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Abstract 
COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures 

(CometBoards) is a multidisciplinary design optimization software. It was originally developed for 
deterministic calculation. It has now been extended into the stochastic domain for structural design 
problems. For deterministic problems, CometBoards is introduced through its subproblem solution 
strategy as well as the approximation concept in optimization. In the stochastic domain, a design is 
formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is 
also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. 
The center of the graph corresponded to a 50 percent probability of success, or one failure in two samples. 
A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that 
corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone 
design with a compromised reliability approaching zero. The stochastic design optimization (SDO) 
capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the 
deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was 
the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite 
element structural model, a material model, a load model, and a design model. The stochastic 
optimization concept is illustrated considering an academic example and a real-life airframe component 
made of metallic and composite materials. 

I.   Introduction 
Optimization research at NASA Glenn Research Center has addressed structural design, airliner 

synthesis, as well as the performance improvement of jet engines. The accumulated multidisciplinary 
design activity is collected under a testbed that is acronymed “CometBoards” (COMparative Evaluation 
Testbed of Optimization and Analysis Routines for the Design of Structures) (Ref. 1). The code 
formulates design as a nonlinear mathematical programming problem and solves it. Problem solution can 
use any one of the dozen optimization algorithms or the cascade strategy (Ref. 2). An approximation 
module (Ref. 3) with neural network and regression methods, available in CometBoards, can be used to 
reduce the number of calculations. The deterministic version of CometBoards can accommodate several 
different disciplines, each of which can be further divided into subproblems. Thus, the design tool can 
optimize a system that can be defined in terms of about 100 subproblems. Alternatively, the CometBoards 
testbed can be used to examine the optimality of a small portion of a larger design problem by an 
appropriate specification of input data. CometBoards has been successfully applied to structural design of 
air-breathing propulsion engine and components of Space Station (Ref. 4), airliner synthesis (Ref. 5), as 
well as performance optimization of jet engines (Ref. 6).  
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CometBoards has been extended into the stochastic domain for structural design optimization. The 
code can be used to study the consequence of scatter in the optimum design solution. The scatter can be in 
load, in strength and modulus of a material, or in design parameters, like depth and thickness of a beam, 
etc. Such parameters can be modeled as random variables with probability distribution functions that are 
defined in terms of mean values and standard deviations. Consequently, response of a structure consisting 
of stress, strain, displacement, and frequency become random parameters with mean values and standard 
deviations. The cumulative distribution concept can be utilized to estimate the value of a response 
parameter for a specified level of probability. For example, the value of von Mises stress at a location in a 
structure can be estimated to be less than 15 ksi for a 25-percent probability of success or reliability (p = 
0. 25). The value can increase to less than 25 ksi for a 75-percent reliability (p = 0.75). The concept 
illustrated for stress can be extended to other failure modes or design constraints, which become a 
function of reliability. In stochastic methodology, a structure can be designed for a specified reliability 
between 0 and 1. High reliability can lead to a heavier design. The design is likely to be lighter when 
reliability is compromised. In other words, the weight of a structure becomes a function of the reliability. 
It would be shown that reliability versus weight traced out an inverted-S-shaped graph.  

Reliability-based design optimization requires a probabilistic analysis tool. Several such tools are 
discussed in References 7 and 8. Here, the fast probabilistic integrator (FPI) module of the NESSUS code  
(Ref. 9) is used for probabilistic calculation for industrial-strength problems. A quadratic perturbation 
method (Ref. 7) is used for the academic examples. The probabilistic response is used to formulate the 
stochastic design problem. It is solved using the optimization testbed CometBoards. The probabilistic 
analysis and design concepts are illustrated for an academic example and for an industrial-strength 
airframe wingtip structure made of metallic and composite materials. The later is a Boeing Company. 
proprietary structural component and only a small amount of information can be published. The subject 
matter of the paper is presented in five subsequent sections. An outline to the testbed CometBoards is 
given in Section II. Probabilistic analysis is covered in Section III. Deterministic optimization is discussed 
in Section IV, followed by stochastic design in Section V, and conclusions in Section VI.  

II. Design Testbed CometBoards 
The testbed CometBoards was originally developed to evaluate the performance of different 

mathematical programming algorithms and structural analysis methods while solving an optimization 
problem. The acronym “CometBoards” stands for COMparative Evaluation Testbed of Optimization and 
Analysis Routines for the Design of Structures. The scope of the testbed has been expanded to include the 
design of structures, synthesis of airliner, and the operation optimization of air-breathing propulsion 
engines. CometBoards has several different analysis methods and one dozen optimization algorithms. It 
has a modular organization with a soft coupling feature that allows quick integration of new or user-
supplied analyzers and optimizers without changing the source code. The CometBoards code reads 
information from data files; formulates design as a sequence of subproblems; and generates the optimum 
solution.  

