NATIONAL INSTITUTE OF AEROSPACE

Final Report For:
NASA # NNL06AC78T

Task Title:
Guide to APA-Based Models

Prepared by:
Robert E. Robins
and
Donald P. Delisi

Task Monitor:
Dr. Fred H. Proctor, NASA Technical Monitor

Reporting Period:
January 2008
Guide to APA-Based Models

By

Robert E. Robins
and
Donald P. Delisi

Subcontract TO6-6000-NWRA, Subtask 3.2.2

For
NATIONAL INSTITUTE OF AEROSPACE
Dr. David J. Peake, Vice President of Research and Program Development
100 Exploration Way
Hampton, VA 23666-6147

NASA LANGLEY RESEARCH CENTER
Dr. Fred H. Proctor, NASA Technical Monitor
Hampton, VA 23681
In Robins and Delisi (2008), a linear decay model, a new IGE model by Sarpkaya (2006), and a series of APA-Based models were scored using data from three airports. This report is a guide to the APA-based models.

A list of models used in Robins and Delisi (2008), as presented in Section 3, is as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA 3.1.1</td>
<td>- the original APA model with a minimum circulation decay in ground effect of (\Gamma/\Gamma_o = 1 - T/K), (K=8), and a modified version of APA 3.1.1 with (K=5).</td>
</tr>
<tr>
<td>APA 3.2.1</td>
<td>- APA 3.1.1 with Proctor’s model for the circulation decay during the initial stages of IGE; with the same minimum decay rates as in APA 3.1.1. Proctor’s model is linearly phased in between the times of (0.25T) and (0.4T), where (T) is the time scale (b_o/V_o), (b_o) and (V_o) being the initial separation and descent speed of the vortices.</td>
</tr>
<tr>
<td>APA 3.2.1E</td>
<td>- APA 3.2.1 with a minimum decay rate equal to the environmental decay rate at the beginning of IGE or (\Gamma/\Gamma_o = 1 - T/K), (K=8), if the environmental rate is less than this; also scored was a version of APA 3.2.1E with (K=5).</td>
</tr>
<tr>
<td>APA 3.2.2</td>
<td>- An alternate version of APA 3.2.1 ((K=5) only) where the onset of Proctor’s model occurs exactly at a time of (0.25T).</td>
</tr>
<tr>
<td>APA 3.2.2E</td>
<td>- An alternate version of APA 3.2.1E ((K=5) and (6)) where the onset of Proctor’s model occurs exactly at a time of (0.25T).</td>
</tr>
<tr>
<td>Sarpkaya’s IGE Model</td>
<td>- described by T. Sarpkaya in a report entitled “A Physics-based Real-time IGE Model of Aircraft Wake Vortices Subjected to Crosswind and Stratification.”</td>
</tr>
<tr>
<td>1 – T/5 Linear Decay</td>
<td>- APA 3.1.1 with the IGE non-dimensional decay rate equal to (1 - T/5).</td>
</tr>
</tbody>
</table>

The source codes for models APA 3.1.1, APA 3.2.1, APA 3.2.1E, APA 3.2.2, APA 3.2.2E, and Sarpkaya’s IGE Model are provided on an accompanying CD-ROM disk. The one-line code change that determines the value of \(K \) for the APA 3.X.X models is clearly indicated in the code for the respective models. To find this code,
simply search for “C**********” in files ge1pth.f and ge2pth.f to find the code that sets K.

The code change required to transform APA 3.1.1 to the 1 – T/5 Linear Decay model is as follows:

Original Code from APA 3.1.1 files ge1pth.f and ge2pth.f:

```
C
C******************* FOLLOWING CODE FOR K=8 ***********************
DGMIN = 0.125*TWOPI*VZIN*VZIN
C******************* FOLLOWING CODE FOR K=5 ***********************
CCC           DGMIN = 0.2*TWOPI*VZIN*VZIN
C****************************************************************
C
IF(DELGAM.LT.DGMIN) DELGAM=DGMIN
C
DGFAC = DELGAM/GAM(1)
DO I=1,NPTS
   DGAM(I) = GAM(I) * DGFAC
ENDDO
C
```

Modified Code for the 1 – T/5 Linear Decay Model:

```
C
DELGAM = 0.2*TWOPI*VZIN*VZIN
C
DGFAC = DELGAM/GAM(1)
DO I=1,NPTS
   DGAM(I) = GAM(I) * DGFAC
ENDDO
C
```

The input parameters required for all code versions are the same as described for LINES 3-10 in Robins and Delisi, 2005.
References

