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The nonlinear development of Gortler instability over a concave surface gives rise to a
highly distorted stationary flow in the boundary layer that has strong velocity gradients in
both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high
frequency secondary instability that leads to the onset of transition. For high Mach number
flows, the boundary layer is also subject to the second mode instability. The nonlinear
development of Gortler vortices and the ensuing growth and breakdown of secondary
instability, the Gortler vortex interactions with second mode instabilities as well as oblique
second mode interactions are examined in the context of both internal and external
hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue
analysis and direct numerical simulation. For Gortler vortex development inside the Purdue
Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are
identified and their linear and nonlinear evolution is examined. The computation of
secondary instability is continued past the onset of transition to elucidate the physical
mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios
associated with transition over a Mach 6 compression cone configuration are also explored.

Nomenclature

Gortler number based on boundary layer momentum thickness
Reynolds number based on boundary layer momentum thickness
Temperature

Azimuthal wavenumber for axisymmetric configurations
Streamwise perturbation velocity

Streamwise curvature of wall

Spanwise or azimuthal wavelength

Momentum thickness of boundary layer

Density

Eoonx =N 0

Streamwise vorticity
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1. Introduction

Boundary-layer flow over a concave wall is subject to the Gortler instability, which is typically manifested in the
form of counter-rotating pairs of stationary streamwise vortices. Regions of concave surface curvature occur in a
number of technological applications across the speed regime. Subsonic and transonic applications include flow
past turbine blades and supercritical airfoils designed for laminar flow control. In supersonic and hypersonic
transition research, the Gortler instability becomes even more relevant as an important contributor to the onset of
transition along the walls of high-speed wind tunnels' as well as along the forebody compression surface ahead of
the engine inlet on scramjet vehicles*>. Onset of transition along the tunnel walls leads to a substantial increase in
the levels of free-stream disturbances encountered by wind tunnel models, compromising one’s ability to simulate
in-flight transition behavior on the models. On the other hand, it is desirable for the boundary layer to become
turbulent ahead of the scramjet engine inlet, in which case the growth and breakdown of Gortler vortices could help
achieve this goal without the added drag due to boundary layer trips.

Much of the previous research on the Gortler instability has been carried out in the context of low-speed flows;
see, for instance, the reviews by Hall®, Saric’ and Floryan®. Studies of Gortler instability in supersonic and
hypersonic flows are limited to linear growth characteristics of primary waves® ', with the exception of the high
Reynolds number asymptotic theory by Fu and Hall'* ' and computations of nonlinear interactions between second
mode and Gortler instabilities'®. The goal of this paper is to examine the nonlinear development of Gértler vortices
in high-speed boundary layers, including their breakdown via high-frequency secondary instabilities and Gortler-
second mode interactions.

An outline of this paper is as follows. Section II of this paper describes the flow configurations and the analysis
codes used. Section III presents computational results for the large amplitude, primary Gortler instability. The linear
secondary instability results are discussed in Section IV, nonlinear development and breakdown of the secondary
instability are presented in Section V. Gortler and second mode interactions are described in Section VI. Oblique
second mode interactions are discussed in Section VII and, finally, a summary of the paper is given in Section VIIL

I1. Flow Configuration and Analysis Codes

The first flow configuration examined herein corresponds to that of the Boeing/AFOSR Mach 6 wind tunne] at
Purdue University’, which has a circular test section with a diameter of 9.5 inches. The steady axisymmetric flow
field inside the Ludwieg tube is computed using a high order DNS code'” with a grid of 800 by 800 in the
streamwise and radial directions for a case with a stagnation pressure of 896.3 kPa, a stagnation temperature of 433
K and a unit Reynolds number of approximately 9.9x10° per meter'’. The computational domain starts at 0.27
meters upstream of the throat and ends at 2.58 meters downstream of the throat. Between the throat and the tunnel
test section, there exists a long portion of concave surface and the growth of Gortler vortices over this region will
have a direct impact on the flow quality in the tunnel. For this configuration, the current study concentrates on the
transition route via the secondary instability mechanism.