CometBoards can be used to solve a large problem, definable through multiple disciplines, each of 
which can be further broken down into subproblems. Alternatively, it can improve an existing system by 
optimizing a small portion of a large problem. Other unique features of CometBoards include design 
variable formulation, constraint formulation, subproblem solution strategy, global scaling technique, 
analysis approximation through neural network and linear regression method, use of sequential and 
parallel computational platforms, and so forth. The special features and unique strengths of CometBoards 
assist convergence and reduces the amount of central processing unit (CPU) time required to solve 
difficult optimization problems of the aerospace industry.  

CometBoards has been successfully used to solve the structural design of the International Space 
Station components, the design of the nozzle components of an air-breathing engine, airframe and engine 
synthesis for subsonic and supersonic airliner, mixed flow turbofan engine, waverotor-topped engine, and 
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so forth. The modular organization of CometBoards is depicted in Figure 1. A brief outline is included for 
some of its modules.  

Scaling and constraint formulation: A multidisciplinary design problem can have a distorted design 
space because its variables and constraints can vary over a wide range. For example, an engine thrust 
design variable, which is measured in kilopounds, is immensely different from its bypass ratio, which is a 
small number. Likewise, the landing velocity of an airliner measured in knots and landing or takeoff field 
lengths measured in units of thousands of feet differ both in magnitude and in units of measure. This 
module provides a scheme to reduce the distortion by scaling the design variables, the objective function, 
and the constraints such that their relative magnitudes during optimization calculations are around unity. 
The constraints are reformulated to alleviate redundancy and reduce their number (Ref. 10) without 
affecting the problem definition. The cascade algorithm employs more than one optimizer to solve a 
complex design problem when an individual mathematical programming method encounters difficulty 
(Ref. 11). 

The module “Analyzers—Structure, Aircraft, Engine—Neural networks and Regression 
approximations” houses three different types of analysis methods. For structural analysis the methods 
available are COSMIC NASTRAN (Ref. 12), MSC/NASTRAN (Ref. 13), MHOST (Ref. 14), 
Analyze/Danalyze codes (Ref. 15), and IFM/Analyzers (Ref. 16). Aircraft analysis can use the FLOPS 
code (Ref. 17). The NEPP (NASA Engine Performance Program) code (Ref. 18) is employed for air-
breathing propulsion engine cycle analysis. Neural network and regression techniques can be employed to 
approximate an analysis method. A solution of a problem can utilize any one of three analyzers: (1) an 
original analyzer, for example, the FLOPS code, or one of the two derived analyzers based on (2) a neural 
network model or (3) a linear regression approximation. 

The module “Engine operations” in Figure 1 refers to the performance optimization of air-breathing 
propulsion engines for multiple operation points. “Aircraft synthesis” refers to the airframe and engine 
integration for subsonic and supersonic airliners. 

The module “Structural design⎯Subproblem strategy and Parallel computational environment” refers 
to design of structures through regular optimization or using a subproblem strategy. This strategy is 
available in sequential and parallel computational environments. “Multiple disciplines” refers to the 
solution of a problem, which is defined through different disciplines. CometBoards can accommodate 
several disciplines each of which can be further divided into subproblems. Subproblem strategy is an 
attempt to alleviate convergence difficulties that can be encountered during the solution of a large 
optimization problem. In this strategy the large problem is replaced by a sequence of overlapping modest 
subproblems. The solution to the large problem is obtained by repeating the solution to the set of 
subproblems until convergence is achieved.  

CometBoards has been extended into the stochastic domain. The stochastic design optimization 
(SDO) capability is obtained by combining three codes:  
 

(1) The MSC/Nastran code is the deterministic analysis tool. 
(2) The FPI module of the NESSUS software is the probabilistic calculator. 
(3) The testbed CometBoards becomes the optimizer. 
 
The SDO capability requires four models: a finite element structural model, a material model, a load 

model, and a design model. In the module “Problem formulation and solution,” information is read from 
data files, the design is cast as a sequence of optimization subproblems, and the solution is obtained. The 
CometBoards testbed is written in the Fortran 77 language except for the neural network algorithm, which 
is written in the C++ language. The testbed is available in the Unix operating system on workstations.  
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III. Probabilistic Structural Analysis 
Popular probabilistic analysis formulations included Monte Carlo simulation, sampling and stratified 

sampling techniques, the Latin hypercube technique, response surface method, and others. Monte Carlo 
simulation is a powerful numerical approach, but it is repetitive and computationally expensive. 
Numerical integration, second-moment analysis, and stochastic finite element methods are also available. 
The perturbation method has been used extensively in developing the stochastic finite element method 
because of its simplicity, efficiency, and versatility. In this paper, for academic problems, a quadratic 
perturbation technique is employed to calculate the mean value and the covariance matrix in closed form 
for stress and displacement. For an industrial problem, fast probability integration is used. Stochastic 
response via perturbation method was compared with other probabilistic formulations considering the 
example of the three-bar truss shown in Figure 2 with 10 random variables for the material properties, 
load, and sizing design parameters.  

