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Nomenclature

a speed of sound
Cp = 2(p−p∞)

ρ∞U2
∞

, surface pressure coefficient
D cylinder diameter
i =

√
−1, imaginary number

M Mach number
p pressure
Re = |V|D

ν , Reynolds number
u, v, w Cartesian fluid velocity components
u∗ friction velocity
V Cartesian velocity vector
x, y, z Cartesian coordinates
y+ =u∗y

ν , nondimensional wall distance

Greek:
ρ fluid density
θ azimuthal angle (x− y plane)
ν kinematic viscosity

Superscript:
′ perturbation quantity (e.g. ρ′ = ρ− ρ∞)

Subscript:
∞ freestream quantity
rms root mean square

Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) tem-
poral scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady
Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest.
The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-
stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this
scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-
order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT
scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the com-
putational results with other numerical schemes and experimental data.

I. Introduction

Significant progress has been made in the field of computational fluid dynamics (CFD) during the last three decades,
and modern CFD codes are applied routinely for solving steady, viscous flows on complex configurations using the Euler
and Reynolds averaged Navier-Stokes equations.1–6 However, the computational methodology is not as mature for the
solution of unsteady flows, which is one of the next big challenges for the CFD community. The unsteadiness could be
self-induced, such as for large separated flows, be created by flow control devices, or generated by many other mecha-
nisms. Obtaining statistically meaningful solutions for such flow problems requires significant computational resources.
However, advances in multi-core, multi-processor computer technology and numerical algorithms that take advantage of
massive parallelization have resulted in significant reduction in wall clock time to obtain statistically converged solutions
for problems of practical interest.

An interesting and pertinent application of unsteady flow simulations is to provide input data to acoustic noise
propagation codes. Such applications frequently have significant fluctuations over a range of frequencies and require
unsteady solutions over a very large number of time steps to produce broadband statistical data with adequate temporal
resolution. However, care must be exercised in selecting the numerical scheme for such applications because long time
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computations allow minute numerical instabilities (e.g. unstable eigenvalues of magnitude 10−5) to grow without bound,
a phenomena that might remain unnoticed for short time computations.

One possibility of improving the numerical efficiency is by adopting a higher-order, multi-stage, temporal scheme
(e.g. 3rd- or 4th-order, implicit, Runge-Kutta7). Indeed, the efficacy of high-order schemes has been demonstrated by
several researchers on problems with varied error tolerances, particularly those that require high levels of accuracy.8–10

Adopting high-order schemes in large-scale engineering applications is not without complications. High-order schemes
place an additional burden on the numerical algorithm used to solve the nonlinear set of equations, and only realize
their full potential when the solver delivers a convergence rate that is relatively independent of time-step. Time-step
independent convergence rates may be a difficult goal to achieve in general. Solver technology is one of the least mature
disciplines among the many that are needed in the CFD community, and is presently the focus of extensive research.
Placing any additional burden on the solver is not to be taken lightly. Hence, despite the recent successes of high-order
schemes, there is still the need for reliable and robust, second-order methods.

Herein, we focus strictly on multistep methods; in particular, the backward-differentiation formula (BDF) class of
multistep schemes. These schemes have historically been very popular for large scale scientific computations because of
their simplicity, nonlinear robustness, and relative efficiency. Perhaps the most popular of the BDF class of schemes is
the second-order scheme that requires three time levels (BDF2). In addition to being second order accurate, it can be used
for arbitrarily large time-steps (A-stability) without encountering numerical instability. Our ultimate goal in this work
is to identify the most accurate BDF2 scheme that is stable for arbitrarily large time-steps. We identify an alternative
second-order BDF2 scheme, (one of a class of optimized, second-order, backward difference methods referred to as
“BDF2OPT schemes”), with an error constant half as large as the conventional BDF2 scheme. The new scheme is
extensively tested on model problems as well as a realistic problem involving the unsteady flow past a circular cylinder.

II. Governing Equations and Numerical Scheme

For the present work, the Reynolds-averaged Navier-Stokes equations are used as the governing equations to model
the flow field. The discrete form of these equations on unstructured grids is solved using the Computational Fluid
Dynamics (CFD) code known as FUN3D developed originally by Anderson and Bonhaus.11 The FUN3D code has
gone through significant modifications over the years by a team of researchers at NASA Langley using modern software
practices.12 Solutions are obtained either in a time-accurate manner with a constant time step at every grid point or with
variable time stepping to accelerate convergence to a steady state. The effects of turbulence are modeled by using either
the Spalart-Allmaras (SA)13 model or with Menter’s two-equation shear stress transport (SST)14 model.