To study the generic features of transition within the nozzle wall boundary layer, the surface temperature is
assumed to correspond to adiabatic surface conditions. The actual temperature distribution along the nozzle surface
has never been measured. However, an estimated temperature distribution is reported by Schneider et al.'®. The
relatively modest differences between the reported temperature distribution and the adiabatic temperature
distribution are not expected to produce a major impact on the Gortler vortex evolution and, in particular, the
breakdown scenario associated with high-frequency secondary instabilities.

The second flow configuration is the Purdue Mach 6 compression cone'® with a stagnation pressure of 930.1
kPa, a stagnation temperature of 766.8 K, and unit Reynolds number of 10.2x10° per meter. The surface of the cone
is 0.47 meters long with a constant radius of curvature equal to 3 meters and tangentially joins a small nose sphere
of radius 0.16 mm at an initial half-angle of 1.4 degrees. The steady axisymmetric flow over the cone is computed
by VULCAN® - a Navier-Stokes solver, using a grid of 2241 by 385 points in the streamwise and wall-normal
directions, respectively. The boundary layer over this surface is susceptible to moderate Gortler instability as well as
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strong second mode instability. For this compression cone configuration, the current study is focused on the
transition route via interactions between the Gortler mode and the second mode.

Linear and nonlinear development of the Gortler instability modes is computed using parabolized stability
equations (PSE) as implemented in the Langley Stability and Transition Analysis Code(s) (LASTRAC)*'. Linear
growth characteristics of secondary instability modes are predicted using the methodology outlined by Li and
Choudhari?. DNS of nonlinear evolution of secondary instability is performed using a high order flow solver based
on 7™ order WENO scheme for the convective flux terms®, Although not discussed herein, selected computations
using all three tools (DNS, PSE, and secondary instability) have been verified for grid convergence.

In addition to the Mach 6 tunnel flow field and the Mach 6 compression cone, a flat plate configuration is used
for studying the development of Gortler vortices. This configuration is used because a flat-plate flow is one of the
simplest boundary-layer flows and has a similarity solution. These properties make it easier to carry out parametric
studies.

A relevant non-dimensional quantity in problems involving the Gortler instability is the Gortler number defined
as

G, =R,(0x)" (1)
where @is the boundary layer displacement thickness, R, is the Reynolds number based on displacement thickness

and x"is the dimensional surface curvature. In general, as the Gortler number increases, Gortler vortices become
more unstable. In the limit of large Reynolds number and small surface curvature at a fixed value of the Gortler
number, the leading order boundary layer solution is not affected by the curvature of the plate and is the same as that
for a flat plate (see e.g. Spall and Malik®). This ensures the validity of using the flat plate similarity solution for the
Gortler problem.

IIT. Nonlinear Development of Gortler Vortices

Linear stability calculations show that the azimuthal wavenumber of n=100 (i.e., 100 vortices across the wind
tunnel circumference) corresponds, approximately, to the highest linear amplification of stationary Gortler vortices
for the Mach 6 wind tunnel case. The nonlinear development of this mode, which has a spanwise wavelength of
A =7.6mm within the test section, is computed via nonlinear PSE for a range of initial amplitudes, starting at 0.67

meters downstream of the wind-tunnel throat where the n=100 mode first becomes linearly unstable .

