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Abstract

This paper presents a methodology for evaluating the robustness of a controller
based on its ability to satisfy the design requirements. The framework pro-
posed is generic since it allows for high-fidelity models, arbitrary control struc-
tures and arbitrary functional dependencies between the requirements and the
uncertain parameters. The cornerstone of this contribution is the ability to
bound the region of the uncertain parameter space where the degradation in
closed-loop performance remains acceptable. The size of this bounding set,
whose geometry can be prescribed according to deterministic or probabilistic
uncertainty models, is a measure of robustness. The robustness metrics pro-
posed herein are the parametric safety margin, the reliability index, the failure
probability and upper bounds to this probability. The performance observed at
the control verification setting, where the assumptions and approximizations
used for control design may no longer hold, will fully determine the proposed
control assessment.
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Nomenclature

C	 Complement set operator
d	 Design parameter
E	 Feasible design space
T	 Failure domain
d̄	 Nominal design parameter

fp (p) Probability density function
Fp (p) Cumulative distribution function
Q	 Robust design space
g	 Constraint function
T	 Failure domain
Z	 Indicator function
M	 Aspect vector of a hyper-rectangle
Mp Maximal set in physical space
Mu Maximal set in standard normal space
n	 Number of samples
p	 Uncertain parameter in physical space
p̄ 	 Nominal parameter point in physical space
p̃ 	 Critical parameter point in physical space
P	 Probability operator
R	 Hyper-rectangle
S	 Hyper-sphere
u	 Uncertain parameter in standard normal space
ū	 Nominal parameter point in standard normal space
ũ	 Critical parameter point in standard normal space
U	 Parameter transformation to standard normal space
ã	 Critical similitude ratio
a	 Similitude ratio
β	 Reliability index
Δ	 Support set
Q	 Reference set
ψp 	 Upper bound to the failure probability
Φ	 Cumulative distribution function of a standard normal variable
ρ 	 Parametric safety margin
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Acronyms

CPV Critical Parameter Value
CSR Critical Similitude Ratio
FORM First Order Reliability Method
LQG Linear Quadratic Gaussian
LTI Linear Time Invariant
MS Maximal Set
PID Proportional-integral-derivative
PSM Parametric Safety Margin
RI Reliability index
SORM Second Order Reliability Method
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1 Introduction

Control verification is the last simulation-based step before control validation
and experimental testing. As a result, a control verification setting entails
complex, nonlinear, high-fidelity simulations where all subsystems, commonly
developed independently having its own set of approximations, assumptions
and methods, are integrated. Under these conditions, the vast majority of
simplifications supporting robust and adaptive control methods e.g., lin-
ear dynamics, multi-affine parameter dependencies, attainment of matching
conditions may not hold. The methodology proposed in this paper is appli-
cable to variable-fidelity models of the plant while permitting arbitrary func-
tional dependencies between the stability and performance requirements and
the uncertainty. Note that the scope of this framework precludes the usage of
convexity conditions from the outset.

Most of the strategies for robust control analysis are based on identifying
the worst-case stability and performance of a Linear Time Invariant (LTI)
system. While strategies for uncertainty in the mathematical form of the
model, i.e., model-form uncertainty, are intrinsically conservative, those for
real parameter uncertainties can only handle particular dependencies. Those
strategies include affine, multi-affine [1, 2] and polynomial forms [3, 4] . The de-
ployment of these methods over other functional forms is not possible without
introducing unintended conservatism. Such conservatism is highly undesirable
in control engineering where a balance between robustness and performance is
essential.

For the aforementioned reasons, control verification is usually performed
using sampling-based techniques such as Monte Carlo analysis [5–10]. How-
ever, when accurate robustness assessments are desired, the computational
demands associated with these methods render them impractical. This is
especially true when there are high-consequence low-probability events of in-
terest, e.g., the probability of instability. The foundation of this paper is the
bounding of regions in the uncertain parameter space where the closed-loop
performance remains acceptable. In contrast to alternative approaches, the
method enabling the identification of such regions is optimization-based. Fur-
thermore, the problem formulation does not introduce conservatism into the
resulting control assessment. The size of this bounding set, whose geometry
can be prescribed according to deterministic or probabilistic uncertainty mod-
els, is a measure of robustness. Several of these measures are proposed herein.
The implementation of the strategies proposed only requires a model of the
closed-loop response that is continuously parametrized with the uncertainty,
and a standard algorithm for constrained optimization.

This paper is organized as follows. Basic concepts and definitions are
introduced in Section 2. This is followed by Section 3 where the mathematical
background required to perform set deformations according to deterministic
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uncertainty models is discussed. Extensions enabling the usage of probabilistic
uncertainty models are presented in Sections 4 and 5. Finally, an example and
a few concluding remarks close the paper.

2 Concepts and Definitions

The object of this paper is the evaluation of the robustness characteristics of a
closed-loop system having a parametric mathematical model. The parameters
which specify the system are grouped into two categories: uncertain parame-
ters, denoted by the vector p and the control design parameters denoted by
the vector d. While the plant, actuator and sensor models depend on p, the
controller depends on d.