A summary of response calculated by the four methods is depicted in Table 1. Two different 
computers were used in the calculations shown in Table 1. A Dell Inspiron desktop with four CPUs and a 
3.2-GHz processor was used to obtain most of the results. The FPI code shown in the last column was run 
in a very fast Red Hat Linux dual-CPU workstation with a 32-GHz processor. The four methods 
compared were 

 
(1) Perturbation method (PM) 
(2) Direct Monte Carlo simulation (DMCS) 
(3) Latin hypercube simulation (LHS) 
(4) Fast probabilistic integration (FPI) of the NESSUS code  
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TABLE 1.—PROBABILISTIC RESPONSE COMPARED FOR THREE-BAR TRUSS 

Parameter 

Perturbation method 
(PM) 

Direct Monte Carlo 
simulation 
(DMCS) 

Latin hypercube 
simulation 

(LHS) 

Fast probability 
integrator 

(FPI) 
Mean 
value 

Standard 
deviation 

Mean 
value 

Standard 
deviation 

Mean 
value 

Standard 
deviation 

Mean 
value 

Standard 
deviation 

kip

3

2

1

:Force
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

F
F
F

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 95.7
24.61
77.62

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

67.4
35.4
39.4

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 93.7
27.61
77.62

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

67.4
35.4
39.4

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 96.7
25.61
76.62

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

67.4
35.4
39.4

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 93.7
21.61
78.62

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

67.4
35.4
39.4

 

ksi

3

2

1

:Stress
⎪
⎭

⎪
⎬

⎫

⎪
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⎪
⎨

⎧

σ
σ
σ

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 98.3
70.61
29.63

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

34.2
20.6
71.6

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 97.3
58.61
16.63

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

79.2
42.5
89.5

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
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57.61
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⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
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⎪
⎭

⎪
⎬
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⎪
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⎪
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⎪
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⎪
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⎭
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⎩
⎨
⎧
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⎭
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004.0
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⎩
⎨
⎧
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⎭
⎬
⎫

⎩
⎨
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003.0
004.0

 

Computation time 
CPU seconds 7.0 4245 390 1 
Normalized time 1.0 606 56 --- 

 
 

The stiffness method as implemented in the ANSYS code (Ref. 19) was used in the DMCS and in the 
LHS methods. Response was calculated via the primal and the dual integrated force methods (IFM and 
IFMD, respectively) in the perturbation and fast probability integration techniques. Both IFM and IFMD 
yield identical solutions for deterministic as well as stochastic calculations even though the structure of 
equations differed, at least in appearance. Response for the three bar forces, stresses, and displacements 
by the four methods (PM, DCMS, LHS, and FPI) and time to solution (CPU seconds) are depicted in the 
Table 1. For bar forces the mean values and standard deviations were in good agreement for all four 
methods: the perturbation method, DMCS, Latin hypercube simulation, and fast probability integrator. 
The displacements showed an almost perfect match across the four methods. There was a minor deviation 
among the methods for bar stress. DMCS required 12 500 samples for convergence, whereas 1000 
samples were sufficient for the Latin hypercube simulation. The time to calculate the response was very 
small, between 1 to 7 CPU sec by the perturbation method as well as by the fast probability integrator. 
The calculation time increased many times for the Monte Carlo and Latin hypercube simulations. Monte 
Carlo simulation required about 4245 sec, which corresponded to 606 times that required by the 
perturbation method. Latin hypercube method took 56 times as long. Overall, the performance was 
satisfactory for all four methods. The Ph.D. dissertation of Wei (Ref. 8) provides merits and limitations of 
different probabilistic analysis methods. 
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IV. Deterministic Optimization 
Two features of CometBoards pertaining to deterministic optimization are illustrated. These are the 

subproblem solution strategy and the approximation concepts available in the code.  

