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Abstract – Two rectangular wing models with a hole
have been designed and tested in the Duke University
wind tunnel to better understand the effects of damage.
A rectangular hole is used to simulate damage. The wing
with a hole is modeled structurally as a thin elastic plate
using the finite element method. The unsteady aerody-
namics of the plate-like wing with a hole is modeled using
the doublet lattice method. The aeroelastic equations of
motion are derived using Lagrange’s equation. The flut-
ter boundary is found using the V-g method. The hole’s
location effects the wing’s mass, stiffness, aerodynamics
and therefore the aeroelastic behavior. Linear theoret-
ical models were shown to be capable of predicting the
critical flutter velocity and frequency as verified by wind
tunnel tests.

Keywords: flutter, damaged wings, finite element
method, doublet lattice method, wind tunnel experi-
ments

1 Introduction

Fighter aircraft are subject to attack by highly accu-
rate missile defense systems when flying in enemy ter-
ritory. Ballistic missiles can create through-hole type
damage in the lifting surface. The aircraft may not be
destroyed depending on the hole location and the size
of the hole. However, the fluid-structure interaction will
change the wing’s aeroelastic behavior. As a result, the
flutter velocity for which the undamaged plane was de-
signed to fly will change.

Over the past 50 plus years the open literature is
scarce on the aeroelastic impact of ballistic damage on
modern aircraft. The first work in this area was per-
formed by Biot and Arnold in 1950 [1] as reported by Dr.
Ronald Stearman at the University of Texas-Austin [2].
Dr. Stearman performed extensive research on sig-
nal detection of ballistic damage between the 1970’s
and 1980’s. In 2007, the crack-induced effects on the
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aeroelasticity of unswept composite wings were investi-
gated [3]. Otherwise, the research related to ballistic
damage in the unclassified literature has focused on in-
vestigating the aerodynamics experimentally. In 1982,
NASA published experimental findings on the aerody-
namic effect of hole location caused by ballistic damage
during certain flight conditions [4]. Other investigations
include evaluating the effect of ballistic damage on the
aerodynamics of helicopter rotor airfoils [5] and the ef-
fect of the shape of the hole used to simulate damage [6].

Aeroelastic studies on undamaged aircraft and wind
tunnel models are found more frequently in the liter-
ature. Flutter and limit cycle oscillations have been
studied experimentally and theoretically on various edi-
tions of the actual F-16 aircraft during flight tests for
different external store (i.e., missiles and fuel tanks) con-
figurations by Denegri and colleagues [7–10]. In order
to improve the design methods for the F-16, wind tunnel
models were designed using various theoretical models
by Dowell, Tang, Attar [11–15] and Gordnier [16] to
better understand the mechanisms causing flutter and
limit cycle oscillations.

In the present study, a rectangular wing model with
a hole has been designed where the hole simulates dam-
age. The wing is modeled as a thin, uniform, elastic
plate using the finite element method. The aerodynamic
loads are computed using the linear frequency domain
doublet lattice aerodynamic model [17–19]. The aeroe-
lastic model is derived by coupling the aerodynamic and
structural models using Lagrange’s equation.

In this paper, two rectangular models with a hole are
designed. The hole location varied in the spanwise loca-
tion. The theoretical flutter velocity and frequency were
validated against tests conducted at Duke University’s
subsonic wind tunnel.

2 Finite Element Method

The wing is modeled as a thin, elastic, and isotropic
plate. These assumptions are categorized as the small
deflection theory of bending because the “plane sections
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initially normal to midsurface remain plane and normal
to that surface after bending [20].”

The finite element method uses the principle of vir-
tual work to derive the structural model. The principle
states that the change of strain energy due to the virtual
displacement is equal to the change in external work due
to applied forces, δU = δW . The Rayleigh Ritz Method
is used with the principle of virtual work in the commer-
cial finite element software, ANSYSTM, to formulate the
general equations of motion for the plate-like system.