The uncertainty model of p can be deterministic or probabilistic. A de-
terministic uncertainty model is prescribed by the Uncertainty Set Δ, while a
probabilistic one is prescribed by a random vector. This vector is specified by
the joint probability density function fp(p) defined over Δ. The uncertainty
set of the probabilistic model is commonly called the Support Set. Hereafter,
the terms uncertainty set and support set will be used interchangeably. By
specifying the uncertainty model, it is implied that Δ contains the actual value
of p, which is assumed to be time invariant. In principle, the uncertainty set
can be unbounded and can even be the entire parameter space. In practical
applications, the choice of this model is usually made by a discipline expert.
Any member of the uncertainty set is called a Realization. The Nominal Pa-
rameter point, denoted as p̄ E Δ, is an estimate of the value the uncertain
parameter assumes under nominal operating conditions. The plant evaluated
at the nominal parameter point will be called the Nominal Plant. Further, the
set of control design parameters of a Baseline Controller will be denoted as d̄.

Stability and performance requirements for the closed-loop system will be
prescribed by the set of constraint functions g (p, d) < 0. The constraints
in g may depend implicitly on time or frequency'. Throughout this paper,
it is assumed that vector inequalities hold component wise. The larger the
region in p-space where g (p, d̄) < 0, the better the robustness of the baseline
controller. In the ideal case, such a region contains the support set Δ.

Sets in the parameter and design spaces, instrumental to the developments
that follow, are introduced next. The Failure Domain corresponding to the

'For instance, if a requirement is that the step response y( p, d, t) must not exceed the
upper envelope ŷ(t), the corresponding constraint is given by

g = max{y(p, d, t) − ŷ(t) }.
t

Maximizations over t, such as this one, will be evaluated by selecting the largest value
assumed by the argument at the discrete points of a time simulation. Hence, the evaluation
of g will not entail solving an optimization problem per se.
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baseline controller d̄ is given bye

dim(g)

^(d)_ U ^
; (d̄)	 (1)

;=1

where
^; (d̄) °_ {p : g; (p , d̄) ≥ 0}. (2)

The failure domain is the collection of parameter points for which the base-
line controller violates at least one of the requirements. While Equation (1)
defines the overall failure domain, Equation (2) defines the failure domain
corresponding to the jth requirement. The Non-Failure Domain is the com-
plement set of the failure domain and will be denoted 3 as C(^). The names
“failure domain” and “non-failure domain” are used because in the failure do-
main at least one constraint is violated while, in the non-failure domain, all
constraints are satisfied. The level of robustness of a controller is related to
the size and geometry of the non-failure domain. The Feasible Design Space,
denoted asS and defined by

S(p̄) °_ {d : g (p̄, d) < 0}, (3)

is the set of designs that satisfy the requirements for the nominal plant. The
Robust Design Space, 2, defined as

2(Δ) °_ {d : g (p, d) < 0, Vp E Δ}, (4)

is the set of designs that satisfy the requirements for all parameter realizations
associated with a given uncertainty model. A controller will be called Strictly
Robust if it belongs to 2(Δ), i.e., if ^ and Δ do not intersect. Otherwise, the
controller will be called Non-Robust. Note that 2 C S when p̄ E Δ.

The formulations that follow depend on whether the baseline controller sat-
isfies the requirements for the nominal plant or not. To make this distinction,
the function

ly _ min {h; } ,
;

where

h _ J 1	 if g; (p̄ , d) < 0	 (6)
; l —1	 otherwise.

is introduced. The nominal closed-loop system satisfies the requirements for
which h; _ 1 and violates those for which h; _ —1. When ly _ 1, all the
requirements are satisfied and d̄ E S. In this case we want to determine the

2 Throughout this paper, super-indices are used to denote a particular vector or set while
sub-indices refer to vector components, e.g., pZ is the ith component of the vector pi.

3C(·) is the set complement operator.

(5)
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separation between p̄ E C(.F) and the failure domain .F. The larger the separa-
tion, the better the robustness characteristics of the controller. When ly = —1,
at least one of the requirements is violated. In this case we want to determine
the separation between p̄ E .F and the non-failure domain C(.F). The larger
the separation, the worse the robustness characteristics of the controller.

3 Set Deformations in the Parameter Space

Let Q be a set in p-space, called the Reference Set, whose geometric center is
the nominal parameter p̄. The geometry of Q will be prescribed according to
the uncertainty in p.

For the sake of clarity, the presentation that follows concentrates on the
case where the baseline controller is feasible, i.e., ly = 1. One of the tasks
of interest is to assign a measure of robustness to d̄ based on measuring how
much the reference set can be deformed before intersecting the failure domain.
The Homothetic Deformation of Q with respect to p̄ by a factor of a ≥ 0,
is the set H(Q, a) = {p̄ + a (p — p̄) : p E Qj. The factor a, is called the
Similitude Ratio. While expansions are accomplished when a > 1, contractions
result when 0 ≤ a < 1. Note that H(Q, 1) = Q, and H(Q, a1) C H(Q, a2 )

when a1 < a2. Hereafter, deformations must be interpreted as homothetic
expansions or contractions about p̄.

