INTRODUCTION
Decreased maximum oxygen consumption (VO\textsubscript{2}max) during and after space flight may impair a crewmember’s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO\textsubscript{2}max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO\textsubscript{2}max was maintained during flight, but the elevated exercise HR after flight indicated that VO\textsubscript{2}max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO\textsubscript{2}max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO\textsubscript{2}max has not been measured either during or after long-duration space flight. The purposes of the ISS VO\textsubscript{2}max experiment are (1) to measure VO\textsubscript{2}max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO\textsubscript{2}max.

METHODS
ISS crewmembers assigned to missions of >90 days duration may volunteer for this study. About 270 days before launch, crewmembers perform a graded exercise test (identical to the MedB4.1 protocol) to volitional fatigue on a cycle ergometer to measure VO\textsubscript{2}max. An individualized test protocol based on the results of this test is developed for all subsequent exercise tests. The test protocol begins with three 5-minute exercise stages designed to elicit 25%, 50%, and 75% of preflight VO\textsubscript{2}max and continues with 25-watt/min increases until volitional fatigue. Metabolic gas analysis is performed using the Portable Pulmonary Function System (PPFS, Damec Research ApS, Odense, DK). Cardiac output is measured by the PPFS using a rebreathing technique (R-22/SF\textsubscript{6}) during the final minute of each of the first three exercise stages. These tests are scheduled to be performed 60 and 30 days before launch, monthly during flight, and on recovery days 1, 10, and 30.

RESULTS AND DISCUSSION
At the time of abstract submission, 4 crewmembers were participating in the study but had not completed their respective missions. Unfortunately the PPFS could not be delivered to the ISS in time to support early flight test sessions on 3 of 4 crewmembers, but all crewmembers will complete at least 2 test sessions during flight. These sessions were successfully conducted with only minor issues. By the time of the conference presentation it is anticipated that at least partial sets from 3 of the crewmembers will be available for presentation and discussion.
Maximum Oxygen Uptake During and After Long Duration Space Flight

Alan D. Moore, Jr., Ph.D.¹
Simon N. Evetts, Ph.D.²
Alan H. Feiveson, Ph.D.³
Stuart M.C. Lee, M.S.¹
Frank A. McCleary, M.S.⁴
Steven H. Platts, Ph.D.³

¹ - Wyle Integrated Science and Engineering Group
² - Wyle GmbH
³ - NASA-JSC
⁴ – Lockheed Martin
Why Preserve Aerobic Capacity?

- Maintains the ability to perform endurance activities (e.g. EVA)
- Decrease in rehabilitation time
- Important contributor toward performance of egress following space flight
Introduction

- Max. HR unchanged
- Max. cardiac output (thus max. stroke volume) reduced in proportion to VO$_2$peak decline following flight.
- Likely d/t reduced plasma volume and reduced venous return.

Max. cardSac output reduce$ in propoftbn ta V0,geak dedine following flight. Likely dlt reduced plasma volume and reduced venous return.

Introduction (Continued)

- Skylab (n=6) - duration 28-84 days
- Submaximal elevated exercise heart rates (HR), decreased exercise cardiac output and stroke volume after flight (R+0 to R+2)
- No substantial change in HR response during flight.
- VO$_2$peak measurements attempted during flight. Some crewmembers showed no change, others a decline (Sawin, et al, 1975)
- Recovery time ranged from 10-31 days following flight (Michel, et al, 1977)
Introduction (Continued)
Purposes

- To directly measure maximal oxygen uptake during and following long duration missions
- To assess the validity of the current methods of estimating aerobic capacity change during and following ISS missions
Methods

- Subjects - astronauts assigned to ISS Expeditions of > 90 days
- Initial cycle exercise testing is performed ~ 9 months prior to flight, establishes work rates used for the remainder of experiment
- Testing is to “symptom-limited maximum”

![Graph showing L-270 Peak Cycle Test](image)
Methods (Continued)

- Experiment protocol exercise tests are performed on L-60, L-30, FD15, every 30 FDs thereafter, and on R+1, R+10 and R+30.
- First three stages of exercise are similar to “Periodic Fitness Evaluation” test – a submaximal test used routinely for ISS crews, test continues to maximum.