A. Subproblem Solution Strategy 

Design optimization of a large problem can be attempted through a subproblem strategy to avoid 
convergence difficulties. The large problem is divided into several modest subproblems as shown in 
Figure 3(a). Solution to the original problem is obtained iteratively through repeated solutions to the 
modest subproblems. Adequate coupling (overlap) must be provided between subproblems as shown in 
Figure 3(a), otherwise, difficulty can be encountered. Subproblem optimization can be carried out in 
either a sequential or a parallel computational mode on a multiprocessor computer. The subproblem 
solution strategy for sequential computation, is executed through two major do-loop statements as 
depicted in Figure 3(b). The basic steps are as follows: 

 

1. Initialize all design variables for the original problem. 
2. Define each subproblem and ensure adequate overlap.  
3. Define design variables for each subproblem. It must have at least two independent design 

variables and at least one variable must be common to two subproblems.  
4. Formulate subproblem optimization. Its constraint set should include all stress and buckling 

constraints for the subproblem in question. Frequency and displacement are global constraints 
and should be common to all the subproblems. Define subproblem merit function or weight. 
Solve the optimization subproblem.  

5. Update the design variables for the entire structure as soon as a subproblem is solved.  
6. Execute the inner loop for all subproblems. Convergence or stop criteria for the inner loop need 

not be very stringent. 
7. Repeat the steps; that is, execute the outer loop, also called cycles, until convergence occurs for 

the entire problem. A tighter convergence or stop criterion can be specified for the outer loop. 
 

The subproblem solution strategy for parallel computation, as shown in Figure 3(c), is quite similar to 
that for sequential calculations. The difference pertains to simultaneous or parallel solutions to the 
subproblems in different processors of a computer. Balancing computational loads between the processors 
requires that the solution complexity of the different subproblems be equal. Each subproblem has to be 
optimized independently without any exchange of information between subproblems. Design variables 
are updated only after all subproblems have been solved. Repeat the above steps or execute the outer loop 
until convergence occurs for the entire problem. 

Subproblem solution strategy available in CometBoards is illustrated considering the design of the 
space shuttle cargo bay support system shown in Figure 4 as an example. 

The structure, shown in Figure 4 is made of aluminum with a Young's modulus of 9.9×106 psi, a 
Poisson’s ratio of 0.303, a weight density of 0.098 lb/in.3, and an allowable strength of 30 000 psi. 
Critical design loads were generated from a variety of shuttle accelerations and maneuvers (Ref. 20). 
Loads for the support system were obtained by analyzing a coupled model with 9658 finite elements and 
7439 nodes. The support system was designed for minimum weight under stress and displacement 
constraints. The structural model of the support, which was divided into 4 segments has 132 shell finite 
elements. The first segment FGHIJK is a closed box composed of 5 plates; it was discretized into 72 shell 
elements. The second segment FHEC has 36 elements; the third GHE and fourth GHD segments have 12 
elements each. The 5 connecting frame members were treated as passive variables during design, but for 
analysis they were discretized using 20 beam elements. For the purpose of optimization, the shell 
thicknesses were considered the design variables. Through design variable formulation, the nodal 
thicknesses of all elements within a segment were grouped to obtain a single independent design variable. 
The support system for parallel computation was divided into three subproblems: Subproblem 1 consisted 



NASA/TM—2010-215820 7 

of segments 1 and 2; subproblem 2 contained segments 2 and 3; and subproblems 3 and 4 contained 
segments 3 and 4, respectively. For sequential computation, a fourth subproblem consisting of segments 4 
and 1 was considered to close the inner loop to accelerate the convergence process. For parallel 
computation, the design variables for the entire structure were updated only after all subproblems were 
solved; therefore, it was not necessary to include subproblem 4.  
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Optimization results for the support system, shown in Table 2 gives the weight of the subproblem 
after the completion of each outer loop and provides the optimum design and the number of active 
constraints. For this problem, acceptable convergence was achieved after three executions of the outer 
loop. Optimum results obtained by parallel and sequential subproblem strategy compared very well with 
that obtained when the entire structure was optimized as a single unit. Subproblem convergence history is 
presented in Figure 5. The support system in sequential calculations converged in two cycles; however, 
three cycles were required for parallel computations. The optimization process reduced the weight by 
36 percent from the initial weight of 54.35 lb to the final weight of 34.7 lb. The sequential calculation 
produced two active constraints, while parallel mode as well as regular optimization yielded an additional 
active constraint.  
 

TABLE 2.—OPTIMUM DESIGN FOR SPACE SHUTTLE CARGO BAY SUPPORT SYSTEM 
Parameter Initial variable, 

in. 
Substructuring No substructuring 

(single unit) 
Design variables Thickness Sequential Parallel 

1 
2 
3 
4 

0.2 
0.2 
0.2 
0.2 

0.1281 
0.1299 
0.1765 
0.0319 

0.1277 
0.1298 
0.1765 
0.0264 

0.1277 
0.1299 
0.1763 
0.0263 

Number of active 
constraints 

--- 2 3 3 

Weight, lb 54.35 34.74 34.71 34.72 
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B. Approximation Concepts in CometBoards 
CometBoards has two different types of approximation concepts. The first pertains to a simplification 

of the design sensitivity. The second is analysis approximation using neural network and regression 
technique. Both concepts are illustrated. 

