Methods and systems for determining if one or more target molecules are present in a gas, by exposing a functionalized carbon nanostructure (CNS) to the gas and measuring an electrical parameter value EPV(n) associated with each of N CNS sub-arrays. In a first embodiment, a most-probable concentration value C(opt) is estimated, and an error value, depending upon differences between the measured values EPV(n) and corresponding values EPV(n; C(opt)) is computed. If the error value is less than a first error threshold value, the system interprets this as indicating that the target molecule is present in a concentration C-C(opt). A second embodiment uses extensive statistical and vector space analysis to estimate target molecule concentration.

6 Claims, 7 Drawing Sheets
OTHER PUBLICATIONS

* cited by examiner
FIG. 1

FIG. 2
Provide an array of \(N \) carbon nanostructure (CNS) sub-arrays, numbered \(n = 1, \ldots, N \) \((N \geq 1) \), on a substrate, where each CNS sub-array is loaded with a selected sensitizing substance.

Expose CNS sub-arrays to a test gas to be interrogated for presence or absence of any of \(K \) target molecules numbered \(k = 1, \ldots, K \) \((K \geq 1) \).

Provide reference electrical parameter values ("EPVs") \(E(n; q; k; \text{ref}) = (E(n; q; k; \text{ref}) / E(n; k; \text{norm}) \) for each sub-array no. \(n \) and each target molecule no. \(k \), where \(E(n; k; \text{norm}) \) is a normalization factor that compensates for concentration dependence of the EPVs.

Provide mean \(\mu(n) \) and standard deviation \(\sigma(n) \) for the reference values \(E(n; q; k; \text{ref}) \), summed over the concentrations \(C_q \) and over the target molecules \(k \).

Provide autoscaled quantities \(S(n; q; k) = (E(n; q; k; \text{ref}) - \mu(n)) / \sigma(n) \) for each sub-array no. \(n \).

Provide (eigenvalue, eigenvector) pairs \((\lambda(k), V(k; \lambda(k))) \) that satisfy the matrix equations \(S(n; q; k) V(k; \lambda(k)) = \lambda(k) V(k; \lambda(k)) \) for each target molecule no. \(k \), with

\[
|\lambda_1(k1)| \geq |\lambda_1(k2)| \geq \ldots \geq |\lambda_1(kN)| \text{ and } |\lambda_1(k)| = \max \{ |\lambda_p(k)| \mid p = 1, \ldots, K \}.
\]

FIG. 3A
Form K linear combinations $V'(kp; \lambda_1(kp)) = LC[V(kr; \lambda_1(kr))]_r$ of the eigenvalue solutions that are orthonormal relative to each other:

$\langle V(kr; \lambda_1(kr)), V(ks; \lambda_1(ks)) \rangle = \delta_{rs}$

Interpret vectors $\{V'(kp; \lambda_1(kp))\}_p$ as a maximally independent set of linear combinations $c(k; \text{ref})$ of the EPVs for the sub-arrays that distinguish between the K target molecules.

Provide normalized test measurements $E(n; q; k; \text{test}) = \frac{EPV(n; q; k; \text{test})}{E(n; k; \text{norm})}$ for the test gas.

Provide linear combinations $LC(k; \text{test})$ of the normalized test measurements corresponding to the linear combinations $LC(k; \text{ref})$ for the reference measurements.

Compute error values $\epsilon(kp)$, based on weighted sums of differences between $E(n; k; q; \text{test})$ and $E(n; k; q; \text{ref})$, summed over the linear combinations $LC(kp; \text{ref})$.

$\epsilon(kp) < \epsilon(kp; \text{thr})$?

No Yes

Target molecule $k = kp$ is likely not present in the test gas Target molecule $k = kp$ is likely present in the test gas

FIG. 3B
Provide an array of N carbon nanostructure (CNS) sub-arrays, numbered \(n = 1, \ldots, N \) (\(N \geq 1 \)), on a substrate, where each CNS sub-array is loaded with a selected sensitizing substance.

Expose CNS sub-arrays to a test gas to be interrogated for presence or absence of any of K target molecules numbered \(k = 1, \ldots, K \) (\(K \geq 1 \)).