Intuitively, one imagines that the reference set is being deformed until its
boundary touches the failure domain, i.e., until at least one member of the
deformed set violates one or several of the closed-loop requirements. Figure
1 shows a sketch for a hyper-rectangular reference set. Any point where the
deforming set touches the failure domain is a Critical Parameter Value (CPV).
The CPV, which will be denoted as p̃, might not be unique. The deformed set
is called the Maximal Set (MS) and will be denoted as MP. By construction,
all the points interior to the MS satisfy the closed-loop requirements. The
Critical Similitude Ratio (CSR), denoted as ã , is the similitude ratio of the
deformation leading to the MS. While the CSR is a non-dimensional number,
the Parametric Safety Margin (PSM), denoted as p and defined in Section 3.3,
is its dimensional equivalent. The values taken on by the CSR and the PSM
are proportional to the size of the MS.

The calculation of the CPV requires solving an standard optimization prob-
lem4 . Such a problem is non-convex when the dependency of g on p is non-
linear. In any non-convex optimization problem there is always the possibility
of convergence to the non-global optimums . When this occurs, the CPV re-

4 All the optimization problems posed in this paper were implemented using the “fmincon”
function of the Matlab optimization toolbox.

5 Note that the First Order Reliability Method (FORM) and the Second Order Reliability
Method (SORM) formulations [17] widely used in reliability analysis suffer from the very
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Figure 1. Variables in the deformation of a rectangular set for ry = 1. The
failure domain is colored in gray.

sulting from the numerical optimization is mistaken and the corresponding
MS intrudes into the failure region. This intrusion yields to a spuriously
larger PSM. Absolute guarantees are not possible, but a variety of algorithmic
safeguards can be used to deal with this deficiency. For instance, g can be
evaluated at a few samples points in MP and if one happens to be in the
failure domain, it can be used as an initial condition in a subsequent opti-
mization. Requirements with an affine parameter dependency will not suffer
from this potential drawback. Notice however, that such requirements may
not only introduce unintended conservatism but also may misrepresent the
desired control objective.

Formulations that enable finding the CPV for hyper-spherical and hyper-
rectangular reference sets are presented next.

3.1 Deformation of Hyper-Spheres

One possible choice for the reference set Q is the hyper-sphere

S(p̄ , R) = {p : IIp̄ − p II ≤ R},	 (7)

where p̄ is its center and R is its radius. This geometry enables considering
parameters with similar levels of uncertainty. These sets could also be used
for parameters with dissimilar levels of uncertainty if scaling is used. However,

same deficiency.
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whether scaling is used or not, a degree of dependence among parameters is
introduced. The deformation of sets with this geometry can be performed as
follows.

The CPV for the jth requirement is given by

p̃' = argmin { 11p — p̄ 11 : h'g' (p , d̄) > 0, Ap > b} .	 (8)
p

The last constraint is used to exclude regions of the parameter space where
plants are infeasible and/or uncertainty levels are unrealistic. For instance, if
p is composed of masses and time-delays the constraint p > 0 is implemented
by using A = I, and b = 0.

For ly = 1, the overall CPV is

p̃=p̃k ,	 (9)

where
k = argmin { 11-b' — p̄  11 } .	 (10)

1<'<dim(g)

Hence, the CPV for each individual requirement is identified and the closest of
these CPVs to the nominal parameter point is the overall CPV. Notice that the
critical requirement, i.e., any requirement that prevents a larger deformation,
is gk < 0.

For ly = —1, the overall CPV is given by

p̃ = argmin { 11p — p̄ 11 : g (p, d̄) < 0, Ap > b} .	 (11)
p

In this case, the value of p̃ may not coincide with any of the p̃'s. This is
because the overall CPV is at the intersection of the individual non-failure
domains. Furthermore, if there exists a j such that p̃' does not exist, meaning
that the deformation grew unbounded, the overall CPV does not exist either.
Note that for ly = 1, the CPV is the p point in the failure domain that is the
closest to p̄, while for ly = —1 the CPV is the p point in the non-failure domain
that is the closest to p̄. Figures 2 and 3 illustrate the ly = 1 and ly = —1 cases
respectively. The failure domain, which is the union of both individual failure
domains, is colored with gray.

The MS and the CSR are uniquely determined by the CPV according to

.Mp = S(p̄ , α̃R) ,	 (12)

α̃= 11p̃ — p̄ 11	 (13)
R

Note that .Mp is the largest deformation of Q which fits within C(,F) for ly = 1
and within ,F otherwise. The MS in figures 2 and 3 is shown as a blue circle.
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Figure 2. Relevant variables in the ly = 1 case. The failure domain and the
maximal set are colored in gray and blue respectively.

Figure 3. Relevant variables in the ly = —1 case. The failure domain and the
maximal set are colored in gray and blue respectively.

In the particular case when dim{p} = 1, the MS is the interval M P = (p̄ —
p, p̄+p), where p = |p̄ —p̃ |. Since this case only considers uncertainty in a single
parameter, the resulting robustness metrics cannot capture the effects of the
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Figure 4. Relevant variables in a 1-dimensional setting.

interaction among such parameters on the requirements. Therefore, the CPV
of a n dimensional deformation might be much closer to the nominal parameter
point than the n one-dimensional CPVs resulting from deforming each of such
parameters individually. The sketch in Figure 4 illustrates this setting for the
design requirements 9 1 < 0 and 92 < 0. Note that the non-failure domain
is the intersection of the individual non-failure domains. Besides, the overall
CPV is the parameter point closest to the nominal point where at least one
component of 9 is equal to zero. Since in the case shown this component is
92 , k = 2 and p̃ = p̃2 . Therefore, 92 < 0 is the critical requirement. Note that
MP, the MS corresponding to the overall CPV for which both constraints are
active, is the intersection of the MSs associated with each individual constraint.