FUN3D has a wide range of flux schemes and flux limiters from which to choose. For the current work, Roe’s flux-
difference splitting scheme15 is used without a flux limiter. For steady flows, the solution at each time step is updated
with a backwards Euler time-differencing scheme and the use of local time stepping. At each time step, the linear
system of equations is relaxed in a red-black fashion with a point implicit procedure.16 For unsteady flow problems,
a dual-time-stepping scheme17 is employed. A variety of time marching schemes are available in FUN3D, including
a second-order, backward-differencing formulation (BDF2), and an optimized, second-order, backward-differencing
formulation (BDF2OPT). These will be discussed further in the next section.

III. Temporal Discretization

We focus strictly on multistep methods in this study; in particular, we examine the backward-differentiation for-
mula (BDF) class of multistep schemes. These schemes, popularized by Gear,18 are widely used for the integration of
differential equations. The BDF schemes applied to the differential equation ut = f(u, t), can be expressed in the form

k∑
j=0

δj∇jun+1 = ∆tfn+1.

In these equations, ∇j represents the backward difference operator and ∆t represents the time step. The values of the
coefficients δj are easily derivable from a Taylor series expansion and are reported in Ref. 19 (pp. 365− 366).

It is well known that only the first- and second-order BDF schemes (BDF1 and BDF2) are A-stable, while BDF
schemes of order three and higher are only A(α)-stable. Dahlquist’s famous theorem20 states that

Theorem 1 Let p represent the polynomial order of the temporal discretization. An A-stable multistep method must be
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of order p ≤ 2. Furthermore, if the order is 2, then the error constant satisfies

C ≤ − 1
12

Here, C is the coefficient of the leading truncation error term.
A-stability requires that all points in the left half of the complex plane (LHP), including the imaginary axis, are

damped over one time step. A(α)-stability allows for growth in a wedge region of the included angle, (90 − α), that
lies in the LHP between the imaginary axis and the line joining the origin and the tangency point of the root locus of the
stability curve. More detailed discussion on A(α)-stability is available in Refs. 20 and 21.

This second barrier of Dahlquist limits the utility of the BDF class of schemes for p ≥ 3 as a general purpose
scheme. A noteworthy exception is the case p = 3. For example, Melson et al.22 showed that the BDF3 scheme was
viable for many CFD applications. However, numerical instabilities were encountered by Vatsa and Carpenter23 when
using the BDF3 scheme to simulate the unsteady flow created by synthetic jets, thus underscoring the pitfalls of using a
conditionally stable scheme.

The stability characteristics for various BDF schemes are given in Table 1.

Method Levels Order A(α)
BDF1 2 1 A(90◦)
BDF2 3 2 A(90◦)
BDF3 4 3 A(86.03◦)
BDF4 5 4 A(73.35◦)

Table 1. Properties of BDF methods.

Given the “impossibility” of constructing A-stable multistep BDF methods higher than second order (of any number
of levels), an obvious related question is “What is the most accurate A-stable BDF scheme that can be constructed?”
Or more precisely, “Given an arbitrary number of time levels, what is the A-stable BDF scheme with a leading order
truncation error closest to the C ≤ − 1

12 barrier?” Asymptotically, one could imagine approaching the barrier as the
number of time levels is increased. Clearly, large-scale computations place practical limitations (storage and work) on
the required number of time-levels. Furthermore, preliminary investigation suggests that most benefits are achieved by
including one or two additional time levels. Thus, in this work we focus exclusively on the four- and five-time-level, two
parameter family of BDF schemes constructed from a linear combination of the BDF2, BDF3 and BDF4 schemes.