Measure a selected electrical parameter value \(EPV(n, \text{meas}) \) for the CNS sub-array no. \(n \) for all \(n \).

Provide first and second reference value sequences \(\{EPF(n; \text{ref1})\} \) and \(\{EPV(n; \text{ref2})\} \) for presence of known concentrations of first and second different target molecules respectively.

Estimate most probable concentrations \(C1 = C1(\text{opt}) \) and \(C2 = C2(\text{opt}) \), for the first and second target molecules, based on differences between \(EPV(n; \text{meas}) \) and each of \(EPV(n; \text{ref1}) \) and \(EPV(n; \text{ref2}) \).

Compute a first error value \(\varepsilon(1) \) and second error value \(\varepsilon(2) \), depending on differences between \(EPV(n; \text{meas}) \) and the most probable values \(EPV(n; C1 = C1(\text{opt}); \text{ref1}) \) and \(EPV(n; C2 = C2(\text{opt}); \text{ref2}) \) respectively.

![Flowchart diagram](FIG. 4A)
From steps 58, 59

Is \(\varepsilon(2) < \varepsilon(2 ; \text{thr}) \)?

- No
 - Second target molecule is not present in the test gas with concentration \(C_2 \approx C_2(\text{opt}) \)

- Yes
 - Second target molecule is present in the test gas with concentration \(C_2 \approx C_2(\text{opt}) \)

FIG. 4B
FIG. 6A

FIG. 6B

FIG. 6C
DETECTION OF PRESENCE OF CHEMICAL PRECURSORS

ORIGIN OF THE INVENTION

This application is a continuation-in-part of a prior-filed application, U.S. Ser. No. 11/178,079, filed 8 Jul. 2005.

FIELD OF THE INVENTION

This invention relates to use of functionalized carbon nanostructures to detect presence of one or more chemical precursors for a target molecule.

BACKGROUND OF THE INVENTION

Certain selected chemicals associated with terrorist activities are too unstable to be prepared in a final form. These selected chemicals are often prepared as precursor components, to be combined at a time immediately preceding a time of application of the selected chemical. An example is a liquid explosive, which usually requires provision of an oxidizer, an energy source and a chemical or physical mechanism to combine the other components at a time immediately preceding detonation. Detection of presence of the oxidizer (e.g., H$_2$O$_2$) or the energy source (e.g., nitromethane) is often possible but must be performed in a short time interval (e.g., 5-15 sec) and in an environment with a very small concentration (e.g., 1-100 ppm), because the target chemical(s) is present in a sealed container.

What is needed is a system that allows detection of presence of a target oxidizer and/or a target energizer in small concentrations (as small as 1 ppm) in a relatively small time interval, preferably no more than about 5-15 sec. Preferably, the system should allow detection of at least one oxidizer and of at least one energizer, substantially simultaneously, should operate with a relatively small “footprint” in a real life environment, and should operate with only a small energy expenditure.

SUMMARY OF THE INVENTION

These needs are met by the invention, which provides a system and associated method for detecting one or more chemical precursors (components) of a multi-component compound that may become unstable when fully assembled or combined. First and second carbon nanostructures (“CNSs”) are loaded (by doping, impregnation, coating or other functionalization process) with different first and second chemical substances that react with first and second chemical precursors, respectively, which may be the same or may be different, if these precursors are present in a gas to which the CNSs are exposed. After exposure to the gas, a measured electrical parameter value EPV (e.g., impedance, conductivity, capacitance, inductance, etc.) changes with time in a predictable manner, if a selected chemical precursor is present and will approach an asymptotic value promptly after exposure to the precursor. The measured EPVs are compared with one or more sequences of reference EPVs for one or more known target precursor molecules, and a most probable concentration value is estimated for each of one, two or more target molecules. An error value is computed, based on differences for the measured and reference EPVs using the most probable concentration values. Where the error value is less than an error value threshold, the system concludes that the target molecule is likely. Presence of one, two or more target molecules in the gas can be sensed from a single set of measurements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a system for practicing the invention.

FIG. 2 graphically illustrates different concentration regimes.

FIGS. 3 and 4 are flow charts of procedures for practicing the invention.

