstream of the wake appears to be much smaller than the two sharp peaks in the front-side 

separation region.  The fact that this highly localized, rapid spatial growth occurs within the reverse flow region and 

corresponds to an almost constant frequency further suggests the existence of absolute instability.  If this argument 

holds, it could also explain why fluctuations are naturally excited in the time-accurate simulations.  Although not 

shown here, similar spikes in growth also exist at other spanwise locations for z < 6 mm. 

 

The spectral content of the time traces at the probe point P1 for the flow under condition III is shown in Fig. 25 for 

comparison.  In contrast to condition II, more than one peak is present. Four frequencies, 10, 20, 86, and 128 kHz 

stand out.  Some of the other peaks appear to be harmonics of these outstanding modes. It is also interesting to note 

that more higher-frequency modes are present in this case.  Figure 26 depicts the temperature rms amplitudes for all 

grid points on the symmetry plane.  Compared with Fig. 24 for condition II, there are three distinct peaks at x = -4.3, 

-2.6, -2.2 mm in the front-side separation region.  Similar decay followed by growth trend can also be observed for 

this case.  Temperature rms amplitudes at four streamwise locations are plotted in Fig. 27 for the flow under 

condition III.  The disturbance structure at x = -2 mm appears to be more complex than that under condition II, as 

shown in Fig. 23, perhaps due to the presence of multiple modes.  Qualitatively similar evolution of the rms 

amplitudes downstream as in condition II appears to confirm that similar instability mechanisms may also be present 

for this case. 

 

The sharp growth discussed above was not observed in the flow under condition I or in other calculations for a 

slender cylindrical roughness element configuration investigated in the Purdue University quiet tunnel [15].  Our 

previous 2D investigations also suggest that no spontaneous instability exists for 2D, rectangular roughness element 

under supersonic free-stream conditions [10].  Thus the possible absolute instability observed under conditions II 

and III, if confirmed, can only take place for 3D roughness elements.  The additional dimension in the flow allows 

doubly inflectional profiles to be present.  This highly unstable profile along with the presence of spanwise modes in 

3D calculations appears to facilitate the spontaneous instability observed here.  Since condition I has a smaller 

roughness to boundary-layer thickness ratio (less than 1) and smaller Rek, it is also likely that some threshold values 

in these parameters must be satisfied in order to have absolute instability. Compared to the spontaneous instability 

occurring in a low-speed, 2D rectangular roughness element for which strong instability results in vortex shedding 

right at the roughness site, the current 3D cases have a rapidly decaying region right after the generation of large 

disturbances (see Figs. 24 and 26). This rapidly stabilizing effect may be attributed to the strong favorable pressure 

gradient associated with the supersonic expansion taking place when the flow passes over the edge of the top 

cylinder surface or beyond the center of the roughness element from the cylinder side face.  Such stabilizing 

influence apparently offsets the effect of the highly perturbed mode and as a result, no immediate vortex shedding is 

evident around the cylinder.  However, the disturbances can undergo a second bout of growth associated with the 

convective instability of the streak and horse-shoe vortices.  The possible absolute instability mechanism upstream 

of the roughness plays the role of frequency selector.  For the flow under condition II, the dominant 40 kHz mode is 

an outcome of this mechanism.  This mode, once excited, persists throughout the whole flowfield and remains 

dominant in the wake region compared to other higher-frequency modes predicted by the secondary instability 

analysis.  However, as far as transition is concerned, the amplifying process in the wake may determine how fast 

these disturbances are amplified and whether transition would occur in the wake or not.  Condition III appears to 

lead to highly perturbed wake flow.  Higher grid resolution computations are under way to determine whether 

transitional flow is present sufficiently far downstream. 

 

In Danehy’s wind tunnel experiments, it was observed that strong disturbances in the form of corkscrew patterns and 

large disturbances are present along both sides of the cylinder for the flow under condition III (see Fig. 13(d)) [11].  