3.2 Deformation of Hyper-Rectangles

Another possible choice for the reference set Q is the hyper-rectangle

7Z(p̄ , m)={p : p̄— m < p < p̄+ m},	 (14)

where m > 0 is the vector of half-lengths of the sides. Rectangular sets permit
the consideration of parameters with dissimilar levels of uncertainty having no
dependence. Such levels are attained by making m z proportional to the level
of uncertainty in p z .

Denote by x j- = maxz {|xz |/mz }, the m-scaled infinity norm. A distance
Δ

between the vectors x and y can be defined as II x—y II,-. Note that 7Z(p̄ , m) =
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{p : 11p — p̄11— < 1}. Formulations that enable deforming sets with this
geometry are presented next.

The CPV in the hyper-rectangular case is given by Equations (8-11) after
replacing the Euclidean norm with the m-scaled infinity norm. The “max”
resulting from this substitution can be eliminated by introducing the similitude
ratio a defined earlier. This leads to the following expression for the jth
individual CPV

hp̃; , ã; i = argmin { a: h; g; (p , d̄) > 0, Ap ≥ b ,	 (15)
Pia	

—

p̄ — am < p < p̄+ am}.

In this setting, the overall CPV is the individual CPV that is the closest to
the nominal parameter point in the sense of the m-scaled infinity norm.

The MS and the CSR are

MP = R(p̄ , ãm),	 (16)
ã = 11p̃ — p̄ 11—m .	 (17)

3.3 Robustness Metrics for Deterministic Uncertainty
Models

Because the CSR measures the size of the MS, its value is proportional to the
degree of robustness of the controller d̄ to uncertainty in p. The CSR is a
non-dimensional metric whose value depends on the size of the reference set.
The PSM, which is the dimensional equivalent of the CSR, serves the same
purpose without having this dependency. The Spherical PSM is

PS (p̃) A= lyãR,	 (18)

where the CSR is given by Equation (13), while the Rectangular PSM is

PR (p̃) 
Δ=lyã 11m 11,	 (19)

where the CSR is given by Equation (17). The sign convention enforced by ly in
these equations implies the following: if the PSM takes on a negative value, the
controller does not even satisfy the requirements for the nominal plant. If the
PSM is zero, the controller exhibits no robustness because there are arbitrarily
small perturbations of p from p̄ leading to a constraint/requirement violation.
If the PSM is positive, the requirements are satisfied by the nominal plant and
those around it. The larger the PSM, the larger the Q-shaped neighborhood
of p̄ for which the requirements are satisfied.

The PSMs corresponding to individual requirements result from using ã;

and h; , instead of ã and ly , in Equations (18-19). This yields to

PS(p̃;) 
o= h; 11p̃;

 —p̄ 11,	 (20)
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pR (p̃') = h' IIp̃' − p̄ II∞m IIm II	 (21)

The individual PSMs enable comparing the levels of robustness associated
with each requirement. When ly = 1, the smallest individual PSM is equal
to the overall PSM, i.e., p (p̃) = min{p(p̃' )}. When ly = −1 however, the
smallest individual PSM is just an upper bound to the overall PSM, i.e., p (p̃) ≤
min{p(p̃' )}. The trade-off between conflicting requirements will be reflected
by the values taken on by the individual PSMs. Controllers that maximize the
overall PSM will incidentally attain a trade-off that optimally balances the
robustness for all requirements.

Traditionally, robust control analysis is made by setting forth an uncer-
tainty set and checking if the stability and performance for all set members
is satisfactory. This applies to methods for both, real parameter and model
form uncertainty. Determination of whether a controller is robust or not for a
given hyper-spherical or hyper-rectangular set Δ, is a matter of making Q = Δ
and calculating the CSR. The controller is strictly robust if and only if the
CSR is greater or equal to one. A controller might turn out to be non-robust
because of an overly-large uncertainty set or because the requirements are too
stringent. If the size of uncertainty model is not reduced, and the design re-
quirements are not relaxed, the only choice is to adopt more complex control
structures until a robust controller is found. This practice however, usually
lead to high-order controllers. Alternatively, one may enable the usage of sim-
pler control structures by allowing for requirements violations with a small
probability. Strategies based on this idea are presented next.

4 Probabilistic Uncertainty Models

Hereafter, it is assumed that a probabilistic uncertainty model of p is available.
Recall that such a model is prescribed by a random vector having the joint
probability density function fp (p), defined over the support set Δ. Note that
the only information from such a model required for determining whether
a controller is strictly robust or not is its support set. The developments
that follow are suited for controllers that are non-robust. The analysis of
such controllers entails quantifying the severity by which the requirements are
violated. In the context of deterministic uncertainty models, one metric for
this is the volume of Δ n C(mp).