We now begin by re-optimizing the BDF2 scheme subject to the A-stability constraint and four-time-levels.§ A
one parameter family of four-time-level, second-order, multistep schemes [BDF2OPT(β)], is achieved by using a linear
combination of the BDF2 and BDF3 schemes:

BDF2OPT(β) = (β) BDF3 + (1 − β) BDF2 (1)

Next, we adjust the parameter β to minimize the leading order truncation error of the BDF2OPT(β) scheme, subject
to the constraint that the resulting scheme is A-stable. Note that adjusting the parameter β merely scales the coefficient
of the leading order truncation term, C = −4

12 , of the original BDF2 scheme by the factor (1 − β). Thus, based on
Dahlquist’s theorem, we should test the schemes on the interval 0 ≤ β ≤ 3

4 .
The stability properties of multistep schemes are determined by assessing where in the complex plane the roots of

the temporal polynomial lie. The root locus curves of the BDF class of schemes is given by

µ =
k∑

j=1

1
j
[1 − exp (−iθ)]j (2)

For example, given the BDF2 scheme (k = 2), the real part of the root locus curve is defined by Re(µ) = 3
2 −

2 cos(θ) + 1
2cos(2θ), which upon inspection reveals that Re(µ) ≥ 0 because the root locus curve never crosses the

imaginary axis. Thus, the scheme is A-stable because all LHP eigenvalues are damped.
Combining Eqns. (1) and (2) yields an equation for the root locus of the BDF2OPT(β) scheme:

µ = − 4
3 sin4

(
θ
2

)
(4β cos(θ) + 2β − 3)

+ i 1
3 sin(θ)[2β cos(2θ)− 3(2β + 1) cos(θ) + 4β + 6]

(3)

§Nyukhtikov et al.24 presented a slightly different exercise when deriving their optimized second-order scheme, known as BDF2OPT(β = 0.58).
Their primary focus was the accuracy of four-level schemes, and did not specifically require A-stability.
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and A-stability is guaranteed if Re(µ) ≥ 0 for all θ. Differentiating Re(µ) with respect to θ in equation 3 and solving
for all roots reveals that extrema exist at

{x → nπ; n = 0,±1,±2, · · ·},
{

x → ±2 cos−1

(
±
√

2β + 1
2
√

β

)}
The values of Re(µ) at these extrema are {

0,
8β

3
+ 4,− (2β − 1)3

12β2

}
If all the extremum values are strictly non-negative, then the resulting scheme is A-stable. Thus, the BDF2OPT(β)
family of schemes is A-stable for β on the interval 0 ≤ β ≤ 1

2 .
Note that among the four-time-level A-stable BDF2OPT(β) schemes, the most accurate is achieved for the value

β = 1
2 , which will be referred to as BDF2OPT(4). For this case, the leading order truncation term is exactly half of

the original BDF2 scheme: i.e. C = −2
12 . It is also noted that the BDF2OPT scheme of Nyukhtikov et al.,24 which was

constructed using β = 0.58, is A(α)-stable, with α = 89.89◦, and hence is weakly unstable.
The stability characteristics of the four-time-level BDF2OPT(β) family of schemes for two β parameters are listed

in Table 2.

Method Levels β A(α)
BDF2OPT(4) 4 0.50 A(90.00◦)

BDF2OPT(β = 0.58) 4 0.58 A(89.89◦)

Table 2. Properties of four-time-level BDF2OPT(β) methods.

A similar exercise can be performed by parameterizing the BDF2 scheme with two additional time levels:

BDF2OPT(β, γ) = γ BDF4 + β BDF3 + (1 − β − γ) BDF2 (4)

The A-stable scheme having the lowest error constant is achieved for the case γ = 1− 1√
2

, and β = − 5
2 + 2

√
2 which

will be referred to by BDF2OPT(5).
Fig. 1 (a) shows five stability locus curves. The inner and outermost curves correspond to BDF2 and BDF4, respec-

tively. It is observed from this figure that a small portion of the root locus of the BDF3 and BDF4 schemes lies in the
LHP, which indicates the A(α)-stable nature of these schemes. The BDF2OPT(4) and BDF2OPT(5) schemes do not
cross into the LHP, and are therefore indicative of an A-stable scheme, just as is the case for the BDF2 scheme. Fig. 1
(b) shows an expanded view of the stability locus near the origin. Observe that except for the origin, the BDF2OPT(4)
scheme is bounded away from the imaginary axis while the BDF2OPT(5) scheme touches the axis at precisely two
additional points.