C. Simplification of Design Sensitivity 
Design sensitivity is central to most optimization algorithms. Consider a key formula to update the 

design in a nonlinear programming algorithm. At a kth intermediate iteration.  

 { } { } { }11 1kk k kX X S−− −= +α  (1) 

where {X}k is the design, {S}k is the search direction, and α is the step length.  
Design sensitivity is used to calculate the search direction. Algorithms are named after sensitivity, for 

example, method of steepest descent, conjugate-direction method of Fletcher and Reeves and variable 
metric method, etc. Different directions traverse different paths to reach the optimum point from an initial 
design as shown in Figure 6. 

An approximation to sensitivity would result in a veering of the path. It will be shown that optimum 
will be reached following a path that would be generated via an approximation to the sensitivity because 
there is no uniqueness to the path as shown in Figure 6. Consider a stress constraint, g(X), which is a 
function of design variables (X). The constraint can be expressed as a product of an explicit function F(X) 
and an implicit function R(X) as 

 ( ) ( ). ( )g X F X R X=  (2) 

Its gradient can be written as 

 ( )
simple-Retain simple-Retaincalculation-intensive-DROP

g xX R F F R R F∇ = ∇ + ∇ ≈ ∇  (3) 

The proposition is to retain the first term 
simple-Retain

R F∇ in the gradient expression. This term is simple to 

calculate. The computation intensive term 
calculation-intensive-DROP

F R∇  is dropped.  
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Consider a plate flexure problem as an example for structural design optimization. Its thickness (h) is 
considered as the design variable. It has two principal moments (M1 and M2). The von Mises stress, σj, 
that can be used to define the stress constraint can be written as 

 ( ) ( ) ( ) ( ) ( )( )plate 2 2 1 21 22
6

jj i i i i j
h

i
h h h hM M M M

h
⎛ ⎞

σ ⎜ ⎟
⎜ ⎟
⎝ ⎠

+ −=  (4) 

The gradient of von Mises stress can be obtained as 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

plate 2
13

simple-retain

2 1 22

Difficult-drop

2 2 1 21 22

12

6

j i i ij
i

i i i i
i

i j

ji

h M h h h
h

h h h h
h

h

M M M M
h

M M M⎛ ⎞
∇σ ⎜ ⎟⎜ ⎟

⎝ ⎠

∂⎛ ⎞
⎜ ⎟ ∂⎝ ⎠

− + −

+ −

=

+

 (5) 

The gradient is simplified by retaining the first simple term, which can be generated with a trivial 
amount of calculation as 

 ( ) ( ) ( ) ( ) ( )( )plate 2 2 21 23

simple-retain

1
12

j i i ij ji
ih M h M h M h M h

h
⎛ ⎞

∇σ ⎜ ⎟⎜ ⎟
⎝ ⎠
− + −=  (6) 

The term in equation (6) can be arranged along the diagonal of a matrix for a structure made of  
n—number of plates. The approximate gradient concept is independent of structure type and it can be 
used in finite element analysis. Likewise, the gradient of displacement can be approximated for a general 
type of structure. 
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D. Numerical Illustration  

The approximation concept is illustrated for the design optimization of a steel-trussed ring shown in 
Figure 7. The ring was made of 60 bars and had inner and outer diameters of 180 and 200 in., 
respectively. It was fully restrained at node 10 and free to move only along the y direction at the 
diametrically opposite node 16. The ring was subjected to two load conditions. The first load condition 
consisted of a 40-kip compression along the ring’s horizontal diameter, which was applied at nodes 1 and 
7. In the second case, a 40-kip load was applied at node 4 to induce compression along the vertical 
diameter. The 60-bar areas of the truss were grouped to obtain 16 linked design variables. The ring had 60 
stress constraints (with a yield strength of 20 ksi) for each load condition.  

The distortions of the ring along the horizontal and vertical diameters were controlled through a 4-in. 
displacement limitation specified at nodes 1, 4, and 7 for each load condition. The problem had a total of 
120 stress and 6 displacement constraints. Optimum solutions generated by two algorithms: SQP or 
sequential quadratic programming and SUMT or sequential unconstrained minimization technique are 
given in Table 3. Optimum solution was obtained with closed form or analytical sensitivity as well as 
approximate sensitivity. Instead of individual parameters the mean, maximum, and minimum values are 
given for the 16 design variables. Both SQP and SUMT algorithms with approximate as well as the 
closed-form or analytical sensitivities converged to the same solution of about 800 lb with a 0.25-percent 
deviation in the minimum weight.  
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TABLE 3.—OPTIMUM SOLUTION FOR THE TRUSSED RING 

Method Weight, 
lb 

Design variables,  
in.2 

Active constraints CPU time, 
sec 

Sensitivity  

Mean 
value 

Variation Stress Displacement 
Min. Max. 