Probabilistic uncertainty models enable the discrimination among all pos-
sible parameter realizations. The value of the joint density function at each
particular realization can be interpreted as a measure of our belief that such
a realization is the actual value of the uncertain parameter. In this setting,
a natural metric of robustness is the probability of violating the design re-
quirements. This probability, called the Failure Probability, will be denoted as
P[F]. The failure probability is zero for robust controllers, while it is greater
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than zero for non-robust ones. Clearly, the smaller P[F], the more robust is
the controller. Note that the set Δ n C(Mp) above is an approximation of
the failure domain and its volume is the failure probability for the case when
uncertainties are uniformly distributed. It is worth noticing that a controller
may attain a small value of P[F] but fail to satisfy the requirements for the
nominal plant.

The developments that follow enable the comparison of controllers with
varying levels of complexity from a practical perspective. For instance, if a
simple Proportional-Integral-Derivative (PID) controller satisfies the closed-
loop requirements for 99% of the plants, it is worth determining how much
complexity are we willing to accept for that extra 1%. One may accept using
a simpler, non-robust controller when the corresponding probability of failure
is sufficiently small. The pursuit of zero failure probability usually leads to
complex controllers whose robustness may be very close to that of much simpler
ones for most of the plants.

In contrast to the contributions in [11–14] on probabilistic controls, the
developments herein are not intended to alleviate the computational burden of
pursuing robust stability, but to enable the discrimination among events in the
set of all possible closed-loop system performances according to their chance of
occurrence. This has the potential to address and alleviate the demands on the
controller complexity imposed by worst-case control policies. In this regard,
this paper is better aligned with the developments in References [8–10] and
with the idea of handling some of the requirements as soft constraints [15,16].

5 Set Deformations in Standard Normal Space

The calculation of probabilities can be better performed in spaces other than
p-space. The most relevant of these spaces is the standard normal space, com-
monly referred to as the u-space. In u-space, the multi-variate probability
density function is an uncorrelated normal density function with zero mean
and unit standard deviation, whose value decreases as exp( − ku k2 /2). For most
probability distributions, there is a probability preserving parameter transfor-
mation [17], denoted hereafter as u = U(p), that maps the requirements from
p-space to u-space such that P[U(F)] = P[F].

The formulations introduced in Section 3 that enable the deformation of
sets in p-space can be easily extended to the u-space. In this setting, the sets
S(ū , R) and R(ū , m) will be used as reference sets. A natural choice is ū = 0
because in the standard normal space most of the probability is concentrated
about the origin. An obvious parallelism between the concepts, notions and
equations introduced earlier and the ones in u-space is apparent. For instance,
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if Q = S(ū , R) the CPV corresponding to the jth requirement is given by

ũ' = argmin {llu - ū ll : h'g' (U-1 (u), d̄) > 01,	 (22)
u

where h' results from using Equation (6) with p̄ = U-1 (ū). Note that this
equation is analogous to Equation (8). The constraint Ap > b is no longer
used since its intent can now be achieved by using a suitable A in fp (p). Note
that if the baseline controller is robust, U(.F) is empty and all the optimization
problems posed in this section have no feasible solution.

The formulation for the overall CPVs can be easily inferred from the above
developments, e.g., for ly = 1 the overall CPV is ũ = ũk , where k results
from using llũ' - ū ll in Equation (10). The MS and the CSR corresponding
to hyper-spherical sets are

	

Mu = S(ū , ãR) ,	 (23)

	

a
˜=llũ- ū ll 	

(24)
R

while those for hyper-rectangular sets are

	

Mu = R(ū , ãm),	 (25)

	

ã = llũ - ū ll∞m .	 (26)

Note that Mu is the largest deformation of Q which fits within U (C(.F)) for
ly = 1 and within U(.F) otherwise.

5.1 Robustness Metrics for Probabilistic Uncertainty
Models

Metrics based on probabilistic uncertainty models and methods for their cal-
culation are introduced next.

5.1.1 Reliability Indices

The Reliability Index (RI) is the analogous to the PSM in u-space. In partic-
ular, the Spherical RI is defined as

	

βS(ũ) Δ= lyãR,	 (27)

where the CSR is given by Equation (24), while the Rectangular RI is

	

βR (ũ) Δ=lyã llm ll,	 (28)

where the CSR is given by Equation (26). The RIs corresponding to individual
requirements are

βS(ũ') 
Δ
= h' llũ' - ū ll,	 (29)
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OR(ũ') 
Δ= h' I Iũ' — ū I I∞m I Im I I-	 (30)

As with the PSMs, O (ũ) = min{O(ũ' )} for ry = 1 and O (ũ) < min{O(ũ' )} for
ry =—1.

In p-deformations, all the information on the relative levels of uncertainty
in the components of p is determined by the geometry of the reference set.
In u-deformations, this information is prescribed by both the reference set
and the probability density function. To preserve the relative levels of uncer-
tainty of the probabilistic model, the reference set should be a hyper-sphere
or a hyper-cube centered at the origin. Note however, that the geometry of
the reference set can be adjusted as desired. The developments in the next
section indicate that reference sets leading to large maximal sets are desirable.
Such sets may not preserve the uncertainty levels implied by fp (p). Strategies
for the calculation of upper bounds to the failure probability based on the
deformations of sets in p- and u-space are presented next.