Computational results with an initial temperature perturbation corresponding to 1% of the free-stream
temperature are shown in Figure 1, which illustrates representative contours of streamwise velocity, and temperature
distributions along with the derivatives of the streamwise velocity in the wall-normal and spanwise directions at
selected streamwise locations. Up to the onset of nonlinear saturation of the Gortler vortices, the mushroom shaped
structures usually associated with finite amplitude Gortler vortices (e.g., Hall and Horseman®, Li and Malik® and
Whang and Zhong'® for nonlinear Gortler instability in low-speed and hypersonic flows, respectively ), are not seen
in the present case. Instead, the nonlinear development of the counter-rotating vortex pair associated with Gorlter
modes gives rise to bell-shaped structures as depicted in Fig. 1 (a) and (b). Scrutiny of the velocity derivatives in the
cross-planes shows that strong velocity gradients exist in the boundary layer flow modified by the finite amplitude
Gortler vortices (Figures 1 (c) and (d)). In-plane streamlines are shown in Figure 1 (e) in a slightly tilted cross-plane
in order to account for the fact the axis of the Gortler vortex is not quite parallel to the wall as a result of the
streamwise amplification of the Gortler vortices. The pair of counter-rotating vortices brings up low speed fluid up
from the wall and, on either side, pushes the high speed fluid down toward the wall. This process results in strongly
non-uniform velocity profiles across the span.

Nonlinear evolution of Gortler vortices was also computed for a similarity boundary layer over a concave plate
with a constant radius of curvature of 20 meters. In this case, the most amplified mode has a spanwise wavelength of
approximately 8 mm and computations were carried out for three cases with spanwise wavelengths of 4, 8, and 16
mm. The streamwise velocity contours at streamwise locations where the nonlinear Gortler vortices are nearly
saturated are shown in Figure 1 (f). It can be seen that, in all three cases, the bell-shaped features persist up to the
saturation of vortex amplitudes. The well-known mushroom shaped contours are observed farther downstream (i.e.,
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well into the region of saturation), as shown by the DNS computations. The Gortler vortex modes were seeded via a
specified roughness near the neutral point of the vortex mode. Figure 1 (g) shows the mushroom structures at X =2
and 2.2 m with the onset of nonlinear saturation at approximately 1.9 m.

The secondary instability examined in Hall and Horseman® and Li and Malik ** for low speed flows all ride on
the edge of the mushroom structure. As will be shown later, strong secondary instability can also be sustained by the
precursor bell shaped structures, even without the presence of the usual mushroom-structure.

In crossflow dominated boundary-layer flows over swept wings, a mechanism for delaying transition exists
whereby a sub-dominant crossflow mode that is less likely to cause transition is artificially introduced with
moderate initial amplitude, resulting in a growth reduction of the most dangerous, dominant crossflow mode (see
Saric et al.”® and Li et al.*"). Despite the differences between the physical origin of the crossflow and Gortler
instabilities, it is tempting to investigate whether a similar mechanism might possibly apply to the Gortler vortices as
well. To this end, a series of computations were carried out, in which the initial amplitude of the dominant mode of
azimuthal wavenumber 100 is kept fixed at a small value while a sub-dominant mode of azimuthal wavenumber 200
is introduced at various large initial amplitudes. Figure 2 shows the development of modal amplitudes of the
respective modes. Despite the large variations in initial amplitudes of the sub-dominant control mode, the target
mode is nearly unaffected, suggesting that this control methodology may not be effective in boundary layer flow
dominated by Gortler vortex instability. In the crossflow case, the instability is primarily due to the existence of an
inflection point in the three-dimensional boundary layer profile. The growth of the sub-dominant mode modifies the
boundary layer and the dominant mode is thus affected. In the Gortler case, the instability is mainly due to a
centrifugal mechanism associated with the concave wall. The introduction of the sub-dominant mode obviously does
not modify the wall curvature and, therefore, is unlikely to affect the dominant mode in a major way.

IV. Linear Secondary Instability

Nonlinear Gortler vortices such as those presented in Figure 1 lead to inflectional profiles in both wall-normal
and spanwise directions. As such, they are susceptible to various families of high frequency secondary instability,
which have previous%sy been studied in the context of incompressible flows using simplified, inviscid secondary
instability models™ »*. In the current research, secondary instability of Gértler vortices in high speed boundary
layers is studied using a fully viscous, spatial stability model that has been used to compute secondary instability of
crossflow vortices’. In particular, a Gortler mode of spanwise wavenumber n = 100 and an initial velocity
amplitude of 1.8x107?is chosen to be the base flow for secondary instability in the Purdue wind tunnel case. This
mode develops and barely reaches saturation at the end of the computational domain (X = 2.58 m).

