Final Report For:
NASA # NNL06AC78T

Task Title:
Guide to APA-Based Models

Prepared by:
Robert E. Robins
and
Donald P. Delisi

Task Monitor:
Dr. Fred H. Proctor, NASA Technical Monitor

Reporting Period:
January 2008
Guide to APA-Based Models

By

Robert E. Robins
and
Donald P. Delisi

Subcontract TO6-6000-NWRA, Subtask 3.2.2

For
NATIONAL INSTITUTE OF AEROSPACE
Dr. David J. Peake, Vice President of Research and Program Development
100 Exploration Way
Hampton, VA 23666-6147

NASA LANGLEY RESEARCH CENTER
Dr. Fred H. Proctor, NASA Technical Monitor
Hampton, VA 23681
In Robins and Delisi (2008), a linear decay model, a new IGE model by Sarpkaya (2006), and a series of APA-Based models were scored using data from three airports. This report is a guide to the APA-based models.

A list of models used in Robins and Delisi (2008), as presented in Section 3, is as follows:

APA 3.1.1
- the original APA model with a minimum circulation decay in ground effect of $\Gamma/\Gamma_o = 1 - T/K$, $K=8$, and a modified version of APA 3.1.1 with $K = 5$.

APA 3.2.1
- APA 3.1.1 with Proctor’s model for the circulation decay during the initial stages of IGE; with the same minimum decay rates as in APA 3.1.1. Proctor’s model is linearly phased in between the times of $0.25T$ and $0.4T$, where T is the time scale b_o/V_o, b_o and V_o being the initial separation and descent speed of the vortices.

APA 3.2.1E
- APA 3.2.1 with a minimum decay rate equal to the environmental decay rate at the beginning of IGE or $\Gamma/\Gamma_o = 1 - T/K$, $K=8$, if the environmental rate is less than this; also scored was a version of APA 3.2.1E with $K=5$.

APA 3.2.2
- An alternate version of APA 3.2.1 ($K=5$ only) where the onset of Proctor’s model occurs exactly at a time of $0.25T$.

APA 3.2.2E
- An alternate version of APA 3.2.1E ($K=5$ and 6) where the onset of Proctor’s model occurs exactly at a time of $0.25T$.

Sarpkaya’s IGE Model

1 − T/5 Linear Decay
- APA 3.1.1 with the IGE non-dimensional decay rate equal to $1 - T/5$.

The source codes for models APA 3.1.1, APA 3.2.1, APA 3.2.1E, APA 3.2.2, APA 3.2.2E, and Sarpkaya’s IGE Model are provided on an accompanying CD-ROM disk. The one-line code change that determines the value of K for the APA 3.X.X models is clearly indicated in the code for the respective models. To find this code,
simply search for “C*********” in files ge1pth.f and ge2pth.f to find the code that sets K.

The code change required to transform APA 3.1.1 to the 1 – T/5 Linear Decay model is as follows:

Original Code from APA 3.1.1 files ge1pth.f and ge2pth.f:

```
C
C*************** FOLLOWING CODE FOR K=8 **********************
DGMIN = 0.125*TWOPI*VZIN*VZIN
C*************** FOLLOWING CODE FOR K=5 **********************
CCC  DGMIN = 0.2*TWOPI*VZIN*VZIN
C*************************************************************************
C
IF(DELGAM.LT.DGMIN) DELGAM=DGMIN
C
DGFACE = DELGAM/GAM(1)
DO I=1,NPTS
   DGAM(I) = GAM(I) * DGFACE
ENDDO
C
```

Modified Code for the 1 – T/5 Linear Decay Model:

```
C
DELGAM = 0.2*TWOPI*VZIN*VZIN
C
DGFACE = DELGAM/GAM(1)
DO I=1,NPTS
   DGAM(I) = GAM(I) * DGFACE
ENDDO
C
```

The input parameters required for all code versions are the same as described for LINES 3-10 in Robins and Delisi, 2005.
References