FIGS. 5A, 5B and 5C graphically illustrate normalized responses to selected CNS loadings, before and after exposure to H$_2$O$_2$, H$_2$O and CH$_3$OH.

FIGS. 6A, 6B and 6C are histograms of response changes for the respective CNS loadings in FIGS. 5A, 5B and 5C.

DESCRIPTION OF BEST MODE OF THE INVENTION

FIG. 1 schematically illustrates a system 11 for practicing the invention. The system 11 includes: a substrate 12; an appropriate catalyst underlayer 13; a sequence of sub-arrays 14-n of carbon nanostructures (“CNSs”) grown on the catalyzed substrate; a selected loading (doping, impregnation, coating, etc.) 15-w of the CNS sub-array 14-n; a source 16 of a gas to be interrogated; a measurement mechanism 17 for measuring an electrical parameter value EPV(n) (impedance, conductance, capacitance, etc.) at each of the sequence of CNS sub-arrays, before and after exposure of that sub-array to the gas; and a computer 18 programmed to receive the sequence of measured electrical parameter values EPV(n), to compare the measured EPV(n) with a corresponding reference values EPV(n)ref, and to estimate whether a target molecule is likely present in the gas in a most probable concentration value. Each CNS sub-array 14-n may consist of a single CNS or may include two or more CNSs, and two different CNS sub-arrays, 14-n and 14-n', may have the same number, or a different number, of CNSs. The particular electrical parameter value EPV measured for each of the functionalized sensors may be electrical impedance, electrical conductance, capacitance, inductance or some other relevant, measurable electrical value.

For relatively large concentrations, it is assumed that the measured EPV for a given target molecule will vary linearly with the concentration C,

$$EPV(C) = a + bC, \quad (1)$$

where the parameters a and b are characteristic of the particular target molecule for which the measurements are made. Where EPV(C$_{1,1}$) and EPV(C$_{1,2}$) are values for a pure substance measured at the different concentration values C$_{1,1}$ and C$_{1,2}$, respectively, the parameter values a and b can be estimated by

$$a = \frac{EPV(C_{1,1}) - EPV(C_{1,2})}{C_{1,2} - C_{1,1}} \quad (2-1)$$

$$b = \frac{EPV(C_{1,1}) - EPV(C_{1,2})}{C_{1,2} - C_{1,1}}, \quad (2-2)$$

for each target molecule. For smaller concentrations (<5-50 ppm), it may be preferable to use a logarithmic approximation,

$$EPV(C) = a' + b' \log C, \quad (3)$$

where a' and b' are selected parameters. The parameter values a' and b' can be determined in a manner similar to that of Eqs. (2-1) and (2-2), by replacing the variables C$_{1,1}$ and C$_{1,2}$ by log$_e$[C$_{1,1}$] and log$_e$[C$_{1,2}$], respectively. FIG. 2 graphically illustrates the two concentration regimes for EPV(C), corre-
recorded for each sensor sub-array n, each concentration C.

NxI vector that will usually depend upon the reference gas

where k (1, \ldots, K) is fixed and V(k;X(k)) is a normalized
corresponding eigenvector pairs, \(\{ \lambda_k(k); V_k(k; \lambda_k(k)) \}_{k=1, \ldots, K} \) for a

Each matrix equation (9-k) has a sequence of N (eigenvalue;
eigenvector) pairs, \(\{ \lambda_k(k); V_k(k; \lambda_k(k)) \}_{k=1, \ldots, K} \), for a

for the selected target molecule gas no. k and the sub-array no. n,

which may be chosen as

where \(\{ u_q \} \) is a selected set of non-negative weight numbers

whose sum is a selected positive number (e.g., 1 or N) and \(\rho \)
is a selected positive number. The normalization factor \(E(n; k; \text{norm}) \)
may be a single EPV (e.g., \(u_{q-1} \) and \(u_{q_0} \) for \(q=-1 \)), or may be a weighted sum of two or more EPVs. This nor-
malization (optional) is intended to compensate for the con-
centrations dependence of the particular target molecule.