The PLIF seeding process favors the visualization of the horse-shoe vortices since it is more difficult for the seeding 

to enter the mushroom streak in the wake.  These unstable flow structures in the wake also suggest possible 

spanwise side-swing type of instability for the horse-shoe vortices, as predicted in the present investigation.  At this 

2 mm cylinder height, no processed data for conditions I and II is yet available and, therefore, the transition 

mechanisms at these conditions remain unknown at present.    
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Table 3.  Coordinates and locations of the probe points for the DTO trip 

Probe  x y z Location 

D1 -0.002 0.0012 -0.002 Front side separation region 

D2 0.002 0.0006 0.002 Right behind the roughness 

D3 0.005 0.0006 0.003 Near wake 

D4 0.015 0.0006 0.0 Middle wake 

D5 0.047 0.0004 -0.002 Far wake 

 

 

 

Figure 8.  Numerical Schlieren at symmetry and         Figure 9. Numerical Schlieren pictures at y = 1.5 mm        

exit planes: (a) condition I (b) condition II                    plane for (a) condition  I (b) condition II (c) condition   

(c) condition III                                                                 III 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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(c) 
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(b) 

(c) 

Figure 10. Surface limiting streamline patterns and 

vorticity magnitude contours at the exit plane for: (a) 

condition I (b) condition II (c) condition III 

Figure 11. Normalized surface temperature gradient 

distribution for: (a) condition I (b) condition II (c) 

condition III  
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(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

Figure 12. Isosurfaces of vorticity magnitude color        

coded by temperature for: (a) condition I (b) condition 

II (c) condition III                                           

Figure 13. Vorticity magnitude contours at the y = 0.5 

mm plane for: (a) condition I (b) condition II (c) 

condition III (d) PLIF image at a similar height under 

condition III from ref. [11] 

 

(d) 
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Figure 14.  Vorticity magnitude contours at four      Figure 15. Vorticity magnitude at four downstream 

downstream locations for flow under condition I              locations for flow under condition II     

 

       

Figure 16.  Vorticity magnitude contours at four      Figure 17. Streamwise velocity contours at x = 40 

downstream locations for flow under condition III    mm under condition II, showing wake streak and                  

                 the horse-shoe vortex 
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Figure 18.  Symmetric unstable modes for the streak at x = 40 mm under condition II obtained by 2D 

eigenvalue analysis showing (a) growth rates of various unstable modes and (b) temperature eigenfunctions 

for modes 1 and 2 

 

Figure 19. Anti-symmetric unstable modes for the horse-shoe vortex at x = 40 mm under condition II 

obtained by 2D eigenvalue analysis showing (a) growth rates of the most unstable modes and (b) temperature 

eigenfunctions for two frequencies 

(a) 
(b) 

(a) (b) 
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Figure 20.  Streamwise velocity and temperature time traces at probe P6 with a coordinate of (41.6, 1.9, 5.9) 

and Fourier spectrum content for temperature perturbations at P5 and P6 under condition II: (a) time traces 

(b) Fourier spectrum 

 

Figure 21. Streamwise velocity and temperature rms amplitude contours at x = 40 mm computed by time-

accurate simulations with self-excited disturbances for condition II (a) streamwise velocity (b) temperature 

 

(b) 

(b) 

(a) 

(a) 

 
 

 
 

Figure 22.  Spectral content at probe point P1 

under condition II 

 

Figure 23.  Streamwise velocity and rms 

amplitude contours at x = -2 mm under 

condition II  (a) u velocity (b) rms u amplitude 

 

 

(a) 

(b) 
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The Orbiter DTO Trip 

 

A scaled-down DTO trip model was tested in NASA Langley’s Mach 10 tunnel with the PLIF technique recently 

[12].  The trip height is about 1mm.  Therefore the value of k/δ is about 0.65 and 1.25 under conditions II and III, 

respectively.  The roughness Reynolds number Rek is estimated to be around 1,300 and 4,630, respectively.  The k/δ  

value for the DTO trip under condition III is about the same as the cylindrical roughness element under condition II 

but with a smaller Rek value.   It is expected that the DTO trip under condition III should have similar yet slightly 

weaker instability characteristics than the cylinder case under condition II.  The flow under condition II for this trip 

is relatively more stable and should remain steady.  This conjecture is confirmed in the PLIF experiments that 

indeed the flow under condition II is laminar and stable while that under condition III leads to large disturbances 

Figure 24.  Temperature rms distributions along 

the streamwise direction for all grid points at 

the symmetry plane (z = 0) under condition II 

 

Figure 27. Contours of rms amplitude of 

temperature fluctuations at four streamwise 

locations under condition III  

Figure 26.  Temperature rms distributions along 

the streamwise direction for all grid points at 

the symmetry plane (z = 0) under condition III 

 

Figure 25. Spectral content at probe point P1 

under condition III 
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downstream [12]. The trip configuration and a tetrahedral mesh are shown in Fig. 28.  There are about 43.6 million 

tetrahedral elements in this mesh.  The grid distribution is still sub-optimal, mainly due to the over-clustering near 

the underlying block boundaries of the structured domains.   Grid improvement and more comprehensive studies are 

still ongoing.  Preliminary solutions for the DTO trip under wind tunnel condition II are discussed in this paper.  