5.1.2 Bounds to Failure Probability

Let us define 0 
Δ= P [C(M)] = 1 — P[M], where M is a MS in either p- or

u-space. Note that P[.F] < for ry = 1 since .F C C(M). Furthermore,
P[.F] ≥ 1 — 0 for ry = —1 since M C .F. For the reminder of this section our
discussion concentrates on the case where ry = 1 so 0 is an upper bound to
P [.F] .

For deformations in p-space we will use the notation

	

op = 1 — P[Mp]-	 (31)

If the components of p are independent random variables and Q = R(p̄ , m),
we obtain

dim(p) 
ff	 ll	 1l1l

'Op ( ¯p , m, PR) =1—
	

L
Fpi

 
(
p̄i + 

I I II I I Z J
—
 
Fpi 

(pi — I I II I I Z) J
,
 

(32)
i=1

where Fp is the cumulative distribution function and PR is given by Equation
(19). Upper bounds to P [.F'] can be calculated by using the individual PSMs
from Equation (21) into Equation (32). Since M p and therefore PR , are inde-
pendent of the uncertainty model fp , upper bounds corresponding to different
uncertainty models can be calculated with minimal computational effort.

Tighter bounds are obtained if the reference set chosen leads to a more
probable MS. This can be easily attained by working in the standard normal
space. For deformations in u-space we will use the notation

	

10" = 1 — P[M"]-	 (33)

While `Yp can be estimated analytically for hyper-rectangular sets, ψ" can
be estimated analytically for hyper-spherical sets centered at ū = 0 and for
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hyper-rectangles. The following Lemma 6 enables the calculation of 0u for the
former case.

Lemma 1. If uz for i = 1, 2, ... , l is a set of independent standard normal
variables, A( l, r) Δ= P [^^u ^^ < r] is given by

⎧
T 	 _ r2	 2	

l 21 
T l-2i

	A(l, r) 
= erf ( √2 ) — e 2 

^^z=1 (l-2z)!! 
if l is odd	

(34)⎩ 2 	 l	 l-2i1 — e-
r

 2 

P 2
z= 1 (i -2z)!!	

if l is even

where !! is the double factorial operator7 .

In the case where Q = S(ū , R) and ū = 0, Equations (33-34) lead to

0u (OS) = 1 — A(dim(p), OS ).	 (36)

Upper bounds to P [Fj ] can be calculated by using the individual RIs from
Equation (29) into Equation (36).

In the case where Q = R(ū , m), we have

dim(p)	

l lu(u  m, OR) = 1 — 
dim(

	L Cu
z + 

OR II z 1 — Φ (ūz
 — OR 

^^
z

 J	
(37)

z=1	 \	 l

where Φ is the cumulative distribution function of a standard normal random
variable and OR is given by Equation (28). Upper bounds to P [P] can be
calculated by using the individual RIs from Equation (30) into Equation (37).
Because of the parameter transformation u = U (p), the calculation of 0u for
a new uncertainty model fp requires solving for a new .Mu and therefore for
a new RI. This is in contrast to the bound in Equation (32) where a change
in fp can be readily accommodated for.

Because the bounds result from calculating the probability of an event their
value lies between zero and one, i.e., 0p E (0, 1] and 0u E (0, 1]. For a given
f p, g and d̄, there is no general rule that determines which reference set leads
to the smallest upper bound. Equations (32), (36) and (37) are guaranteed
upper bounds to the failure probability and as such they do not suffer from
approximation error. Note that the efficiency of the methods used to calculate
the PSMs, the RIs and the bounds is independent of the value of P[F].

6 The corresponding proof is available in reference [18].
7The double factorial [19] is defined as

r n n—2 ... 5 . 3 . 1	 n>0 and odd

	

n!!= n.^n—2...6.4.2	 n>0and even	 (35)
1	 n=—1,0
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P ^.Fi l ≈
(1 — hi )(1 —0p)

2

5.1.3 Failure Probability

The problem of finding P[.F], or equivalently P [U(.F)], is usually difficult since
it requires evaluating a multi-dimensional integral over a complex integration
domain. Methods for approximating the failure probability include sampling
based techniques, FORM [17], SORM and the hybrid method [18, 20]. An
outline of the latter approach follows.

The hybrid method approximates the failure probability by combining sam-
pling with the bounds derived above. Once the MS has been determined, an
arbitrary sample point of fp can be easily tested for membership in this set.
If the sample point lies within the MS, it is unnecessary to go through the
computational expense of evaluating g, since the outcome is now known. The
numerical advantage of using this method is a consequence of not having to
evaluate g at these realizations. In particular,

P[.F] 
≈ (1 — γ) (1 —) 

+ 
γ
n 

^Z(p Z , .F),	 (38)
Z=1

where 0 is given by Equation (32), (36) or (37), pZ
 for i = 1, 2,... n are samples

of fp in C(M), and Z is the indicator function

nZ(p.
F = 1 if p E .F 39
) 0 otherwise. ( )

An approximation to P [.Fi ] results from using the variables corresponding to
the jth requirement. For instance, if Q = 7Z(p̄ , m), we have

^n

+ h n
p

Z (pZ
 , .F

i ) , (40)
Z=1

where 0p results from substituting the ρR in Equation (21) into Equation (32)
and every pZ

 falls into C(7Z(p̄, — p̄ k'mm)). Note that Equation (1) im-
plies that P[.F] ≥ max{P [.Fi ]}. More efficient implementations of the hybrid
method are available [18, 20].