For each sub-array n (fixed), the mean and standard devia-
tion for each of K reference gases, numbered k=1, \ldots, K

(9-k) (k=1, 2, 3). More generally, presence or absence of any

of two or more target molecules. The set of vectors \(\{V'(kr;\lambda_k(k))\}_{r=1, \ldots, K} \) is mutually orthogonal, in the sense that the scalar products satisfy

(3) and (3), which join together at a concentra-
tion transition value \(C_{tr} \) for which

\[
a' \neq b' \Rightarrow C_{tr} = a + b \cdot C_{tr}.
\]

(4)

Given an array of N sub-arrays of CNS sensors and a set of
K target molecules (k=1, \ldots, K; K\geq 2), the EPV data for the
sensors can be pre-processed in order to identify more clearly
which CNS sensor sub-arrays are more sensitive to presence
of a particular target molecule. In a first embodiment, the
array is exposed to a selected target molecule, such as \(\text{H}_2\text{O}_2 \),
at a selected sequence \(\{ C_q \} \) (q=1, \ldots, Q with Q=\#N) known
(not necessarily distinct) concentration values (e.g., 500 ppm,
14,000 ppm, 65 ppm, 1200 ppm, 10 ppm, etc.), and a refer-
cence measurement value \(EPV(n; q; k; \text{ref}) \) (r=1, 2, \ldots, N) is recorded for each sensor sub-array n, each concentration \(C_q \)
of a reference gas containing a selected target molecule (k).

Measurements for one or more concentration values for the
selected target molecule gas can be repeated, if desired, in order to
determine an N\times N square matrix of values. With q fixed, an N\times N
matrix \(\{ EPV(n; q; k; \text{ref}) / EPV(n; k; \text{norm}) \} = E(n; q; k; \text{ref}) \) is formed, where, EPV(n,k;norm) is a normalization factor for
the selected target molecule gas no. k and the sub-array no. n,

which may be chosen as

\[
EPV(n; k; \text{norm}) = \left(\sum_{q=1}^{q=1} u_q EPV(n; q; k; \text{ref}) \right)^{1/2},
\]

(5)

where \(\{ u_q \} \) is a selected set of non-negative weight numbers

whose sum is a selected positive number (e.g., 1 or N) and \(\rho \)
is a selected positive number. The normalization factor \(E(n; k; \text{norm}) \)
may be a single EPV (e.g., \(u_{q-1} \) and \(u_{q_0} \) for \(q=-1 \)),
or may be a weighted sum of two or more EPVs. This nor-
malization (optional) is intended to compensate for the con-
centrations dependence of the particular target molecule.

For each sub-array n (fixed), the mean and standard devia-
tion for each of K reference gases, numbered k=1, \ldots, K
(K\geq 2) are computed, as

\[
\mu(n; k) = \frac{1}{N} \sum_{q=1}^{q=1} E(n; q; k; \text{ref}) / N,
\]

(6A)

\[
\mu(n) = \frac{1}{K} \sum_{k=1}^{k=1} \mu(n; k),
\]

(6B)

\[
\sigma(n; k) = \left(\sum_{q=1}^{q=1} \left(E(n; q; k; \text{ref}) - \mu(n; k) \right)^2 / N \right)^{1/2},
\]

(7A)

\[
\sigma(n) = \frac{1}{K} \sum_{k=1}^{k=1} \sigma(n; k),
\]

(7B)

One now forms K autoscaled N\times N matrices, defined by

\[
S(n,q; k) = \left[E(n; q; k; \text{ref}) / \mu(n; k) \right]_{n,m},
\]

(8-k)

and analyzes K eigenvalue equations

\[
S(n,q; k) V(k; \lambda_k(k)) = \lambda_k(k) V(k; \lambda_k(k)),
\]

(9-k)

where k (1, \ldots, K) is fixed and \(V(k; \lambda_k(k)) \) is a normalized
N\times1 vector that will usually depend upon the reference gas
(k). If, as is likely, the N eigenvalues \(\lambda_k(k) \) for a fixed reference
gas k are distinct, the corresponding eigenvectors \(V(k; \lambda_k(k)) \)
are mutually orthogonal (non-degeneracy). In the unusual
event (degeneracy) that two or more of the N eigenvalues \(\lambda_k(k) \)
are equal, different non-zero linear combinations of the cor-
responding eigenvectors \(V(k; \lambda_k(k)) \) can be constructed that are
orthogonal to each other, within a sub-space spanned by the
reduced set of eigenvectors corresponding to the identical
eigenvalues.

