COMPARISON of ORSAT and SCARAB Reentry Analysis Tools for a Generic Satellite Test Case

PEDAS1-0021-10

R. L. Kelley (Jacobs ESCG), N. M. Hill (MEI Technologies ESCG), W. C. Rochelle (Jacobs ESCG), N. L. Johnson (NASA JSC), T. Lips (HTG)

38th COSPAR Scientific Assembly
July 18-25, 2010
Bremen Germany
ORSAT SCARAB Description

- **NASA ORSAT**
 - “Object-oriented” model
 - Reentering spacecraft are modeled as a set of simplified geometric shapes
 - Spheres
 - Cylinders
 - Boxes
 - Flat Plates
 - 3 degrees-of-freedom equations of motion
 - Stable attitude
 - No assumed lift
 - Aerodynamic and aerothermodynamic models based on shape, motion and Knudsen number dependant functions for drag and heating
 - Thermal analysis with a 1-D heat conduction model
 - Assumed break-up altitude of 78 km

- **ESA SCARAB**
 - “Spacecraft-oriented” model
 - Reentering spacecraft modeled as close to real geometry as possible using triangular panelized surfaces
 - 6 degrees-of-freedom equations of motion
 - Integration of attitude motion
 - Aerodynamic and aerothermodynamic models based on local panel methods
 - Thermal analysis with 2-D heat conduction model
 - Break-up model based on stress and structural integrity checks
Previous Comparisons

• **1998 – 1999 IADC**
 – Comparison of 1 meter diameter spheres
 • Materials consisted of Titanium, Aluminum, and Iron
 – Results were in good agreement

• **2002-2003 ROSAT**
 – Compared results for a complete, real spacecraft (~2400 kg mass)
 • Assumed uncontrolled, naturally decaying reentry
 – Showed significant difference in predicting surviving debris casualty area (DCA)
 • ORSAT DCA = 13.62 m² • SCARAB DCA = 31.78 m²
 – Differences attributed to:
 • Different material properties
 • Different fragmentation processes
 • Differences in the simulation and assumptions of attitude dynamics

• **2004 -2005 4th European Conference on Space Debris**
 – Test Matrix of simple Geometries
 • Spheres • Cylinders (L/D: 2 and 5) • Boxes (L/W: 2 and 5)
 – 4 Materials; Aluminum, Titanium, and 2 types of Graphite Epoxy
 – Results were in good agreement
 • Deviation for surviving mass < 0.2%
Test Sat Design

- Joint Development between ORSAT Team at JSC and the SCARAB Team at HTG
 - 35 unique objects representing simplified models of typical satellite components
 - Approximately 400 kg mass
 - ORSAT – 391.641 kg
 - SCARAB – 401.531 kg
 - Difference +9.89 kg (+2.53% w.r.t. ORSAT mass)
 - Differences result from 3 primary effects
 - SCARAB requires all connection elements to be modeled
 - Material densities are slightly different
 - Masses in SCARAB are calculated based on the mass of the triangular panels each object is comprised of
 - Initial trajectory conditions
 - Altitude – 122 km
 - Velocity – 7.41 km/s
 - Inclination – 52°
 - Flight Path Angle – -0.1°
 - Environmental Conditions
 - Zonal Harmonics up to J4
 - Earth Flattening
 - Eccentricity of Earth = 0.08182
 - U.S. Standard 1976 Atmosphere
Modeling Results

• **ORSAT**
 - 21 Surviving components representing a mass of 47.22 kg (12.1%) DCA = 15.377 m²
 - Debris footprint begins at 678 km (LH2 Tank) and ends at 849 km (Command Box)
 - Footprint Length = 171 km

• **SCARAB**
 - 6 Surviving components representing a mass of 40.91 kg (10.19%) DCA = 4.428 m²
 - Debris footprint begins at 744.53 km (LH2 Tank) and ends at 1013.1 km (Battery Box Contents)
 - Footprint Length = 268.7 km

• **Differences**
 - Compared to SCARAB, ORSAT Predicts:
 - 15 more surviving objects
 - A DCA 10.949 m² higher
 - 6.31 kg more surviving mass
 - A Footprint 97.57 km shorter beginning 66.53 km sooner

• **Surviving fragments can be divided into 3 areas for study**
 1. Objects which survive in both codes
 - There are five of these objects; LH2 Tank and (4) RWA Flywheels
 2. Objects which only survive in one code
 - Command box survives only in ORSAT
 3. Objects which survive differently
 - The Battery Cells and Battery Box Frames survive in both codes, but in different ways
Modeling Results Comparison

- **Objects Surviving in Both Codes**

<table>
<thead>
<tr>
<th>Object</th>
<th>ORSAT Surviving Mass (kg)</th>
<th>ORSAT DCA (m²)</th>
<th>ORSAT Downrange (km)</th>
<th>SCARAB Surviving Mass (kg)</th>
<th>SCARAB DCA (m²)</th>
<th>SCARAB Downrange (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH2 Tank</td>
<td>10.000</td>
<td>1.088</td>
<td>678</td>
<td>9.958</td>
<td>1.088</td>
<td>744.53</td>
</tr>
</tbody>
</table>

- LH2 Tank
 - 0.5 m titanium spherical tank
 - Only significant difference is the downrange distance
 - ORSAT components decelerate faster due to kinetic energies which result from lower mass (e.g. modeling only tank, not including brackets)
 - Tank represents heel (shortest downrange distance) of debris footprint for both codes
Modeling Results Comparison