This method is especially advantageous when the number of evaluations of
g required to determine the MS is considerably less than the number of sam-
ples falling within the MS. This is usually the case when P[.F] « 1. While the
efficiency of the method increases with the CSR, its accuracy is comparable to
the one of Monte Carlo using floor(n/0) samples [20]. A particularly attractive
feature of the hybrid method is that its efficiency and accuracy does not de-
pend on the robustness of the controller [20]. This sharply contrasts with the
case in sampling-based methods, where accurate robustness assessments (i.e.,
those requiring statistics having small confidence intervals) demand a number
of samples that grow exponentially fast as P[.F] approaches zero. Figure 5
illustrates the dependency of the Monte Carlo approximation Pf to P[.F] on
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the minimum number of samples required to attain an upper limit of the 95%
confidence interval equal to 2 Pf. Note that accurate approximations to small
failure probabilities require an exceedingly high number of g evaluations.

Figure 5. Number of samples required to accurately approximate failure prob-
abilities via Monte Carlo sampling.

While the RIs and the upper bounds to the failure probability have a no-
tion of robustness based on the closeness of the nominal parameter point to
the failure domain, the failure probability does not. As such, the estimation
of P [F] does not require the definition of a nominal parameter point and de-
signs attaining small failure probabilities may have their corresponding failure
domain close to regions where fp(p) is large. While a small P [F] is desirable,
only a sizable value of the RI guarantees that the nominal parameter point is
separated from F. While the reduction of P [F] does not necessarily increase
this separation, an increase of the RI not only augments the separation but
also reduces P [F] .

6 Example

The comparative analysis of controllers designed for the robust control chal-
lenge problem posed in the 1990 American Control Conference [21] is presented
next. This problem was chosen because the public availability of the controllers
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enable the reproducibility of the results. Note however, that the methodology
developed is applicable to far more complex problems than the one herein.

The benchmark system, shown in Figure 6, is a two-mass/spring system
with a non-collocated sensor actuator pair. Several design problems were posed

Figure 6. Two-mass spring system.

based on this setting. As in Reference [22], additional uncertainties are con-
sidered to fully exercise the scope of the methodology. We added a non-linear
spring with constant kn , a time delay T denoting a first-order lag between con-
troller command and actuator response and a control effectiveness uncertainty
f resulting from variation in sensors, control gain and actuator failure. Hence,
p = [m1 , m2 , k, kn , T, f] T . The plant model is

ẋ 1 = x3

ẋ 2 = x4

x3 = 
k— 

(x2 — x 1 ) +
m1

x4 = 
k— 

(x 1 — x2 ) +
m2

T2ṫ = 2tc — 2t.

kn (x2 — x1)3
+

f2t ,

m1	m 1

kn 
(x 1 — x2 )3 + 

w ,

m2	m2

Stability and performance requirements, prescribed as

1. Local closed-loop stability.

2. Settling time: the output to a unit-impulse disturbance w must fall
between +0 . 1 after 15s.

3. Control saturation: the control for a unit-impulse disturbance must fall
between +1.

lead to

r	 1Tg = Lmax {R(sz)}, max{|x2 |} — 0 .1, max{|2t |} — 1
1<z<nz, 	t>15	 t>0	

1 ,

where sz is a closed-loop pole of the linearized system and R(·) is the real
part operator. Eleven controllers designed by several authors using different
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Controller Gain marging
db

Phase marging

deg

1
PR (P)

Stability

PR (˜)

Settling time

PR (˜)

Saturation

PR (P)

Overall

A 2.5 -20.6 0.320 -0.019 0.368 less than zero

B 3.2 26.7 0.490 -0.175 0.523 less than zero

C 3.3 26.6 0.501 -0.189 0.533 less than zero

D 15.1 57.2 0.562 0.212 -oo less than zero

E 2.4 22.2 0.394 -0.259 0.233 less than zero

F 5.2 23.9 0.419 0.012 -3.277 less than zero

H 3.4 24.8 0.510 -0.005 0.524 less than zero

W1 3.3 24.5 0.501 0.001 0.517 0.001

W2 6.0 34.2 0.754 -0.024 0.639 less than zero

B1 1.8 18.9 0.300 0.020 0.003 0.003

B2 2.8 27.2 0.437 0.038 0.141 0.038

Table 1. Stability margins and PSMs.

methods are studied here. These controllers will be labeled as A, B, C, D, E,
F and H (from [22] and references therein); W1 and W2 (from [23]); and B1
and B2 (from [24]). The structure of the controllers is as follows: controllers A,
B, and C used loop transfer recovery; controllers D, H, W1 and W2 are based
on H-infinity control; controller E is designed by optimization; controller F
is Linear Quadratic Gaussian (LQG) based; and controllers B1 and B2 were
designed using µ-synthesis.