δU =

∫
{δε}T {σ} dV (1)

δW =

∫
({δu}T {F}+ {δu}T ρ {ü})dV (2)

+

∫
{δu}T {Φ} dS

{u} = [N ] {d} , {ü} = [N ]
{
d̈
}

(3)

Equations 1, 3, and 3 represent the principle of virtual
work on the element level used in the finite element
method where δ is the virtual operator, U is the strain
energy, W is the external work, {u} is the displacement
vector, {F} is the body forces vector, Φ is the matrix
of surface tractions, and ρ is the density. The displace-
ment vector ({u}) is composed of nodal displacements
(d) and shape functions (N). The nodal displacements
are the temporally dependent nodal degrees of freedom
and the shape functions are spatially dependent. The
shape functions in ANSYSTM vary with the type of ele-
ment model used. Element SHELL63, a 4-node quadri-
lateral shell, is used here to model the uniform plate [21].
SHELL63 exhibits six degrees of freedom since it can
translate and rotate in the x, y, and z directions and
axes, respectively. The plate is clamped along the root.
The cantilevered boundary condition is enforced by stat-
ing that no displacement and rotation occurs where the
plate is clamped.

The generalized matrix form of the equations in Eqn.
4 is formulated by ANSYSTM after substituting the
shape functions and the assumptions into Eqns. 1-3.
In determining the natural frequencies and modes, the
external loads (rext) in Eqn. 4 are assumed to equal
zero. The resulting equation is solved in ANSYSTM by
further assuming simple harmonic motion to remove the
temporal dependence. The result is the classical eigen-
value problem that is solved using the Block Lanczos
Method [21].

[m]
{
d̈
}

+ [k] {d} =
{
rext

}
(4)

2.1 Correlation of experiment with results
from the finite element method

Consider Takahashi’s experiment in the 1960’s as re-
ported by Leissa [22]. Takahashi examined a clamped

steel rectangular plate on all edges with a centralized
hole, see Fig. 1. The analysis and experiment varies the
hole radius, R, for a range of R/a where a=0.2032 m.
The nondimensional frequency predicted by ANSYSTM

is lower than those found analytically by Takahashi, see
Fig. 1. ANSYSTM is a higher fidelity structural model
than the one used by Takahashi. Takahashi’s model
used products of beam modes.

3 Doublet Lattice Aerodynamic
Method

The aerodynamics for the rectangular wing with a
hole is modeled by potential flow theory. See the aero-
dynamic potential equation in Eqn. 5 where φ is the ve-
locity potential, a∞ is the speed of sound, and U∞ is the
free stream velocity. The far field boundary condition
needed to solve Eqn. 5 states that the wave disturbances
created by the lifting surface’s motion propagate toward
infinity with no reflections. As a result, all the wind tun-
nel walls are assumed to be infinitely far away accept for
the tunnel’s floor. The floor is accounted for by using
the method of images. The other boundary condition,
see Eqn. 6, states the normal velocity of the fluid at
the surface equals the normal velocity of the body. For
the thin wing in this work, F (x, y, z, t) = z − f(x, y, t)
in Eqn. 6 where z = 0 at the surface of the airfoil and
f(x, y, t) refers to the height of the wing surface above
the plane.

∇2φ− 1

a2∞

[
∂2φ

∂t2
+ 2U∞

∂2φ

∂x∂t
+ U2

∞
∂2φ

∂x2

]
= 0 (5)

∂F

∂t
+ ~q · ∇~F = 0 (6)

The aerodynamic potential equation is transformed
to a Kernel (integral) equation by using Green’s The-
orem. The Kernel (K) equation is solved numerically
in Eqn. 7 using a distributions of doublets to relate
pressure (p̄) to downwash (w̄) and the doublet lattice
method [17]. Equation 7 is rewritten in matrix form in
Eqn. 8 where Dij is the kernal approximated using the
doublet lattice method. The doublet lattice method is
a “finite element approach” to approximate the kernel.
The doublet lattice method divides the wing into a se-
ries of panels (boxes). One set of sides on the panels
must be parallel to the freestream velocity.