SQP 
SUMT 
SQP 
SUMT 

799.9 
797.7 
799.9 
798.0 

3.15 
3.15 
3.15 
3.15 

2.18 
2.18 
2.18 
2.19 

4.05 
4.01 
4.04 
4.00 

28 
28 
28 
28 

1 
1 
1 
1 

2.3 
1.3 
7.4 
7.1 

Approximate 
Approximate 
Analytical 
Analytical 

 
The CPU time to solution was 321 and 318 percent faster for approximate sensitivity with the SQP 

and SUMT algorithms, respectively. The 16-variable problem had 29 active constraints. The convergence 
of weight versus CPU time to solution with analytical and approximate sensitivities is depicted in 
Figure 8. The optimization was begun with the same initial design. Both methods produced similar 
optimum solutions. The convergence patterns, with and without approximation, portray undulations that 
are quite similar. However, the convergence is very rapid with the approximate sensitivity.  

E. Jet Engine Design With Regression and Neural Network Approximators 

The NASA Engine Performance Program (NEPP) can encounter difficulty during engine balancing. 
The deficiency was eliminated through neural network and linear regression methods (see Fig. 9). An 
approximation-interspersed cascade strategy was used to optimize engine operation over a specified flight 
envelope. Creating approximate models for engine problem required the management of an enormous 
amount of numerical data. 

To illustrate the benefit from the approximation concepts while keeping numerical calculations within 
a manageable level, we selected a waverotor-augmented subsonic engine with 10 operating points. The 
engine was optimized utilizing both neural network and regression approximations, along with a cascade 
strategy (see Fig. 9). The high bypass-ratio subsonic waverotor-enhanced turbofan engine was made of 16 
components on 2 shafts with 21 flow stations. To examine the benefits that accrue from the waverotor 
enhancement, we optimized the engine by considering several baseline variables to be passive. The 
objective was to maximize the net engine thrust for two variables: heat added to the waverotor in the 
range 93 700 to 131 300 Btu/sec and waverotor speed in the range 4940 to 7660 rpm. Upper and lower 
bound constraints were specified on a speed ratio for the compressor and fan, along the secondary flow 
branch in the range 0.7 to 1.01, corrected speed ratio for the high-pressure compressor along the main 
flow in the range 0.7 to 1.01, unmixed temperature in the range 2000 to 3200 °R, surge margin on the 
compressor along the secondary flow branch in the range 15 to 100, surge margin on the fan in the range 
15 to 100, surge margin on the high-pressure compressor along the main flow in the range 15 to 30, and 
pressure ratio for the high-pressure turbine in the range 0.0 to 6.59. 

The cascade solution is depicted in Figure 9 for the sixth operating point. The first leg of the cascade 
was a quadratic programming algorithm (NLPD). The engine thrust was 73.293 kip but the design was 
infeasible. The second optimizer, which was a modified method of feasible direction (FD) also yielded  
an infeasible design. The third leg of cascade was NLPQ and it produced a feasible solution with a 72.989 
kip thrust. Both of the approximate methods performed satisfactorily and at about the same level. The 
engine required the cascade strategy even with the approximate methods. 
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V. Stochastic Design Optimization 
CometBoards has been extended into the stochastic domain. The code formulates stochastic design as 

a nonlinear mathematical programming problem and solves it. The variables and constraints are treated as 
random parameters with specified distribution functions that are defined in terms of mean values and 
standard deviations. A problem can be formulated either to optimize the mean value of an objective 
function, or to simultaneously optimize the mean value as well as the standard deviation. The former is 
referred to as stochastic design optimization (SDO) whereas the later became the robust formulation. 
Robust design may be important for the manufacturing industry but it has little importance to theoretical 
design calculations. It is discussed in Reference 8 but not repeated here. In SDO, the constraint functions 
are specified within prescribed random upper and lower bounds for a specified probability of success or 
reliability between (0 and 1). The design accommodated uncertainties in load, strength, and material 
properties. Design solution and optimum weight became a function of reliability. Optimum weight versus 
reliability traced out an inverted-S-shaped graph. The center of the inverted-S-shaped graph corresponded 
to a 50 percent (p = 0.5) probability of success. A heavy design with weight approaching infinity could be 
produced for a near-zero rate of failure that corresponds to unity for reliability. Weight can be reduced to 
a small value for the most failure-prone design with a reliability that approaches zero (p = 0). The SDO 
capability is obtained by combining three codes. MSC/Nastran is the deterministic analysis tool, the FPI 
of the NESSUS software is the probabilistic response calculator, and NASA Glenn Research Center’s 
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testbed CometBoards is the optimizer. The SDO capability requires a finite element model, a material 
model, a load model, and a design model.  