For the Gortler vortices in the Purdue wind tunnel case, three families of unstable secondary instabilities have
been identified. These are designated modes 1 through 3, of which only mode 1 has a large enough growth rate and
long enough range of growth region to achieve appreciable values of N-factor. In Figure 3 (a), modes 1 and 2 are
represented by red and green colors, respectively. Each line corresponds to a different frequency. The frequency of
the instability modes that achieves the largest N-factors for both families is approximately 53 kHz. An N-factor of 9
is reached by mode 1 approximately 2.57 meters downstream of the throat after becoming unstable at approximately
2.00 meters. Figure 3 (b) shows the spatial growth rate curves of the three families as functions of downstream
distance. Figure 3 (c) shows the spatial growth rate versus frequency for all three families at a distance of 2.5 meters
downstream of the throat. It is seen that the most unstable family corresponding to mode 1 extends over a frequency
range of approximately 0 to 100 kHz. The mode shapes for all three families at 2.5 meters are shown in Figure 4,
which would correspond to the root-mean-square values mapped out by some probe traversing the same streamwise
plane. The most unstable family (mode 1) is anti-symmetric with respect to the vertical symmetry line between a
pair of counter-rotating Gortler vortices in the sense that the streamwise and wall-normal velocity fluctuations and
the temperature fluctuation on the two sides are 180 degrees out of phase, whereas modes 2 and 3 are symmetric
modes. It can be seen, by examining the contour legends in Figure 4, that the secondary instability is dominated by
large temperature fluctuations for all three modes, in contrast to corresponding low Mach number cases where
velocity fluctuations dominate.
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V. Breakdown of Secondary Instability

The linear secondary instability results described above are only valid as long as the amplitude of the secondary
modes remains sufficiently small. Since the growth of the secondary modes is quite rapid, a secondary N-factor
criterion similar to that used in previous work”’ related to crossflow instability may be used for transition onset
prediction. However, to gain additional insights into the nature of Gortler vortex breakdown associated with the
nonlinear development of the secondary instability modes (and, hence, to predict the onset of transition in a more
rational fashion), both PSE and direct numerical simulations (DNS) are used to extend the computation into the
breakdown region. PSE can be used, at least, up to the earlier stages of breakdown, at a computational expense that
is orders of magnitude less than the DNS. The applicability of PSE for this purpose has been demonstrated for
incompressible Gortler vortex computations® and compressible crossflow vortex computations”. This methodology
can also be applied to elucidate the breakdown mechanisms for the present case of Gortler vortices in a high-speed
boundary layer.

The most unstable secondary instability mode of 52.5 kHz for the wind tunnel configuration is simulated via
nonlinear PSE by imposing its eigenfunction near the neutral point as part of the initial condition in addition to the
steady primary Goértler modes. Its nonlinear development is traced downstream for different initial amplitudes.
Modal amplitudes of the secondary instability as well as those of the steady Gortler modes are shown in Figure 5
using green and red lines, respectively. The amplitudes of secondary instability modes as predicted by the linear
theory discussed in Section IV are shown via black dots. Given that the PSE solution accounts for both nonparallel
and surface curvature effects and the linear theory ignores both, the agreement between the PSE results and the
linear theory predictions is very good over considerable distances from the neutral point. At even larger distances
from the neutral point, the two sets of predictions begin to depart from each other as a result of the increasing
significance of nonlinear effects which are only accounted for in the PSE predictions.

Figure 6 shows the RMS value of streamwise velocity fluctuations at two streamwise planes, one at a small
distance from the neutral point where the disturbance amplitude is small and another at a larger distance where
nonlinear effects are strong. The RMS contours look very similar to the eigenfunctions shown in Figure 4 (a). The
RMS contours shown on the right of the Figure 6 appear “fatter” compared with those shown on the left, a strong
indication of the nonlinear effects at play.