w(x, y) =
1

8π

∫
s

∫
K(x, ξ; y, η;ω,M)p(ξ, η)dξdη (7)

wj =
n∑
j=1

Dijpj (8)

The doublet lattice method (DLM) is suitable to model
the pressure across a planar wing with a hole. The DLM
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(a) Clamped rectangular plate having a centralized circular hole
studied by Takahashi
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(b) Results for Takahashi and ANSYSTM for a/b=1/2 and
a/b=1
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(c) Results from Takahashi, ANSYSTM and Experiment
a/b=1/2, ν = 0.3

Figure 1: Takahashi’s experiment and a comparison us-
ing ANSYS. Plots of nondimensional frequency param-

eter ω2a4ρ
D as a function of hole size for a clamped rect-

angular plate. D = Eh3/12(1− ν2) is flexural rigidity.

methodology devised by Rodden and et al was used to
calculate the aerodynamic influence coefficient matrix
in a doublet lattice code written in-house [17, 19]. The
in-house code does not use the substitution originally
suggested by Rodden in that the steady portion cal-
culated using the doublet lattice method should be re-
placed with the steady portion from the vortex lattice
method. In addition, the code uses the quartic approx-
imation used to improve the DLM [19]. The two un-
knowns in this problem are the pressure jump on the
wing area around the hole and the downwash on the
hole area. However, the latter is not needed in this
work. In the hole region, the pressure jump equals to
zero. The downwash on the wing portion around the
hole is known. In determining the pressure over the por-
tion of the wing surrounding the hole, all that is needed
is to set the pressure to zero in the hole. The downwash
and aerodynamic influence coefficient matrix are known,
so its takes a simple matrix inversion to determine the
unknown pressures.

The local doublet strength is proportional to the pres-
sure jump, so in the wake and the hole, the doublet
strength is zero. The wing aerodynamics with a hole
requires setting the doublets’ equation in the hole equal
to zero. Computationally, it is easier to set p̄ = 0 since
it is the same as not having any elements there at all.
Initially, the aerodynamic influence coefficient matrix
(AICM) is computed for a wing without a hole using
the doublet lattice method. The panels where the holes
are located affects the AICM and the downwash. The
hole on the ith panel is represented by having zeros on
the ith row of the AICM except for on the diagonal. At
the diagonal location a one is placed on the ith row. In
the downwash vector a zero is placed on the ith row to
force p̄ = 0, see Eqn. 9. The substitutions are repeated
for every panel on the wing that the hole region covers.


w1

0
...
wn

 =


D11 D12 · · · D1n

0 1 0 0
· · · · · · · · · · · ·
...

...
...

...
Dn1 · · · Dnn




p1
p2
...
pn

 (9)

4 Aeroelastic Analysis

The aeroelastic model couples the structural and the
aerodynamic models. The aeroelastic equations are for-
mulated using Lagrange’s equations and modal meth-
ods. The only caveat is the structural and aerodynamic
grids are different.

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi (10)

The two unknowns in Lagrange’s equation, see Eqn. 10,
are the Lagrangian (L) and the generalized forces (Qi).
The Lagrangian is the difference between the kinetic and
potential energy of a structure. The generalized forces
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are computed from the aerodynamic forces. The La-
grangian is computed using the natural modes and fre-
quencies obtained from the structural theory. The first
10 out of 1000 natural modes found in ANSYSTM are
retained for the aeroelastic model. Generally, the lowest
modes have the greatest impact on aeroelastic behavior.
The natural modes and frequencies are used in a modal
series expansion. The modal series expansion, Eqn. 11,
contains the generalized coordinate (qm(t)) and the nat-
ural mode (zm(x, t)).

za =
∑
m

qm(t)zm(x, y) (11)

The kinetic and potential energy expressions in Eqn.
12 and Eqn. 13, respectively requires knowing the gen-
eralized mass (Mm) and stiffness (Km). The generalized
mass is computed from Eqn. 14 where ma is the mass
per unit area. The use of natural modes reduces the
computation of the stiffness matrix to the mass matrix
times the natural frequencies.