The SDO tool is illustrated through the solutions of two examples. The first example is a web plate of 
an airframe stabilizer structure. The Boeing 767–400 Extended Range raked wingtip structure made of 
metals and composite materials is the second example. Examples are proprietary components of the 
Boeing Company and were provided to us as a courtesy to advance a reliability-based optimization 
concept for industrial structures. Sufficient information will be given for the web plate example; however, 
some results will be included for the wingtip problem.  

A. Stochastic Design for the Web Plate 

The steel web plate, shown in Figure 10, was part of a composite horizontal stabilizer structure of the 
Boeing B–777 airliner. It was about 100 in. long, 12 in. wide, and 0.072 in. thick. It was idealized as a 
planar plate structure. The finite element model had 80 CQUAD4 and 3 CTRIA3 elements and 103 nodes. 
Load was obtained by projecting the reactive load from the stabilizer into the plane of the web. Load, 
material properties, and design parameters were considered as random variables.  

The mean values were taken equal to their deterministic values with a 10-percent standard deviation. 
For example, the mean value of Young’s modulus was 30 000 ksi, (which was its deterministic value) 
with a 10-percent standard deviation of 3000 ksi. The stochastic response calculation used three different 
probabilistic analyses methods. All three methods used MSC/Nastran for deterministic calculation. The 
FPI module was also used by all three methods. The methods used were 
 

Method 1:  This method used the FPI with normal distribution for all variables. 
 
Method 2:  A neural network and a regression method were trained for the three design variables. 

Normal distribution was used with the neural network approximation. 
 
Method 3:  This method replaced normal distribution with the Weibull function in method 2. The 

regression method was used for approximation.  
 

Optimum weights for different probability of failure are given in Table 4. The rate ranged from a 
vulnerable design with 999 failures in 1000 samples to a reliable design with 1 failure in 1000 samples. 
There is some deviation in the weight calculated by the three different analyses methods. 

 
 
 
 
 

 
 
 
 
 

 
TABLE 4.—OPTIMUM WEIGHT VERSUS PROBABILITY LEVEL FOR THE WEB PLATE 
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  Optimum weight of web plate 
(X) 

(X failures in 
1000 samples) 

Probability level,  
p 

Method 1 
FPI and normal 

distribution 

Method 2 
Neural network and 
normal distribution 

Method 3 
Regression method 

and Weibull function 
(999) 0.001 1.16 1.78 1.75 
(975) 0.025 1.89 2.26 2.22 
(900) 0.1 2.33 2.56 2.54 
(700) 0.3 2.84 2.94 2.93 
(500) 0.5 3.22 3.22 3.22 
(300) 0.7 3.61 3.52 3.52 
(100) 0.9 4.21 3.99 3.98 
(25) 0.975 4.81 4.47 4.41 
(1) 0.999 5.96 5.40 5.16 

 
For a 50-percent probability of success, all three methods converged to 3.22 lb for the optimum 

weight. For a reliable design with 1 failure in 1000 samples, the first FPI method produced weight of 5.96 
lb or about a 10-percent higher weight than that obtained by the neural network technique solution of 5.40 
lb. The difference reduced to 5 percent for the regression method with a weight of 5.16 lb. 

The weight versus probability of success for the web plate given in Table 4 is plotted in Figure 11. 
Weight increased when reliability exceeded 50 percent. Weight decreased when the reliability was 
compromised. The weight versus reliability traced out the inverted-S-shaped graph. A design can be 
selected that depends on the level of risk acceptable to the situation. The inverted-S-shaped graphs were 
also generated for 20 examples given in Reference 8.  