To carry the simulation well into the breakdown region, DNS is employed. The sequence of images in Figure 7
illustrates how the cross plane contours of mean and fluctuating u-velocity evolve during the breakdown induced by
the high-frequency secondary instability. The spanwise extent of each image corresponds to a single azimuthal
wavelength of the primary Gortler mode. When the disturbance motion is dominated by the primary Gortler vortex,
i.e. the high-frequency secondary instability is weak, the initially sinusoidal mean velocity contours steepen to
acquire a bell-shaped structure, with the top of this bell projecting farther out with increasing downstream distance.
This is consistent with the nonlinear PSE results shown in Figure 1. However, the increasingly stronger Reynolds
stresses associated with the high-frequency secondary instability eventually lead to visible distortion of the bell
contours. Specifically, the region of high wall-normal shear near the center of each cross-section begins to move
closer to the wall, and is accompanied by the emergence of a pair of high-shear regions near the outer ends. The
highest velocity fluctuations are associated with the center peak and the location where they occur migrates closer to
the wall as the breakdown progresses.

The anti-symmetric secondary instability mode causes the Gortler vortex structure to display sinuous motions
and is termed the “sinuous mode” in by Swearinggen and Blackwelder.® In the left of Figure 8, it is seen that the
instantaneous iso-surface of streamwise velocity component shows the sinuous oscillations of the primary Gortler
vortices and those oscillations lead to a pair of high gradient regions on the flanks, with the centerline peak moving
downward, as we noted in the context of mean and fluctuating u contours (Figure 7). The instantaneous u contours
close to the centerline plane are shown in the center of Figure 8, and reveal the azimuthal spreading of fluctuations
towards the center plane. The streamwise evolution of wall shear for inflow secondary instability amplitudes
varying over a 6-fold range are shown in Figure 9, indicating the distinct and monotonically upstream movement in
transition onset as a function of the facility disturbance environment. Correlation of transition onset location with
the absolute local amplitude of secondary instability is currently being investigated.
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VI. Breakdown via Gortler and Second Mode Interactions

For hypersonic boundary layers, second mode instability can be a significant factor leading to transition. In the
case of the compression cone described in Section II, the most amplified second mode has an azimthual
wavenumber of n = 0 and a frequency of approximately 300 kHz. Since the boundary layer over the compression
cone also supports Gortler instability because of the concave longitudinal curvature, interactions between the Gortler
vortices and the second mode waves provide another likely path for the onset of transition. Results pertaining to
oblique mode interactions are presented in Section VII below. Here, it suffices to mention that the interaction
between a pair of oblique non-stationary waves generates longitudinal stationary vortex modes that grow rather
rapidly as the flow approaches the onset of transition. Thus, the concave surface curvature that destabilizes the
Gortler instability also plays a role during the oblique mode interactions.

Figure 10 shows the linear N-factors of both the Gortler modes and the second modes. The most amplified
Gortler mode has an azimuthal wavenumber of approximately n=50, for which the maximum N-factor at the end of
the cone is just under 6 (Figure 10 (a)). Amplification characteristics of axisymmetric (i.e., n=0) second mode
disturbances of various frequencies are shown in Figure 10 (b). Disturbance frequencies in the vicinity of 300 kHz
attain the highest N-factors values over the length of the cone. Figure 10(c) shows the N-factors of oblique second
modes at a fixed frequency of 300 kHz. Observe that an N-factor of 10 is reached even for the relatively oblique
second mode disturbance with an azimuthal wavenumber of n=24.

As discussed previously, the process of laminar breakdown via interactions between the Gortler mode and
second mode instabilities was studied for the compression cone boundary layer. Using nonlinear PSE, the most
amplified Gortler mode with n = 50 and the most amplified (i.e., axisymmetric) second mode wave with a frequency
of 300 kHz are initiated at x = 0.097 m. Two initial amplitudes of the Gértler mode are considered, namely, 102 and
10, in combination with three initial amplitudes for the second mode wave, namely 10, 10*and 10?, for a total of
six different computations.