T = 1/2
∑
m

Mmq̇
2
m (12)

V = 1/2
∑
m

Kmq
2
m (13)

Mm ≡
∫ ∫

maz
2
mdxdy (14)

The generalized aerodynamic forces are computed
from the pressures found using the doublet lattice
method. The downwash in Eqn. 15 is needed by the
DLM and it comes from the natural mode deflection
and the slope of deflection. As is, the deflection points
of the natural mode do not match the aerodynamic grid,
so a polynomial curve-fitting technique is applied using
a least squares method. A fifth order polynomial is fit-
ted to each natural mode to determine the polynomial
coefficients needed to characterize the mode. The mode
characterization allows the deflections to be found at
any x and y, which is used in calculating the downwash
for DLM.

w

U
=

1

U

∂za(x, y, t)

∂t
+
∂za(x, y, t)

∂x
. (15)

The natural modes simplifies computing the mass and
stiffness matrices for the aeroelastic model to just the
terms along the diagonal. The polynomial’s accuracy
is evaluated by looking at the diagonal terms in the
mass matrix since it should approximately equal one
when normalized. The generalized forces are computed
from the downwash found using the polynomial in the
doublet lattice method. Using Eqns. 11-14, Lagrange’s
equation condenses to Eqn. 16. The aerodynamic loads
are computed as a function of nondimensional frequency
(k) in the summation

∑
mAmi(k)qm.∑

m

Mmiq̈m +Kmiqm =
ρU2

2

∑
m

Ami(k)qm ≡ Qi (16)

The nondimensional frequency k that is needed to
compute the aerodynamics is well suited for the V-g
method in the aeroelastic analysis. The V-g method
multiplies the stiffness matrix by 1 + ig where g is the
fictitious damping adding to find the neutrally stable
solutions. Additionally, simple harmonic motion (q =
q̄iωt) is assumed so q̄ can be factored out of Eqn. 16.
Equation 16 is rearranged for the V-g method, see Eqn.
17. At each iteration of k, ω2 and g are calculated.
Recalling k = ωb/U , therefore the velocity (U) can be
computed since k is prescribed, ω is calculated, and the
semichord b is known. The specific velocity where flutter
occurs corresponds to g = 0. When g equals zero the
original aeroelastic equation (Eqn. 16) is recovered.{

−[M ] +
1 + ig

ω2
[K]− ρb2

2k2
[A(k)]

}
{q} = 0 (17)

5 Results

The two designed aeroelastic cantilever rectangular
wings are made of polycarbonate with a thickness of
0.001588 m, a chord of 0.1524 m (6 in), and a length
of 0.3048 m (12 in). The plate’s material properties are
the followimg: ρ=1217 kg/m3, E= 2.4e9 N/m2, and ν=
0.33. In Model A, see Fig. 2, the rectangular hole mea-
sures with a = 0.057 m (2.25 in) and b =0.095 m (3.75
in). The base of the hole is 0.0579 m from the root chord
and 0.048 m from the leading edge. The hole size and
the amount of mass removed is roughly 12% of the total
wing. Model B is identical to Model A except the hole
location goes outward in the spanwise location. The
base of the hole in Model B is 0.1524 m from the root
chord and 0.048 m from the leading edge. The struc-

U

Tip

b=0.095 m

LE TE

0.0579m

Root

0.3038 m

Span

a=0.057m

Chord 0.1524 m

0.048m

HOLE

Figure 2: Dimensional drawing of rectangular wing with
a rectangular hole near root
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Table 1: Comparison of theory (The.) and experiment (Exp.) for first five natural frequencies (in Hz) for can-
tilivered rectangular wing with rectangular hole near the root and tip. Bend. and Tors. refer to the bending and
torsion mode, respectively

No Hole Model A Model B

mode no. mode char. The. Exp The. Exp. The. Exp.