This stability analysis is further substantiated with a numerical test. The model equation Ut + Ux = 0; 0 ≤ x ≤
1, t ≥ 0 is integrated in time using the BDF2OPT(β) schemes for β = 0(BDF2), 0.45, 0.48, 0.50, 0.58, 1.0(BDF3)
as well as the five level BDF2OPT(5) scheme. The initial condition is a U(x, 0) = sin(2πx). The spatial derivative
Ux is discretized using in all cases a skew-symmetric, second-order, central-difference operator. The skew-symmetry of
the matrix is maintained near the boundaries by adopting a periodic spatial domain, thereby guaranteeing that the semi-
discrete eigenvalues are confined to the imaginary axis. This setting increases the probability that at least one eigenvalue
will reside in the unstable lobes of the BDF2OPT(β) schemes for β > 1

2 . Fig. 2 shows a convergence study comparing
the aforementioned BDF2OPT(β) schemes. The solution error is plotted as a function of the time-step (CFL = ∆t

∆x with
δx fixed and δt varying) on a logarithmic plot. All schemes converge over at least a portion of the time-step refinement,
and the convergence rate is design order in all cases. The cases for which the parameter β exceeds the threshold β = 1

2
are only conditionally stable, as is indicated by the sudden divergence of the solutions. It is also noted from Fig. 2, that
the formal accuracy of BDF2 and BDF2OPT(β) schemes are the same (i.e. second order), whereas the actual error in
the solutions for the BDF2OPT(4) scheme is approximately half compared to the BDF2 solutions at a given time step.

A question arises concerning the efficacy of the BDF scheme derived from the five-level case: BDF2OPT(5). In this
case, the stability locus curve touches the imaginary axis at two points in addition to the origin. Modes that coincide
with these two points on the imaginary axis will be neutrally stable and could potentially lead to stability problems in the
presence of algebraic perturbations resulting from inadequate convergence of the nonlinear system at each time-level.
The stability characteristics of the BDF2OPT(5) scheme remains the ongoing focus of investigation, as does the task of
finding the general expression of the coefficients for an arbitrary number of time levels.
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In summary, the BDF2 scheme has been re-optimized using slightly different criteria than those proposed by Nyukhtikov
et al.24 It is proven that the leading-order truncation error of the conventional BDF2 scheme can be decreased by a factor
2 or 2

5−3
√

2
≈ 2.64 by combining it with the BDF3 and BDF3/BDF4 schemes, respectively.

IV. Results

For practical 3-D aerodynamic applications, it is important to select a temporal scheme that is efficient and robust, and
does not adversely impact the performance of the base solver. Having examined various higher order temporal schemes,
it was decided to use the BDF2OPT scheme with four time levels described by Eqn. (1) in the previous section. This
scheme requires the solution vector be stored at one additional time level compared with the standard BDF2 scheme;
however, the lead truncation error term is nearly halved with only a nominal increase in the operation count.

We now examine the turbulent flow past a circular cylinder at a free stream Mach number of 0.166 and at a Reynolds
number of 166,000 based on cylinder diameter, D, to match the test conditions of the experimental study of Jenkins
et al.25 The turbulence model used for this case is based on the two-equation shear stress transport (SST) model of
Menter.14 It is well known that turbulence models developed for steady flows, such as the SA and SST models, are
overly diffusive26, 27 and suppress the three-dimensionality of the flow in CFD simulations for unsteady flows that are
accompanied by large reverse flow regions. The Detached Eddy Simulation (DES) model suggested by Spalart28 has
been used with reasonable success for the computation of unsteady flows past circular cylinders.26, 29–31 Others have
used various forms of hybrid RANS/LES models for such computations.32, 33 In the present work, the SST model was
modified such that the production terms were set to zero outside the boundary-layer region in the manner described by
Khorrami et al.27 and Lockard et al.34 which results in a much less diffusive model and lower eddy viscosity levels in
the wake regions.

Wall temperature based on adiabatic flat plate conditions11 is imposed on the surface of the cylinder along with the
no slip conditions. Riemann-invariant based boundary conditions are imposed on the far-field boundary. In the spanwise
direction, periodic boundary conditions are imposed at z = 0 and z = zmax to more closely simulate an infinite span
problem. For the initial computations, the far-field boundary is set at a distance of 15 cylinder diameters away from
the center of the circular domain and a span of 3 cylinder diameters is used. A structured grid consisting of 289 x 289
points in the circumferential and radial direction was created in a two-dimensional plane, and extruded to produce 97
equally spaced planes in the spanwise direction to create the three-dimensional grid used in these computations. The
grid spacing was clustered near the cylinder surface with a normal grid spacing equal to 0.0002 of a cylinder diameter
at the surface which results in a value the turbulent parameter, y+ of order 1. A partial view of the grid in the end plane
is shown in Fig. 3, where the grid clustering near the surface and wake region is clearly visible. The choice of grid
clustering in the wake region was influenced by the Detached Eddy Simulation (DES) arguments proposed by Spalart28

and to replicate the grid topology suggested for DES simulations for cylinders by Travin et al.26 and Vatsa and Singer.31