Figure 11 shows the nonlinear co-evolution of the Gortler and second modes. Initially, the modal amplitudes of
the two different types of instabilities appear to evolve independently of each other. That is, the modal evolution of
each mode type would, by and large, be unaltered if the other type of instability were absent. As both types of modes
gain in amplitudes, the monotonic but slow evolution gives way to relatively more rapid variations, indicating strong
interactions between the two instabilities (Figure 11 (a)). A typical characteristic of the onset of transition is the
rapid rise in wall shear, which may be observed in Figure 11 (b) for all selected combinations of the initial
amplitudes of the Gortler vortex and second mode wave. If the streamwise location where the wall shear begins to
rise is used as the measure of transition onset location, one finds that a 10-fold reduction in the second mode initial
amplitude would delay the onset of transition by approximately 0.03 meters (or approximately 6.4 percent of the
cone length). For the weakest Gortler-second mode combination of initial amplitudes 10 and 107, respectively, the
transition onset is at X = 0.26 meters.

VIL Breakdown via Oblique Second Mode Interactions

As previously discussed in the context of Figure 10 (c), oblique second mode waves are linearly less unstable
than the axisymmetric second mode waves. Nonetheless, the peak N-factors associated the oblique modes can be
quite large. For example, second mode waves with a spanwise wavenumber n=24 achieve an N-factor of nearly 10
near the end of the cone model. . Interactions between pairs of oblique waves with equal amplitude, but opposite
orientations (e.g., n=124) constitutes an additional transition mechanism for the compression cone. Oblique wave
interactions between n=124 waves will generate strong stationary longitudinal vortices with n=48, which are
analogous to the linearly most unstable stationary Gortler mode. The scenario of oblique second mode interactions is
investigated here using nonlinear PSE with five different initial amplitudes, namely, 10, 10°, 10%, 10® and 10,

Unlike the 2D second mode (n=0), which becomes unstable at approximately X = 0.1 meters, the oblique
secondary mode of wavenumber n=24 does not become unstable until approximately X = 0.2 meters. In the case of
the strongest pair of oblique waves with an initial amplitude of 10, transition onset based on the rise in wall mean
shear corresponds to X = 0.25 meters (Fig. 12). However, even the weakest combination of Gortler vortex and
axisymmetric second mode from Section VI could have produced transition onset at approximately the same
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location . Therefore, as long as the surface roughness can lead to modest excitation of stationary Gortler modes,
transition via oblique second mode interactions at a frequency of 300 kHz appears to be a less likely scenario than
the interactions between Gortler vortices and the axisymmetric second mode. Essentially, the oblique second mode
has too low a growth rate compared with its 2D counterpart and, furthermore, this weaker growth begins too late (at
approximately X = (0.2 meters) for the resulting stationary vortex mode to help precipitate an earlier transition via
oblique mode breakdown..

Another potential mechanism for transition over the compression cone corresponds to the breakdown of
secondary instability of large amplitude 2D second mode. However, this scenario, which does not involve the
Gortler instability, is beyond the scope of the present paper, and will be reported in a future paper.

VIIL. Summary
The linear and nonlinear growth of Gortler instability in hypersonic boundary layers and the associated transition
mechanisms are studied using a combination of PSE, 2-D eigenvalue analysis, and DNS. One of the model flows
corresponds to a Mach 6 wind tunnel whose concave wall between the throat and the test section leads to Gortler
instability.

Linear stability results show that the most amplified primary Gortler mode has an azimuthal wavenumber of
approximately n=100. Nonlinear evolution of this mode leads to distinct bell-shaped structures, which can sustain
strong enough secondary instabilities to cause the onset of transition. The most unstable linear secondary instability
mode is anti-symmetric with respect to the line of symmetry of the Gortler vortices. It first becomes unstable at a
distance of approximately 2 meters downstream of the wind tunnel throat and reaches a N-factor of 9 at
approximately 2.57 meters.