1 Bend. 3.99 Hz 4.13 Hz 3.49 Hz 3.50 Hz 4.20 Hz 4.25 Hz
2 Tors. 16.95 17.25 15.08 15.50 16.02 16.13
3 Bend. 24.86 24.38 24.69 25.00 23.24 23.75
4 Tors. 55.33 54.25 53.28 53.75 50.10 51.25
5 Bend./Tors. 69.84 69.00 71.99 73.65 66.25 68.00

tural behavior for the rectangular plates was found the-
oretically using the finite element method in ANSYSTM.
The structural behavior was tested experimentally us-
ing a vibration test for the first five natural frequencies,
see Table 1. The lower frequencies are known to have
the largest impact on aeroelastic behavior. The struc-
ture was excited using a Brüel & Kjaer (B&K) 4810
mini-shaker mounted with a B&K 8200 force transducer.
The structure’s response was recorded using the B&K
type 4375 accelerometer placed farthest away from the
shaker near the tip of the cantilevered plate. The shaker
is powered by an external power amplifier that is pro-
vided a pseudo random signal from the B&K 4 Chan-
nel PULSETM 3560-T-C, the front-end data acquisition
system. PULSETM is an advanced software/hardware
analyzer platform developed by Brüel & Kjaer for data
acquisition and analysis. PULSETM determines the fre-
quency response by performing a fast fourier transform
analysis of the acceleration time series data.

The correlation between theory and experiment for
the structural analysis is good. The theoretical struc-
tural models require about 1000 finite elements to
achieve convergence. The results are observed to be-
have according to beam theory even though a plate is
modeled. The natural frequencies decrease in Model A
when the hole is closer to the root. This suggests that
“stiffness effects” are more dominant than mass effects
in this region. The natural frequencies increase in Model
B when the hole is closer to the tip. This suggests that
“mass effects” are more dominant in this region.

The aeroelastic model was developed using the
method outlined in the previous section. The doublet
lattice method included 256 panels across the wing (512
total for mirror image) with 16 divisions in the chord-
wise direction and 16 divisions in the spanwise direction
to calculate the generalized forces. The hole consumes
30 panels.

The flutter frequency was determined experimentally
using the PULSETM data acquisition system with an
accelerometer fixed near the root chord on the trailing
edge. The velocity of the windtunnel at flutter was read
from a voltmeter connected to a pitot static tube. The
experimental flutter velocity and frequency are generally
in good agreement with the theory, see Table 2.

Table 2: Theoretical and experimental flutter velocity
and frequency listed for cantilevered rectangular wing
with rectangular hole

No Hole Model A Model B

The. Exp. The. Exp. The. Exp.

Uf in m/s 20.8 20.05 21.5 20.65 25.3 25.2
ωf in Hz 10.3 11.50 8.5 9.18 8.3 9.4

6 Conclusions

Flutter of a rectangular cantilever wing was predicted
using the finite element method and the doublet lat-
tice method in forming the aeroelastic model with La-
grange’s equation. The flutter velocities and frequen-
cies are reported for a rectangular wing without a hole
and for a rectangular wing with a hole in two differ-
ent spanwise locations. Linear models are incapable of
determining the flutter amplitude.

The agreement between theory and experiment for
flutter is generally good for a hole that is 12% of the
wing area for configurations analyzed. The interesting
behavior is the increase in the flutter velocity from the
case without a hole. One might anticipate the flutter
velocity would decrease due to the presence of a hole,
but the theory and experiment indicate the opposite.
Further, calculations for other sizes showed expected re-
sults. For a model with a hole size of 6% the effect of
flutter is small.

Developing a model for a hole size of 6% of the wing
area yields changes that do not make a noticeable im-
pact in investigating the stuctural behavior and the
aerodynamics independently. Quite the opposite, a hole
area 25% of the wing makes a large impact but the struc-
ture is challenged from its own inertia loads before even
considering the aerodynamics loads.

Future work may evaluate using a time marching code
to model the aerodynamics of a wing with a hole to de-
velop nonlinear aeroelastic models. To date there is no
time marching code that is capable of modeling aerody-
namics of a wing with a hole. However, a clever substi-
tution similar to the one implemented for the doublet
lattice code could be potentially derived.
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