IV.A. Original BDF2OPT(β = 0.58) scheme

The first series of results reported here were obtained with the BDF2OPT(β = 0.58) scheme originally proposed by
Nyukhtikov et al.24 for improving the accuracy of BDF2 scheme. Although this scheme is A(α)-stable and, therefore,
conditionally stable, its stability range is much broader than the BDF3 scheme (see Tables 1-2), and it is more accurate
than the conventional BDF2 scheme at nominally the same computational cost. This scheme was used originally by
Nyukhtikov et al.24 for several turbomachinery problems and did not show any signs of instability. Vatsa and Carpenter23

have examined the performance of this scheme for the unsteady Navier-Stokes equations and demonstrated the improved
accuracy of BDF2OPT scheme compared to the BDF2 scheme for several test problems without encountering any
numerical instability. The BDF2OPT scheme has also been used successfully with the FUN3D code for several problems
of aerodynamic interest by Biedron et al.35, 36 In the present work, we undertook the task of assessing the performance
and accuracy of this scheme along with that of the standard BDF2 scheme for computing the unsteady flow past a circular
cylinder over long periods of time with eventual application to acoustic noise prediction.

The flow field was initialized as free stream and the FUN3D code was run for about 2000 iterations in a steady mode
using the standard SST turbulence model. These solutions were specified as initial conditions for the unsteady flow
computations performed with the modified SST turbulence model described earlier in the previous section. As can be
seen from Fig. 4, care was taken to ensure that the residuals in the dual time-stepping converge 3-4 orders for the hy-
drodynamic equations. The values in the plot are the L2 norm of the subiteration residuals over the entire computational
domain. The residuals for the turbulence equations only drop 2 orders of magnitude because the convergence is poor in
highly unsteady regions away from the body where the modifications to the SST model minimizes the influence of the
turbulence model.

5 of 15

American Institute of Aeronautics and Astronautics Paper 2010-0122



Instantaneous contour plots of the density in the z=0 plane, based on flow solutions obtained after running 10K, 20K
and 26K time steps (K represents a value of 1000 in this context, thus 10K stands for 10,000) with this BDF2OPT(β =
0.58) scheme are shown in Figs. 5(a)-(c), respectively. Fig. 5 (a) displays the typical vortex pattern behind the cylinder
which is confined to the wake region and becomes weaker further away from the cylinder. The fluctuations in the flow
field away from the cylinder and wake region are primarily acoustic and cannot be seen on this scale at this instant in
time. However, when we examine the solutions at 20K time steps, the density contours indicate the formation of spurious
waves. These waves get stronger with time (see Fig. 5 (c) at 26K steps), and eventually overwhelm the solution in the
whole domain.

Although the analysis in section III would suggest that the BDF2OPT(β = 0.58) is admitting instabilities because it
is only conditionally stable, the problem being solved here is much more complicated than the model problem used for
the analysis. Hence, numerical experimentation was used to rule out other possible sources of the spurious oscillations.
Several possible causes for the instabilities were investigated in a systematic fashion. Characteristic-based boundary
conditions in the downstream region of the viscous wake can induce numerical instabilities, especially in subsonic
flow regions when sufficiently fine grids are used near the downstream boundary. The combination of specifying the
downstream pressure with several different forms of far-field characteristic conditions had minimal effect. The problem
also persisted with tetrahedral grids, which are more common for unstructured grid codes.

The distance of the far-field boundary was then doubled, i.e. it was placed at a distance of 30 cylinder diameters
away from the center of the cylinder. We also coarsened the grid in the far-field to be more isotropic so as to reduce the
reflections from the far field. A global view of this grid in the z=0 plane is presented in Fig. 6, where an inviscid type
of grid is seen near the far-field boundary. The solutions obtained on this grid after 15K and 30K time steps are shown
in Figs. 7 (a) and (b), respectively. Whereas the solution after 15K time steps is well behaved and displays the expected
trends, the instabilities have polluted the flow structure completely by the later point in time at 30K time steps.