Each matrix equation (9-k) has a sequence of N (eigenvalue;
eigenvector) pairs, \(\{ \lambda_k(k); V_k(k; \lambda_k(k)) \}_{k=1, \ldots, K} \), for a

fixed reference gas k, and it is assumed here that the eigenvalues are

computed, as \(p=2, \ldots, K \). The set of vectors \(\{V(k2; \lambda_k(k2))\} \) for

a selected target molecule (k), \(\{V(k1; \lambda_k(k1))\} \) is identified as a first basis vector \(V(1) \):

\[
V(1; \lambda_k(k1)) = \{V(k1; \lambda_k(k1)) - V(1; \lambda_k(1))\},
\]

(12-1)

A second modified vector

\[
V'(k2; \lambda_k(k2)) = \{V(k2; \lambda_k(k2)) - V(1; \lambda_k(1))\},
\]

(12-2)

is computed, where \(\{V(k2; \lambda_k(k2))\} \) is the scalar prod-
uct (also referred to as the inner product) of the vectors
\(V(k2; \lambda_k(k2))\) and \(V(1; \lambda_k(1))\). More generally, a \(p \)th modified vector

\[
V'(k_p; \lambda_k(k_p)) = \{V(k_p; \lambda_k(k_p)) - \sum_{r=1}^{r=p-1} V(k_r; \lambda_k(k_r)) V'(k_r; \lambda_k(k_r))\}
\]

(12-p)

is computed for \(p=2, \ldots, K \). The set of vectors \(\{V'(kr; \lambda_k
(kr))\} \) (r=1, \ldots, K) is mutually orthogonal, in the sense that the scalar products satisfy

\[
\langle V'(kr; \lambda_k(kr)), V'(ks; \lambda_k(ks)) \rangle = \delta_{rs},
\]

(13)

Each of the set of vectors \(\{V'(kr; \lambda_k(kr))\} \) is maximally independent of each of the other vectors in the set,
in the sense of mutual orthonormality (Eq. (13)). Each vector
\(V'(kr; \lambda_k(kr))\) will have relatively large (primary) contributions from some of the sensor sub-arrays and will have
smaller (secondary) contributions from the remainder of the
N sub-arrays. The vectors \(V(kr; \lambda_k(kr))\) identify a maximally independent set of linear combinations of EPV responses from the N sub-arrays that can be used to distinguish presence of
one reference gas (target molecule kr) from presence of another reference gas (target molecule ks). For example, if the set of reference gases are \(\text{H}_2\text{O}_2, \text{H}_2\text{O} \) and \(\text{CH}_3\text{OH} \), N=3 and
three matrix eigenvalue equations are to be solved in Eqs.
(9-k) (k=1, 2, 3). More generally, presence or absence of any
of K target molecules (K\geq 2) may be estimated.
The linear combinations \(LC(kp) \) of EPV measurements for the different sensor sub-arrays correspond to modified principal components for the particular reference gases chosen. Choice of another set of another set of reference gases will result in a different set of modified principal components, although change of one or more concentration values within a reference gas may have little or no effect on the modified principal components.

FIG. 3 is a flow chart of a procedure for practicing the first embodiment. In step 31, \(N \) sub-arrays \((N \geq 2)\) of carbon nanostructures ("CNSs"), numbered \(n = 1, \ldots, N \), are provided on a substrate, where each CNS sub-array is doped, coated, impregnated or otherwise functionalized ("loaded") with a selected sensitizing substance drawn from a group of substances, for example, Au nanoparticles, associated with other particles. In step 32, the CNS sub-arrays are exposed to a test gas to be interrogated (for presence or absence of \(K \) different target molecules, with \(K \geq 1 \)). In step 33, reference electrical parameter values \(E(n;q;k) \) (EPV\((n;k;\text{norm}) \)) are provided for each CNS sub-array \(n \), for each of a selected sequence of \(K \) target molecules (\(K \geq 1 \)), and for each of a selected sequence of concentrations \(C \) of the target molecules \((q=1, \ldots, N)\). Here, EPV\((n;k;\text{norm}) \) is a normalization factor that compensates for dependance of an EPV upon concentration of a target molecule.