Solutions for condition III will be presented after the grid refinement study is completed. 

 

Five probe locations listed in Table 3 were used to monitor the solution evolution during the time-accurate 

calculations.  The resulting time histories of streamwise velocity and temperature are shown in Fig. 29.  The 

solutions appear to converge to a steady state and no instability wave was observed.   Since the trip height to the 

boundary layer thickness ratio and the roughness Reynolds number are both small, a converged stable solution is to 

be expected. It remains to be seen whether a more refined and better distributed grid would give rise to the self-

excited wake instability for condition III.  Figures 30 -32 show the converged solution by plotting numerical 

Schlieren, surface limiting streamline pattern, and the temperature and vorticity magnitude contours on four cross 

planes at four streamwise locations.  The presence of the trip appears to have a stronger effect on the leeward side 

than the windward side, as expected.  The flow discontinuity coming off the trip also appears to interact with the 

free-stream shock.  A streak of higher temperature is also evident in the trip wake.  Even though no self-excited 

disturbances were observed, convective instability is still possible. 

 

 

                                                                         

 

 

 

 
 

   

 

Figure 28.  The scaled DTO trip wind tunnel model mounted on a flap plate investigated at Langley 

Research Center and the 43.6 million element tetrahedral mesh : (a) model (b) overall mesh (c) center 

and exit planes (d) close-up view near the trip 

(a) 

(b) 

(c) 

(d) 
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Figure 29.  Time histories of streamwise velocity and temperature for time-accurate computations of 

the DTO trip under condition II: (a) u velocity  (b) temperature 

(b) (a) 

Figure 32.  Converged temperature and vorticity magnitude contours at four streamwise locations (in 

mm) for the DTO trip under condition II: (a) temperature  (b) vorticity 

Figure 30. Numerical Schlieren picture at the 

center and exit plane under condition II, showing 

shock structures around the DTO trip 

Figure 31. Computed surface limiting streamline 

pattern for the DTO trip under condition II 

(a) (b) 
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IV. Summary 

 

The unstructured-mesh, space-time CESE method is used to simulate time-accurate development of the wake flow 

behind an isolated roughness element in a hypersonic boundary layer.  Two roughness shapes in the form of a 

cylindrical trip and a scaled version of the DTO trip used in a recent flight experiment have been investigated.  The 

tetrahedral mesh with 33.6 million elements has been shown to adequately resolve both the mushroom-like 

centerline streak as well as the horse-shoe vortices wrapping around the cylindrical roughness element.  Three wind 

tunnel conditions pertinent to the NASA Langley Mach 10 wind tunnel experiments were computed. The post-shock 

Mach numbers are 6.15 and 4.16.  The roughness height to boundary layer thickness ratio varies from 0.8, 1.3, to 

2.5, corresponding to a roughness Reynolds number Rek of about 6,000 – 13,000.  It was found that at the smallest 

height ratio, the flow approaches a steady state with a well-formed streak and horse-shoe vortices downstream of the 

roughness.  Nevertheless, strong flow unsteadiness in the form of instability waves is present for the two larger 

values of k/δ.  In particular, for the intermediate value of k/, instability waves with a dominant frequency of 40 kHz 

were found.  This flow instability causes the streak and horse-shoe vortices to oscillate downstream.  Spectral 

analyses and the computed evolution of disturbance rms amplitude suggest that a possible absolute instability may 

take place in the front-side separation region where doubly inflectional mean profiles exist on the cross-stream 

plane.  Instability waves originating from this region propagate downstream and cause oscillatory motions of the 

streak and the horse-shoe vortices.  A similar instability mechanism but with a broader Fourier spectrum also takes 

place for the largest value of k/δ.  Stronger instability waves both upstream and downstream of the roughness at this 

relatively larger roughness height eventually lead to early vortex breakdown.  Detailed flow visualization of these 

processes is documented.  Preliminary results are also presented for the wind tunnel model of the DTO trip with a 

height to boundary-layer thickness ratio of about 0.65 and Rek of about 1,300.  Time-accurate simulations eventually 

lead to a steady state for the DTI trip.  
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