Several other numerical studies were conducted to isolate the cause. We discovered that these instabilities could be
suppressed by coarsening the spanwise grid distribution by a factor of 2. Conversely, if the spanwise extent was reduced
by half, while still maintaining the number of points in the spanwise direction of the original grid, spurious oscillations
were observed in the computational results after about 25K time steps. Based on this exercise, we inferred that these
numerical instabilities are more likely to appear for cases where the numerical dissipation is reduced via finer grids.

As a final step to ensure that there were no other sources of instabilities in our numerical scheme, the computations
were repeated with the standard BDF2 scheme, which is theoretically unconditionally stable or A-stable. Computational
results after 50K time steps with the BDF2 scheme are shown in Figs. 8 (a)-(b), and these results display no sign of
instabilities.

Based on the results obtained in these tests, the BDF2OPT(β = 0.58) scheme appears to permit certain unstable
modes to grow because of its conditional stability. One may not encounter such instabilities in the initial stages of a
computation, or for problems where sufficient physical or numerical dissipation is present to damp these out. However,
one should exercise caution when using this scheme for problems requiring integration over long periods of time.

IV.B. Modified BDF2OPT(β = 0.48) scheme

For the next series of solutions, we used the modified BDF2OPT(β) scheme with a value of β = 0.48. Based on the
stability analysis presented in Section III of this paper, it is recognized that the BDF2OPT schemes are A-stable for any
value of β ≤ 0.50. A value of 0.48 for the β parameter was chosen to be conservative. The resulting scheme is an
A-stable scheme, and it reduces the temporal error by approximately a factor of 2 when compared with the standard
BDF2 scheme. For remainder of this paper, solutions are presented on the grid where far-field boundary was placed at a
distance of 30 D away from center (see Fig. 6).

The instantaneous density contours in the z=0 plane after 50K time steps with the modified BDF2OPT(β = 0.48)
scheme are shown in Fig. 9 (a)-(b). These results are free of any sign of instability and are qualitatively similar to the
results obtained with the standard BDF2 scheme shown in Figs. 8 (a)-(b) for the same grid. We have run the code to 90K
iterations in time to monitor the performance of this scheme, and have not detected any sign of numerical instability or
spurious behavior in these solutions.

The time-averaged pressure distributions on the cylinder surface were also examined. We started averaging the flow
field data after running the code for 20K time steps after the initial transients had left the computational domain. The
time-averaged surface pressure coefficient distribution at each circumferential location was also averaged in the spanwise
direction (assuming spanwise homogeneity) to obtain the time-averaged data as a function of azimuthal angle, θ. The
angle is measured from the upstream stagnation point and is positive in the clockwise direction. The results from the
BDF2 and BDF2OPT(β = 0.48) schemes are compared with experimentally measured data25, 37 for the cylinder in Fig.
10. Note that the flow was tripped using a transition strip between θ = 50 − 60◦ in the experimental case to simulate
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turbulent transition on the cylinder surface, whereas the CFD code does not have the mechanism to force transition in
this manner. Therefore, the CFD code was run in a fully turbulent mode. However, the actual transition in the CFD
solutions occurred later compared to the transition trip location in the experiment. However, separation did occur before
θ = 90◦ so that the flow became turbulent before separation.

The pressure distributions from the two temporal schemes in FUN3D are almost indistinguishable in Fig. 10. The
computational results compare well with the measured data near the stagnation region as well as on the aft side of the
cylinder. However, the computational Cp indicates an earlier separation, thereby resulting in under-expansion of the
flow near the top and bottom of the cylinder. We believe that at this moderate value of Reynolds number, the CFD code
with the SST turbulence model does not simulate the same transition to turbulent flow as in the experiment. Hence, the
discrepancy in the pressure comparisons. We also obtained solutions for this case on the same grid with the structured
grid flow solver CFL3D38, 39 using the BDF2 scheme, and the resulting pressure distributions from these computations
are also shown in Fig. 10. The pressure distributions obtained from the CFL3D and FUN3D codes are in excellent
agreement with each other.

The distribution of the root-mean-square (rms) perturbed surface pressure coefficient (Cp
′

rms) is shown in Fig. 11.
The FUN3D solutions obtained with the BDF2 and BDF2OPT schemes are compared with the experimental data ob-
tained in the Quiet Flow Facility at NASA Langley Research Center.37 The unsteady pressure transducers on the cylinder
were located every 45◦. To obtained refined azimuthal resolution, the cylinders were rotated, and the transition strip had
to be re-applied after each rotation. Such an arrangement can easily create some non-uniformity in the configuration and
flow characteristics and introduce scatter in the measured data, as seen in Fig. 11. Again, the FUN3D results with the
two temporal schemes compare well with each other and are in good agreement with the CFL3D results. The numerical
solutions miss the peak in the rms because the flow separates too early in numerical simulations. However, most of the
computed rms pressure distribution lies within the scatter of the experimental data.