As the anti-symmetric secondary instability mode develops downstream, nonlinear effects set in, which at first,
give rise to sinuous motions of the Gortler vortices. Eventually, with higher harmonics of the secondary instability
becoming significant, the bell structures of primary Gortler vortices disappear and the unsteady fluctuations move
progressively closer to the wall, leading to a rise in the mean wall shear as transition proceeds.

Potential control of dominant Gortler modes via the introduction of subdominant modes with a larger initial
amplitude was investigated. It was shown that the dominant mode evolution is, by and large, unaffected by the
presence of the subdominant mode. The reason for the ineffectiveness of such a control mechanism is that the
existence of the Gortler instability is associated with the concave wall curvature, which is unaffected by this control
technique. Interactions with the other modes and/or the basic state modification associated with them have a
relatively small influence on the growth of the dominant node.

An additional mechanism for transition in hypersonic boundary layers involving concave surface curvature is
that of nonlinear interactions between Gortler and second mode instabilities as demonstrated by computations for the
compressible cone case. Other transition mechanisms relevant to this case include the oblique mode breakdown due
to relatively less unstable, oblique, second mode instabilities and the fundamental and subharmonic secondary
instabilities of the dominant, axisymmetric second mode. Which one of these scenarios is most relevant in any
given case will depend on the environmental disturbances and the receptivity characteristics of the model.
Receptivity to natural surface roughness and its influence on the transition mechanisms will be addressed in a
follow-on paper.
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(d) Spanwise gradient of streamwise (e) In-plane streamlines. () Streamwise velocity for 4, 8 and 16
velocity. mm spanwsie wavelength on a curved
plate.

ale

(g) Mushroom structures of a curved
plate in nonlinear saturation region of
Gortler vortices ( 8 mm). Left: X =
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Figure 1. Nonlinear development of Gortler vortices. Contours of streamwise velocity, temperature and velocity
derivatives in cross-planes at selected streamwise stations with circumferential wave number of the finite-amplitude
Gortler vortices corresponding to n = 100 ((a) — (d)), in-plane streamlines (e), streamwise velocity contours for various
spanwise wavelengths on a curved plate (f) and (g).
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most unstable mode with n=100.
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Figure 3. Secondary instability characteristics of Gortler vortices for the wind tunnel case documented in Figure (a-¢).
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Figure 4. Representative eigenfunctions for streamwise velocity perturbations associated with the three modes of
secondary instability associated with the wind tunnel case documented in Figure 1 (a-e). All three modes shown
above have a frequency of 53 kHz. The white lines represent the streamwise velocity contours. The eigenfunctions
are normalized so that peak temperature perturbation is equal to unity.
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Figure 5 Streamwise velocity modal amplitudes of stationary Gortler vortex modes (red lines) and unsteady
secondary instability modes of 52.5 kHz in frequency (green lines). Different lines present the amplitudes of modes
with different spanwise wave numbers. The black dots present the amplitude predicted by linear secondary
instability theory. (Ai indicates the initial amplitude of temperature fluctuation associated with the secondary
instability mode).
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Figure 6. RMS contours of streamwise velocity of Figure 7. DNS results of mean (top) and RMS (bottom)

secondary instability of 52.5 kHz in fundamental contours of streamwise velocity in various streamwise

frequency. The back ground white lines present the planes with x increasing from left to right. Strong growth of

time averaged streamwise velocity contours. secondary instability eventually destroys the bell structure
of Gortler vortices and leads to breakdown.

Figure 8. Left: iso-surface of streamiwse velocity; center: streamwise velocity contours close to center plane; right:
iso-surface of streamwise vorticity.
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Figure 11. Co-evolution of Goértler and second mode instabilities.
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Figure 12. Axial evolution of normalized mean wall shear for different oblique second mode initial amplitudes for

the interactions of two oblique waves (n=24) of opposite azimuthal orientations.
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