In step 34, means \(\mu(n) \) and standard deviations \(\sigma(n) \) for the reference values \(E(n;q;k) \), summed over the concentration index \(q \) and over the target molecule index \(k \), are provided. In step 35, autoscaled quantities

\[
S(n;q;k) = \frac{E(n;q;k) - \mu(n)}{\sigma(n)},
\]

are provided. In step 36, (eigenvalue,eigenvector) pairs \((\lambda(k); V(k;k))\) are provided that satisfy the matrix equations

\[
S(n;q;k)V(k;k) = \lambda(k) V(k;k).
\]

The eigenvalues are assumed to be (re)arranged so that

\[
\lambda_1(k) \geq \lambda_2(k) \geq \ldots \geq \lambda_N(k),
\]

and so that the highest magnitude eigenvalue in each set satisfies

\[
\lambda_1(k_1) \geq \lambda_2(k_2) \geq \ldots \geq \lambda_N(k_N),
\]

where \(\{k_1, k_2, \ldots, k_N\} \) includes each of the integers \(\{1, 2, \ldots, N\} \) precisely once. In step 37, \(K \) linear combinations \(V(kp;\lambda(kp)) = LC \{V(kr;\lambda(kr))\} \) of the eigenvectors are formed so that a selected eigenvectors \(V(kr;\lambda(kr)) \) are orthogonal to each other, in the sense of Eq. (13). This step may be implemented, for example, using an orthogonalization process set forth in Eqs. (12-1) through (12-p), or by any other suitable process. In step 38, the vectors \(\{V(kp;\lambda(kp))\} \) are interpreted as a maximally independent set of linear combinations of the EPVs for the \(N \) sub-arrays that distinguish between the \(K \) target molecules. Steps 39-44 (optional) enhance this embodiment by estimating whether a target molecule is likely to be present in a test gas.

In step 39, normalized test measurements EPV\((n;q;k;\text{test}) \) are provided for the unknown gas of interest. In step 40, linear combinations \(LC(kp;\text{test}) \) of these measurements corresponding to the linear combinations \(LC(kp;\text{ref}) \) of the \(N \) sub-arrays for the vectors \(\{V(kp;\lambda(kp))\} \) are provided. In step 41, error values

\[
e(kp) = \sum_{n=1}^{N} w_n^p \{E(kp;\text{ref}) - E(n;q;k;\text{test})\}^2,
\]

are computed, where \(LC(kp;\text{ref}) \) indicates a weighted sum \((w_n)\) over the linear combination of sensor sub-array indices \(n \) corresponding to the vector combination \(V(kp;\lambda(kp)) \) in Eq. (12-p) \((p=1, \ldots, K)\) and \(s \) is a selected positive number.

In step 42, the error value \(e(kp) \) is compared with a selected error threshold value \(e(kp;\text{thr}) \), for at least one value of \(p = 1, \ldots, K \). When \(e(kp) \) is less than \(e(kp;\text{thr}) \), the system interprets this condition as indicating that a target molecule, corresponding to the linear combination \(LC(kp) \) of sub-array measurement values is likely to be present in the test gas, in step 43. When \(e(kp;\text{thr}) \) is at least equal to \(e(kp) \), the system interprets this condition as indicating that a target molecule, corresponding to the linear combination \(LC(kp) \) of sub-array measurement values is not likely to be present in the test gas, in step 44.

In a second embodiment, illustrated for convenience here for first and second target molecules \((K=2)\), each of the \(N \) CNS sensor sub-arrays is loaded (doped, impregnated, coated, or otherwise functionalized) with a different functionalizing substance FS, with each FS being chosen so that, for different first and second target molecules, at least one of the CNS sensor sub-arrays CNS no. \(n \) will produce substantially different EPV measurement values for the first and second target molecules. Where conductance is the EPV of interest, the CNS loading substances FS may, for example, be Au nanoparticles with associated side groups.