The illustration in Figure 12 provides a simple explanation for the inverted-S shape of the graph. 
Consider a deterministic design of a structure that was calculated for an allowable stress limitation of 
25 ksi and it has a weight of 100 lb (see Fig. 12(a)). The structure is redesigned next for a 50-percent 
probability of success. Assuming a 1.5 safety factor in applied loads, the stress can be approximated to 17 
ksi and the proportioned weight can be approximated as 67 lb (see Fig. 12(b)). Let us consider a reliable 
design with 1 failure in 100 000 samples. The stress value is likely to increase to 24 ksi because of an 
increase in the corresponding area under the distribution function (see Fig. 12(c)). The weight has to be 
increased to about 80 lb because of a high value for stress, as shown in Figure 12(c). Consider next a 
failure-prone design with 90 failures in 100 samples. The stress can be less, like 7 ksi, because of a 
reduced area under the distribution function (see Fig. 12(d)). The weight can be reduced to about 28 lb 
because of the low stress level. In reliability-based design optimization, weight can become very heavy 
when reliability approaches unity; likewise, a lightweight design can be obtained when reliability is 
compromised. 
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B.  Raked Wingtip Structure 

A reliability-based optimization method was applied to a composite airframe component of the 
Boeing 767–400 Extended Range airliner. It is referred to as the raked wingtip structure and shown in 
Figure 13. The presentation becomes cursory because of proprietary nature of the structure. It is 
fabricated out of components made of metallic and composite materials. The objective was to reduce the 
weight of the wingtip without changing its geometrical configuration. The problem complexity is 
increased but the methodology is about the same as that for the web plate. The members of the structure 
were grouped to obtain a total of 13 active design variables. For constraint formulation, the structure was 
separated into 203 groups of elements to obtain a total of 203 strain constraints for the panels and the 
spars. The rod elements were grouped to obtain 16 additional constraints. Three translations and one 
rotation were also constrained. 

The design model had a total of 227 behavior constraints. Constraint can be imposed on principal 
strain, on a failure theory, or on a strain component. The optimization calculation required continuous 
running of the code for more than 5 days, but the execution was smooth and eventless. The optimum 
design exhibited nine active constraints consisting of eight strains and one displacement limitation. The 
normalized optimum weight was set to 100 units for a reliability of 1 failure in 2 million samples. The 
weight versus reliability was graphed in Figure 14.  

The x-axis represents N (as in one failure in N samples) and it begins at N = 2, or 50 percent 
probability of success. This graph represents one-half of the inverted-S-shaped graph because probability 
less than 50 percent is not included. Sensitivity analysis was performed for the principal strain in an 
element for deterministic as well as for SDO and depicted in Figure 15. 
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The element strain was most sensitive to load and elastic modulus E for fabric as well as for a 
particular design variable. Strain was not sensitive to other random variables. Both deterministic as well 
as stochastic methods identified the same set of variables, namely a design variable, load, and Young’s 
modulus. The CPU time to solution is given in Table 5. The calculation used CometBoards, which is 
NASA in-house software, along with MSC/Nastran version 2005.5.0 (2005R3) and the FPI module of 
NESSUS level 6.2 code (1995). Calculations used a Red Hat Linux 2.6.9-67.ELsmp O/S, with x86_64 
architecture, 2600 MHz, 4 CPU, 8 GB of memory, and 32-bit numeric format. One static analysis cycle 
required about 5 CPU sec. The run time increased to 51 sec for dynamic analysis. Stochastic analysis 
required about 47 min. Deterministic optimization required about 39 min. The CPU time for stochastic 
optimization was enormous at 126 to 128 hr of continuous calculations. 

 
 

 
TABLE 5.—CPU TIME FOR DESIGN AND ANALYSIS OF WINGTIP 
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Activity CPU time
One static analysis cycle in MSC/Nastran .............................................................................................................. 5 sec 
Dynamic analysis to calculate 20 frequencies in MSC/Nastran ............................................................................ 51 sec 
Deterministic optimization for design model 1 .................................................................................................... 39 min 
Stochastic analysis ............................................................................................................................................... 47 min 
Stochastic optimization: Design model 1 and load model A ................................................................................. 128 hr 
Stochastic optimization: Design model 2 and load model A ................................................................................. 126 hr 

 

VI. Conclusions 
The multidisciplinary design optimization testbed COMparative Evaluation Testbed of Optimization 

and Analysis Routines for the Design of Structures (CometBoards) has been applied successfully to 
design structural systems, jet engines, and airliner synthesis problems. Its special features included 
multiple optimizer cascade algorithm, subproblem solution strategy, approximation of sensitivity, and 
neural network and regression approximations. The testbed has been extended into the stochastic domain. 
The testbed CometBoards with MSC/Nastran and a fast probability integrator successfully generated 
reliability-based design optimization for an industrial-strength problem. Stochastic optimization 
methodology requires probabilistic models for load, material properties, failure theory, and design 
parameters. Accuracy of the design solution depends on the models. Stochastic optimum weight versus 
reliability traced out an inverted-S-shaped graph. Weight increased when risk was reduced and vice versa. 
The design sensitivity can identify critical zones for redesign consideration. Both deterministic and 
stochastic concepts identified identical zones. There was no preference to either concept. 
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