- **Objects Surviving in Both Codes**

<table>
<thead>
<tr>
<th>Object</th>
<th>Surviving Mass (kg)</th>
<th>DCA (m²)</th>
<th>Downrange (km)</th>
<th>Surviving Mass (kg)</th>
<th>DCA (m²)</th>
<th>Downrange (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flywheel 1</td>
<td>3.136</td>
<td>0.750</td>
<td>703</td>
<td>3.313</td>
<td>0.584</td>
<td>799.28</td>
</tr>
<tr>
<td>Flywheel 2</td>
<td>3.136</td>
<td>0.750</td>
<td>703</td>
<td>3.313</td>
<td>0.584</td>
<td>767.16</td>
</tr>
<tr>
<td>Flywheel 3</td>
<td>3.136</td>
<td>0.750</td>
<td>703</td>
<td>3.313</td>
<td>0.584</td>
<td>773.79</td>
</tr>
<tr>
<td>Flywheel 4</td>
<td>3.136</td>
<td>0.750</td>
<td>703</td>
<td>3.313</td>
<td>0.584</td>
<td>791.28</td>
</tr>
</tbody>
</table>

- Reaction Wheel Assembly Flywheel
 - 0.3 m diameter X 0.01 m thick titanium disk
 - Flywheels illustrate a diversion in modeling approach
 - ORSAT's “object oriented” method for modeling the components treats duplicate components such that the flywheels experience identical reentry scenarios
 - SCARAB “S/C oriented” approach models the trajectory and ablation of flywheels individually as they break apart from the parent object at different times
 - DCA difference is a result of differing method for determining area
 - ORSAT uses maximum cross section for disks
 - SCARAB uses mean cross section
 - Downrange distance variance is a result of differing masses as SCARAB predicts the shaft to remain attached and ORSAT does not
Objects which only survive in one code

- ORSAT predicts the command box to survive
 - Impacts with a mass of 3.89 kg (15.6% of original mass) and a DCA of 0.691 m²
- Differences between ORSAT and SCARAB fragmentation modeling make the source of the prediction difference difficult to identify
 - ORSAT begins modeling reentry of the command box at 78 km break-up of parent S/C
 - SCARAB has a more complex fragmentation history (below):

In addition, the ORSAT analysis also shows that > 96% of the total energy required for this object to demise is absorbed, and that it will be predicted to demise if the oxidation heating efficiency is increased.
Objects which survive differently

- The battery box and its fragments partially survive in both codes
 - ORSAT assumes the inner frames of the battery box and the battery cells to be separate fragments of the battery box
 - Once the outer box demises, these are assumed reenter individually
 - The SCARAB analysis assumes the battery box, inner frame, and battery cells are strongly attached
 - As portions of the battery box assembly demise, the rest remain connected

- ORSAT predicts the survival of 3 aluminum frame pieces and 12 nickel batteries
 - Total DCA = 2.798 m² and mass of 9.37 kg for aluminum frame pieces
 - Total DCA = 7.8 m² and mass of 11.4 kg for battery cells

- SCARAB predicts 1 surviving component
 - DCA = 1.002 m² and mass 17.697 kg
 - Of this mass 11.616 kg are Nickel and 6.081 kg are aluminum
• Objects which survive differently (cont.)

– The differences in the battery box survival reveal both striking variances and similarities between the results of the two codes
 • The ORSAT assumption that all of the objects impact separately results in a much higher DCA due the large number of objects impacting
 – In both codes DCA values include an added area to account for the proximity of a standing person for each individual object
 • If the total mass of each material which impacts the ground is compared the results are quite similar
 – For the inner frames and battery cells, ORSAT predicts:
 □ 11.4 kg of nickel survives compared to 11.616 kg for SCARAB
 □ 9.37 kg of aluminum survives compared to 6.081 kg for SCARAB
 • If the surviving mass of aluminum and nickel in ORSAT are combined into a box shaped fragments with a volume equal to the inner dimension of the parent battery box the following would result
 – 1 Fragment with an impacting mass of 20.77 kg and a DCA of 1.254 m²
 – This is in much better agreement with the SCARAB value
• **Looking back at the final results**

<table>
<thead>
<tr>
<th></th>
<th>ORSAT</th>
<th>SCARAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surviving Mass (kg)</td>
<td>47.220</td>
<td>47.220</td>
</tr>
<tr>
<td>DCA (m²)</td>
<td>15.377</td>
<td>6.033</td>
</tr>
</tbody>
</table>

- By adjusting some of the methods and assumptions in each code the comparison becomes more clear and results begin to converge
 - Adjust ORSAT results to account for the fused battery cell and inner frame as in SCARAB
 - Reduces ORSAT DCA by 9.344 m²
 - Adjust SCARAB cross-sectional area calculation to match those in ORSAT
 - Use maximum area for RWA Flywheels
 - Use 0.5*((L*D)+(L*H)) for Battery Box contents
 - Increases DCA by 0.797
 - The end result is that the DCA’s between the codes differ by 0.116 m² (2.12% w.r.t. ORSAT) when considering only objects surviving in both codes
 - Difference is 0.807 m² (13.37%) when the command box is included
Conclusions

• Careful examination reveals that ORSAT and SCARAB arrive at very similar results
 – Of 33 unique objects modeled both codes strongly agree on 31 of those
 • Predict 29 to demise in a similar fashion
 • Predict 2 (LH2 tank, RWA flywheels) to demise in much the same way
 – Only 2 objects (as modeled in SCARAB) show significant variance
 • For the command box ORSAT’s prediction of a high demise factor were very close to the results predicted by SCARAB, and may have demised in ORSAT after evaluating the oxidation effects

• The large difference in the debris casualty area which resulted form the battery box contents (1 item in SCARAB, 3 unique items in ORSAT) are not an effect of the differing methods employed to model the reentry physics, but are instead a difference in safety philosophy associated with geometric description of components

• It is not possible to deem either method as “correct” or better
 – Either scenario is equally plausible