Most probable concentrations, \(C_{1\text{(opt)}} \) and \(C_{2\text{(opt)}} \), for the first and second target molecules present are computed using the approximations for concentration dependence set forth in Eqs. (1) and (3). For concentrations \(C_1 \) and \(C_2 \) above the transition values, \(C_{1\text{p}} \) and \(C_{2\text{p}} \), a compound error value

\[
e(C_1, C_2) = \sum_{n=1}^{N} w_n^p \{E(n;q;k)-\mu(n)\}^{2s}/(s+1),
\]

is computed, where \(\{a_1, b_1(1), b_2(2)\} \) are the parameter pairs (assumed known through experiment) that appear in Eq. (1) for the concentration dependence of the EPVs for the CNS sub-array no. \(n = 1, \ldots, N \). \(w_n^p \) is a weighting number for the CNS sub-array number \(n \), and \(p \) is a selected positive number. The weighting numbers \(w_n^p \) may be equal or may reflect the relative number of CNSs in each of the sub-arrays. Compound error value in Eq. (15) is minimized with respect to choices of the \((k_1, k_2) \) concentrations \(C_1 \) and \(C_2 \):

\[
\phi(C_1, C_2) = \min_{C_1, C_2} \phi(C_1, C_2) = (C_1, C_2) = (C_1\text{opt}, C_2\text{opt})
\]

Using the linear concentration dependence from Eq. (1) for each of the target molecules 1 and 2, Eqs. (16-1) and (16-2) can be re-expressed as a first set of coupled relations in the optimum values, \(C_{1\text{p}} \), \(C_{2\text{p}} \), and \(C_{1\text{opt}}, C_{2\text{opt}} \).
Using the linear concentration dependence from Eq. (1) for target molecule 1 and the logarithmic concentration dependence from Eq. (3) for the target molecule 2, Eqs. (16-1) and (16-2) can be re-expressed as a third set of coupled relations in the optimum values, \(C_1 - C_1(\text{opt}) \) and \(C_2 - C_2(\text{opt}) \),

\[
\sum_{n=1}^{N} w_n b_n C_1 + \sum_{n=1}^{N} w_n b_n \log C_2 = C_n \text{EPV}(n) - a_n - \alpha_n b_n \tag{17-3}
\]

\[
\sum_{n=1}^{N} w_n b_n C_1 \log C_1 + \sum_{n=1}^{N} w_n b_n \log^2 C_2 = \sum_{n=1}^{N} w_n [\text{EPV}(n) - a_n - \alpha_n b_n] \log C_2 \tag{17-4}
\]

where a common factor of \(C_2 \) for all terms in Eq. (8-4) has been canceled.

Using the logarithmic concentration dependence from Eq. (3) for the target molecules 1 and 2, Eqs. (16-1) and (16-2) can be re-expressed as a second set of coupled relations in the optimum values, \(C_1 - C_1(\text{opt}) \) and \(C_2 - C_2(\text{opt}) \),

\[
\sum_{n=1}^{N} w_n b_n C_1 \log C_1 + \sum_{n=1}^{N} w_n b_n \log C_2 = \sum_{n=1}^{N} w_n [\text{EPV}(n) - a_n - \alpha_n b_n] \log C_2 \tag{17-5}
\]

\[
\sum_{n=1}^{N} w_n b_n C_1 + \sum_{n=1}^{N} w_n b_n \log C_2 = \sum_{n=1}^{N} w_n [\text{EPV}(n) - a_n - \alpha_n b_n] \tag{17-6}
\]

The equation pair (17-1) and (17-2) is formally similar to the equation pair (17-5) and (17-6) so that the same well known algebraic methods can be used to formally determine the respective solution pairs \((C_1,C_2)\) and \((\log C_1, \log C_2)\).

Equations (17-1) through (17-6) extend, in an obvious manner, to \(K \geq 3 \) different target molecules, where the EPV of each target molecule and each CNS sub-array \((n)\) is represented, in the appropriate concentration range, by Eq. (1) or Eq. (3). Where \(K(\geq 2) \) target molecules are believed to be present, \(K \) coupled linear equations in the variable \(C \) or the variable \(\log C \) for these \(K \) target molecules are obtained, and the solutions provide most probable values \(C_{k(\text{opt})} \) \((k=1, \ldots, K) \) for the concentrations \(C_k \) in the gas.