Comparing the efficiency of temporal schemes in real-world settings is often a very difficult task. For example,
see Ref. 9 for a thorough discussion on this topic. To actually demonstrate any accuracy differences between the time
integration methods for the cylinder shedding problem, a systematic time-step refinement would be required. However,
the case is dominated by fluctuations at the vortex shedding frequency. Any improvement in the time integration would
only have a minor effect on the time-averaged quantities examined here unless the time step was large enough to alter
the shedding process. Theoretically, one should be able to use a larger time step with the improved scheme, but exactly
how much larger is difficult to estimate because of the interaction of the temporal and spatial operators as well as the
complicated equation sets that are solved in real-world problems. Most CFD codes are limited by spatial rather than
temporal accuracy, so the optimal time step would be difficult to determine without a systematic refinement in space
and time. However, such studies are often prohibitively expensive for unsteady flow problems. The temporal and spatial
resolutions chosen are often based on formulas derived from simplified equation sets and engineering judgment. Hence,
an improvement in the temporal accuracy is often used like a factor of safety. In this case, one is trading a little higher
operation count and the storage of one additional solution vector for the improved factor of safety.

V. Concluding Remarks

A new class of optimized, second-order, backward-difference (BDF2OPT) schemes has been developed that possess
formal stability properties with only a slight reduction in the theoretical accuracy of previous optimized schemes. Sev-
eral numerical studies were conducted to demonstrate that the BDF2OPT(β = 0.58) scheme of Nyukhtikov et al.24 does
admit spurious solutions for long-time integration of the flow over a circular cylinder. This scheme is only conditionally
stable and, under certain circumstances, permits the growth of instability modes. A slight modification of the scheme re-
sults in an unconditionally stable scheme. Results obtained with the modified scheme were shown to be well behaved and
free of any spurious oscillations. The proposed BDF2OPT(β = 0.48) scheme still offers improved temporal accuracy
compared with the standard BDF2 scheme at nominally the same computational cost, but with a higher storage require-
ment (a 3 to 10% increase in the total memory requirement for typical CFD codes). Time-averaged solutions obtained for
flow over an isolated cylinder were shown to be essentially identical between the BDF2 and new BDF2OPT(β = 0.48)
schemes. Although the new temporal scheme is more accurate, to achieve a decreased computational cost through a
larger time step, the interactions between the spatial and temporal operators must be evaluated in the context of the
equation set and geometry being solved. Such studies are often prohibitively expensive to perform computationally, and
analysis techniques are not general enough to handle most real-world problems. Not only are higher-accuracy temporal
and spatial schemes needed, but also robust, accurate, and efficient error estimates. Only with improved error estimates
can the full potential of higher-accuracy methods be realized.
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(a) Full domain view (b) Expanded view near origin
Figure 1. Stability locus for the BDF2 schemes
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Figure 2. Convergence behavior of BDF2, BDF3 and BDF2OPT schemes for test problem
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Figure 3. Partial view of grid in z=0 plane

Figure 4. Convergence histories for dual-time stepping scheme
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(a) 10K time steps (b) 20K time steps

(c) 26K time steps
Figure 5. Instantaneous density contours in z=0 plane at different times. Solutions obtained using the BDF2OPT(β = 0.58) scheme
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Figure 6. Global view of grid with far-field boundary at 15D in z=0 plane

(a) 15K time steps (b) 30K time steps
Figure 7. Instantaneous density contours at different times, far-field boundary at 30D. Solutions obtained using the BDF2OPT(β = 0.58)
scheme
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(a) Global view (b) Expanded view near origin
Figure 8. Instantaneous density contours at 50K time steps, far-field boundary at 30D. Solutions obtained using the BDF2 scheme

(a) Global view (b) Expanded view near origin
Figure 9. Instantaneous density contours at 50K time steps, far-field boundary at 30D. Solutions obtained using the BDF2OPT(β = 0.48)
scheme
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Figure 10. Comparison of time-averaged surface pressure

Figure 11. Comparison of perturbation pressure coefficient
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