The deformation of the reference set Ω = 7Z(p̄ , m) is considered first. We
assume that p̄ = [1 , 1 , 1, 0, 0, 1] T and m = [4, 4, 5, 2, 1, 2] T , e.g., we expect four
times more uncertainty in the value of the masses than in the value of the time
delay. The pair (p̄ , m), which constitutes a deterministic uncertainty model,
is, as any mathematical model of uncertainty, subjective. Notice however,
that the MS for ly = 1 is fully contained in the non-failure domain regardless
of the value this pair takes on. In order to prevent deformations leading to
infeasible plants, the constraints m1 > 0, m2 > 0, k > 0, τ > 0 and f > 0
in the form of Ap > b were added. Table 1 presents the stability margins
for the nominal plant and the PSMs for the three requirements. Results on
Table 1 show that only W1, B1 and B2 satisfy the requirements for the nominal
plant (i.e., the PSMs are positive). While W2 has the best figure of merit in
regard to stability and control saturation, the settling time requirement is best
satisfied by D. Note that the stability margins are not reliable indicators of
robust stability. For instance, while D has the best stability margins, it does
not attain the largest ρR 

(
p̃1). According to the PSM, B2 is the best controller

since it attains the largest ρR (p̃ ), which is 0 . 038.

Control assessments for a probabilistic uncertainty model are presented
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Controller '3S (f"1)

Stability

'3S (f"2 )

Settling time

'3S (263)

Saturation

'3S (u,)

Overall

A 0.665 -0.037 0.913 less than zero

B 0.992 -0.319 1.169 less than zero

C 1.01 -0.336 1.191 less than zero

D 2.366 0.598 -oo less than zero

E 0.690 -3.517 0.374 less than zero

F 1.627 0.025 -oo less than zero

H 1.050 -0.009 1.174 less than zero

W1 1.027 0.0009 1.152 0.0009

W2 2.147 -0.072 2.287 less than zero

B1 0.497 0.030 0.005 0.005

B2 0.852 0.066 0.236 0.066

Table 2. Spherical RIs.

next. We assume that m1, m2, k, kn, τ and f are independent, Beta-distributed
random variables with shape parameters, [5, 5], [5, 5], [2, 3 .7], [6, 6], [0 . 3, 5] and
[1 , 1] and support sets [0, 2], [0, 2], [0 .5 , 2], [−0 .5 , 0 .5], [0, 0 . 1] and [0 . 5 , 1 . 5],
respectively. The value of h corresponding to ū = 0 makes the signs of the
individual PSMs and RIs to coincide.

The deformation of Q = S(ū , R) for ū = 0 leads to the metrics shown in
Table 6. According to the RIs, the controller D is the one with best stability
and settling time characteristics while W2 has the best figure of merit for
control saturation. According to the RI, B2 is the best controller since it
attains the largest OS (ũ), which is 0 . 066. The bounds to the failure probability
can be readily calculated from the entries of Table 6 and Equation (36). The
control assessment resulting from these bounds coincide with the one based
on the RIs.

The values of P[Fj ], calculated using the hybrid method for n = 1000
samples and the RIs in Table 6, are shown in Table 6. Note that D has the
best robustness in regard to the stability and settling time requirements, while
W2 is the best for control saturation. The values of P [F] for W1, B1 and B2 are
0 . 908, 0 . 980 and 0 . 873 respectively. Recall that F is the union of all individual
failure domains, and as such it cannot be calculated from the data in Table 6.
According to the failure probability, B2 is the best controller since it attains
the smallest P[F], which is 0 . 873. Since the failure probabilities are large, the
advantage of using the hybrid method is moderate.

Note that all the figures of merit provide consistent robustness assessments.
The individual PSMs and RIs indicate not only which is the limiting design
requirement, but more importantly, how the levels of robustness corresponding
to all requirements compare among themselves.
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Controller P F̂1
]

Stability

P F̂2
]

Sett. time

P [_T3 ]

Saturation

A 0.272 0.971 0.158

B 0.143 0.957 0.119

C 0.130 0.967 0.104

D 0.007 0.333 1

E 0.219 0.999 0.426

F 0.080 0.871 1

H 0.138 0.914 0.188

W1 0.119 0.907 0.174

W2 0.014 0.875 0.010

B1 0.313 0.976 0.601

B2 0.196 0.798 0.462

Table 3. Failure probabilities.

7 Concluding Remarks

This paper proposes a computational framework for evaluating the robustness
of a controller based on its ability to satisfy the design requirements. The
framework developed is applicable to linear and non-linear systems subject to
stability and performance requirements having an arbitrary functional depen-
dency on the uncertainty. These metrics are the parametric safety margin,
the reliability index, the failure probability and upper bounds to this proba-
bility. The methods used to calculate these metrics are based on the solution
of standard optimization problems. The parametric safety margin evaluates
the robustness characteristics of the controller according to a deterministic un-
certainty model. The other metrics, which require a probabilistic uncertainty
model, account for the chance of occurrence of any given plant within the
uncertainty set and therefore for the likelihood of unsatisfactory closed-loop
performance. As compared to sampling-based methods, the efficiency of the
tools used to calculate the proposed metrics is independent of the value they
take on. This is particularly advantageous when the controllers are highly
robust, a case when the computational expense of an accurate sampling-based
analysis is impractical. The proposed methodology enables a fair comparison
of controllers designed using different methods and assumptions. The justifi-
cation for adopting complex control architectures and the determination of the
consequences of violating such assumptions are aspects that can be naturally
evaluated using this framework.
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