G₄-FETs as Universal and Programmable Logic Gates

Logic functions could be implemented using fewer active circuit elements.

NASA’s Jet Propulsion Laboratory, Pasadena, California

An analysis of a patented generic silicon-on-insulator (SOI) electronic device called a G₄-FET has revealed that the device could be designed to function as a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer discrete components than are required for conventional transistor-based circuits performing the same logic functions.

A G₄-FET is a combination of a junction field-effect transistor (JFET) and a metal oxid/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G₄-FET can also be regarded as a single transistor having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of the SOI substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry.

With proper choice of the specific dimensions for the gates, channels, and ancillary features of the generic G₄-FET, the device could be made to function as a three-input, one-output logic gate. As illustrated by the truth table in the top part of the figure, the behavior of this logic gate would be the inverse (the NOT gate) of that of a majority gate. In other words, the device would function as a NOT-majority gate. By simply adding an inverter, one could obtain a majority gate. In contrast, to construct a majority gate in conventional complementary metal oxide/semiconductor (CMOS) circuitry, one would need four three-input AND gates and a four-input OR gate, altogether containing 32 transistors.

The middle part of the figure schematically depicts three ways of realizing an inverter (NOT gate), two ways of realizing an AND gate, and two ways of realizing an OR gate by use of one or two NOT-majority gates. In addition (not shown in the figure), by using one of the three inputs as a programming or control input that is set to 0 or 1, a NOT-majority could be made to respond to the other inputs as either a NAND or a NOR gate, respectively. Inasmuch as the sets {NOT,AND}, {NOT,OR}, and {NAND,NOR} have previously been shown to be universal (in the sense that any digital computation or logic function could be realized by use of suitable combinations of members of these sets), the possibility of realizing these sets signifies that the NOT-majority gate is also universal.

The bottom part of the figure depicts a full adder, implemented by use of three NOT-majority gates and two inverters, that would put out two one-bit binary numbers in response to three input one-bit binary numbers. The design of this adder exploits the possibility of switches a NOT-majority gate between NAND and NOR functionality to minimize the number of gates needed. In contrast, the simplest implementation of...
an equivalent full adder based on
Boolean gates would include nine
NAND gates and four inverters.

This work was done by Travis Johnson,
Amir Fijany, Mohammad Majarradi, Far-
rokh Vatan, Nikzad Toomarian, Elizabeth
Kolawa, Sorin Cristoloveanu, and Benjamin
Blalock of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1).

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:
Innovative Technology Assets Management
JPL.

Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
(818) 354-2240
E-mail: iaoffice@jpl.nasa.gov
Refer to NPO-41698, volume and number
of this NASA Tech Briefs issue, and the
page number.