Periodic Fitness Evaluation (PFE) VO₂max Study Experimental Protocol
Methods (Continued)

- Measures obtained during testing include:
 - Metabolic gas analysis (VO$_2$, etc.)
 - Heart rate (ECG)
 - Cycle work rate
 - Cardiac output (Rebreathing technique - Freon-22/SF$_6$)
 ✓ Rest and during last min. of each 5 min stage.
- Device used - the ISS Portable Pulmonary Function System (PPFS)
Subject Performing Experiment on ISS
Subject Performing Experiment on ISS
Results Overview/Limitations

- N=3, data presented in “case study fashion”
- To preserve subject anonymity data is presented as % changes from preflight.
- PPFS original delivery to ISS was pushed back d/t launch stowage constraints – delivered to ISS mid – Expedition, thus early inflight measurements not performed.
 - Range: Flight days 61 to 167
 - Tests within a subject were separated by ~30 days
 - Two tests per subject
- R+30 data not presented
- Cardiac output data has been collected and is in the process of being analyzed, but is not presented today.
Results

Percentage Change in VO$_2$max and Estimates of VO$_2$max - Subject 1

<table>
<thead>
<tr>
<th>Session</th>
<th>Measured VO$_2$max</th>
<th>Estimated VO$_2$max with inflight submax. VO$_2$</th>
<th>Estimated VO$_2$max no inflight VO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results (Continued)

Percentage Change in VO₂ max and Estimates of VO₂ max - Subject 2

- Measured VO₂ max
- Estimated VO₂ max with inflight submax VO₂
- Estimated VO₂ max no inflight VO₂
Results (Continued)

Percentage Change in VO$_2$max and Estimates of VO$_2$max - Subject 3

- Measured VO$_2$max
- Estimated VO$_2$max with inflight submax. VO$_2$
- Estimated VO$_2$max no inflight VO$_2$

Preflight	Inflight	Postflight
Pre | FT 1 | FT 2 | R+1/2 | R+10
Percentage Change

-30 | 0 | 10 | 20 | 30

DD-MM-YY
Discussion/Preliminary Conclusions

- This is very early data – too early to draw firm inferences.
- The crewmember with the highest VO₂max preflight experienced the largest decrease in VO₂max inflight and post flight.
- The crewmember with the lowest VO₂max preflight experienced the smallest change in VO₂max inflight and post flight.
- The submaximal techniques of VO₂max prediction do not seem to track measured VO₂max well.
- The effect of preflight exercise/inflight exercise volume on VO₂max change has not been assessed (although the data is being collected).
Study Plans

- Subject currently on-board ISS.
 - Preflight, 4 inflight measurements thus far.
 - 2 additional inflight and post flight measurements planned.
- Future Manifest:
 - 1 subject ISS Exp. 23/24 (22S – March 2010)
 - 2 subjects ISS Exp. 24/25 (23S – June 2010)
 - 2 subjects ISS Exp. 26/27 (25S – November 2010)
 - 1 subject ISS Exp. 27/28 (26S – March 2011)
 - 1 subject ISS Exp. 28/29 (27S – June 2011)
 - 1 subject ISS Exp. 29/30 (28S – October 2011)
- “Midterm Evaluation” will occur after Exp. 24/25.
The VO₂ calculated to occur at peak HR is used as an Aerobic Capacity Index (ACI)

- Linear relationship between HR and VO₂ for each test session is quantified, that is: VO₂ = slope(HR) + intercept
- This equation is then solved using the crewmember’s peak HR (measured 9 mo. preflight)
How Accurate is the Aerobic Capacity Index?

Median, Range, 10th, 25th, 75th and 90th percentiles of aerobic capacity and aerobic capacity index.