Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-duration Space Flight

[Awarded in 2008]

NASA Human Research Program Investigators’ Workshop
February 3-5th, 2010

Shreyasee Amin, MD CM, FRCP(C), MPH
Associate Professor of Medicine
College of Medicine, Mayo Clinic

(Presented by Jean Sibonga, PhD)
Overview

- Study Overview
- Progress on Aims
- Unexpected Challenges
Response to NRA

To address:

- the risk of long-term effects on crew health regarding bone loss and fracture
- the need to define the likelihood and/or consequence of bone health recovery post-flight
Study Overview

- Collaboration between NASA-JSC and Mayo Clinic, Rochester MN.
- Analyses of BMD and risk factor data already collected on US crew, with comparisons to a population-based cohort (Rochester Bone Health Study).
Specific Aims

AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk.

- compare data from crew members (“observed”) with what would be “expected” from Rochester Bone Health Study.

AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight.

- integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery.
Specific Aims

AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk.

- compare data from crew members (“observed”) with what would be “expected” from Rochester Bone Health Study.

AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight.

- integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery
Methods

“Expected” BMD changes were determined based on data from the Rochester Bone Health Study cohort of 699 men and women, representing an age-stratified random sample of the adult community (age 20-95 years).

“Observed” BMD changes following long-duration flight from 28 crew members were measured:

- Immediately post-flight
- ~1 year post-flight
Rochester Bone Health Study

- 348 men, age range at baseline: 22-90 years
- 351 women, age range at baseline: 21-93 years

- BMD measurements on Hologic QDR 2000 at spine, hip, radius, total body.

- BMD at baseline, 2 and 4 years for men.
- BMD at baseline, 1, 2 and 4 years for women.
Rochester Bone Health Study

- Prediction models derived using baseline and follow-up BMD data from cohort
- Prediction of “expected” BMD over follow-up using:
 - Linear mixed effects models
 - Baseline BMD, age at baseline BMD, gender, and time-to-follow-up, as predictors in model
 - Models including body mass index and total lean mass as predictors were also considered
Long-Duration Crew

- 28 men and women
 - 24 men, age range at preflight scan: 36-53 yrs
 - 4 women, age range at preflight scan: 41-53 yrs

- BMD measurements on Hologic QDR 2000, QDR 4500 and Discovery at spine, hip, radius, total body.

- BMD pre-flight, immediately post flight and ~1 year post-flight
Long-Duration Crew

- Median flight duration: 167 days (range: 95-215 days)

- Immediate post-flight BMD performed a median of 6 days (range: 3-33 days) following return on 24 men and 4 women.

- ~1 year post-flight BMD performed a median of 376 days (range: 184-534 days) following return on 22 men and 4 women.
Long-Duration Crew

- 25/28 had pre-flight BMD performed within 6 months before launch (all 28 had immediate post-flight BMD)
 - 24/25 had pre- and immediate post-flight BMD on same machine (7 QDR 2000, 11 QDR 4500 and 6 on Discovery)
- 24/28 have a pre-flight BMD within 6 months of flight and a post-flight BMD within 6-18 months of return. (26/28 had a 6-18 month BMD)
 - 22/24 have scans on same machine (7 QDR 2000, 10 QDR 4500 and 5 Discovery)
<table>
<thead>
<tr>
<th>BMD Site*</th>
<th>Mean Pre-Flight BMD (g/cm²) (Used first and last pre-flight scans available)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td></td>
<td>BMD</td>
</tr>
<tr>
<td>Total Hip</td>
<td>1.106</td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>1.091</td>
</tr>
<tr>
<td>Mid Shaft Radius</td>
<td>0.713</td>
</tr>
<tr>
<td>Ultradistal Radius</td>
<td>0.525</td>
</tr>
<tr>
<td>Total Body</td>
<td>1.284</td>
</tr>
</tbody>
</table>

N=25 for all sites except radius sites where N=17
<table>
<thead>
<tr>
<th>BMD Site*</th>
<th>Mean Immediate Post-Flight BMD (g/cm²)</th>
<th>% Change per Month (% chg/mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
<td>Observed</td>
</tr>
<tr>
<td></td>
<td>BMD</td>
<td>% chg/mos (95% CI)</td>
</tr>
<tr>
<td>Total Hip</td>
<td>1.082</td>
<td>-0.00 (-0.05, 0.04)</td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>1.078</td>
<td>0.12 (0.10, 0.13)</td>
</tr>
<tr>
<td>Mid Shaft Radius</td>
<td>0.710</td>
<td>0.17 (0.11, 0.23)</td>
</tr>
<tr>
<td>Ultradistal Radius</td>
<td>0.519</td>
<td>-0.02 (-0.05,-0.00)</td>
</tr>
<tr>
<td>Total Body</td>
<td>1.264</td>
<td>-0.05 (-0.05,-0.04)</td>
</tr>
</tbody>
</table>

\(N=25 \) for all sites except radius sites where \(N=17 \)
<table>
<thead>
<tr>
<th>BMD Site*</th>
<th>Mean ~1 Year Post-Flight BMD (g/cm²)</th>
<th>% Change per Month (% chg/mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
<td>Observed</td>
</tr>
<tr>
<td></td>
<td>BMD</td>
<td>% chg/mos (95% CI)</td>
</tr>
<tr>
<td>Total Hip</td>
<td>1.086</td>
<td>0.01 (-0.01, 0.02)</td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>1.086</td>
<td>0.05 (0.05, 0.06)</td>
</tr>
<tr>
<td>Mid Shaft Radius</td>
<td>0.705</td>
<td>0.06 (0.03, 0.09)</td>
</tr>
<tr>
<td>Ultradistal Radius</td>
<td>0.512</td>
<td>-0.07 (-0.07,-0.06)</td>
</tr>
<tr>
<td>Total Body</td>
<td>1.264</td>
<td>-0.02 (-0.03,-0.02)</td>
</tr>
</tbody>
</table>

*N=24 for all sites except radius sites where N=16
Findings to Date

- Our simple BMD prediction models appear to work well…

- Models including body mass index or lean mass yielded similar findings, but work is ongoing to improve models.

- Overall, BMD ~1 year post-flight still show lower than expected BMD values at most sites, particularly weightbearing sites.

- Still exploring differences between men and women
Unexpected Challenges...

- Signed consent required to access and view collected data from long-duration crew as age, gender, race/ethnicity are attributable data.

- Inability to export data with scan dates or flight dates, despite informed consent.

- Recently informed that will also need signed consent to access short-duration crew BMD.

Lack of 100% consent limits access and analyses of available data which may have potential limitations on interpretation of results.
Other Unexpected Challenges…

- Took >1 year to achieve secure remote access from Mayo Clinic to JSC-NASA in order to view and export data.

- Lack of standardized procedures for data access
 - Establishment of standards with concurrent input from CPHS (Committee for the Protection of Human Subjects), LSAH (Longitudinal Study of Astronaut Health) and Crew Office would be ideal.
On-going work

- Better calibration of BMD between 2 cohorts at each region of interest using pre-maiden flight BMD from all US crew members available.
- Assembly of risk factor data available from long-duration crew
- Further refinement of fracture prediction models based on Rochester cohort using BMD, risk factor data collected and observed fractures over ~20 years of follow-up.