Preferably, Eqs. (17-1) and (17-2) are initially used to estimate the optimum values \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \). If the initial estimate of \(C_1(\text{opt}) \) is found to be at least equal to the first transition value \(C_{1r} \), where the estimate of \(C_2(\text{opt}) \) is found to lie below the second transition value \(C_{2p} \), in Fig. 2, Eqs. (17-3) and (17-4) would be used to redetermine the estimates \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \). If the initial estimates for \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \) are found to lie below the respective transition values, \(C_{1r} \) and \(C_{2p} \), Eqs. (17-5) and (17-6) would be used to redetermine the estimates \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \). If the initial estimates of \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \) are found to be at least equal to the respective first and second transition values \(C_{1r} \) and \(C_{2p} \), the initial estimates from Eqs. (17-1) and (17-2) would be used, unchanged, for the estimates \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \).

The optimum value estimates, \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \), however determined, are used to compute error values

\[
e(1; C_1(\text{opt})) = \sum_{n=1}^{N} w_n (\text{EPV}(n) - \text{EPV}(C_1(\text{opt}); \text{ref} 1)) p_1, \tag{18-1}
\]

\[
e(2; C_2(\text{opt})) = \sum_{n=1}^{N} w_n (\text{EPV}(n) - \text{EPV}(C_2(\text{opt}); \text{ref} 2)) p_2, \tag{18-2}
\]

where \(w_n(1) \) and \(w_n(2) \) are non-negative weighting values, \(\text{EPV}(n) \) are the measured EPVs for the \(N \)-sensor sub-arrays, \(\text{EPV}(C_1) \) and \(\text{EPV}(C_2) \) are reference EPVs, adjusted for concentrations \(C_1 \) and \(C_2 \), for the first and second target molecules, and \(p_1 \) and \(p_2 \) are selected positive real numbers.

The optimized error values, \(e(1; C_1(\text{opt})) \) and \(e(2; C_2(\text{opt})) \), are then compared with selected error threshold values, \(e(1; \text{thr}) \) and \(e(2; \text{thr}) \), respectively, to determine if the target molecule 1 or the target molecule 2 is likely to be present in the gas at the concentration \(C_{1(\text{opt})} \) and/or at the concentration \(C_{2(\text{opt})} \). The formalism set forth in the preceding is extendible to any number \(M \geq 1 \) of different target molecules. At this point, the most probable concentration values, \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \), are determined, but a probability that the target molecules are present with these values is not yet estimated.

FIG. 4 is a flow chart of a procedure for practicing the invention. In step 51, \(N \)-sub-arrays (\(N \geq 2 \)) of carbon nanostructures ("CNSs") are provided on a substrate, where each CNS sub-array is doped, impregnated, coated or otherwise functionalized ("loaded") with a selected sensitizing substance drawn from a group of substances, for example, An nanoparticles, associated with other particles. In step 52, the CNS sub-arrays are exposed to a gas to be interrogated (for presence of \(K \) different target molecules, with \(K \geq 1 \)). In step 53, a selected electrical parameter value \(\text{EPV}(n) \) for the CNS sub-array no. \(n \) is measured in a time interval of length \(\Delta t\geq 5-30 \) sec or longer if desired. Optionally, the values \(\text{EPV}(n) \) for all sub-arrays are measured substantially simultaneously.

In step 54, where \(K = 2 \), a first reference value sequence \(\text{EPV}(n; \text{ref} 1) \) and a second reference value sequence \(\text{EPV}(n; \text{ref} 2) \) are provided for sub-array no. \(n \), corresponding to presence of first and second different target molecules, present in a gas with known first and second concentration values, \(C_1(\text{ref} 1) \) and \(C_2(\text{ref} 2) \), respectively.

In step 55, most likely concentrations, \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \), for the first and second target molecules in the test gas are estimated, based upon (1) differences between the \(N \) measured values \(\text{EPV}(n) \) of the collection of CNS sub-arrays and the corresponding reference values \(\text{EPV}(n; C_1(\text{ref} 1)) \) and (2) differences between the \(N \) measured values \(\text{EPV}(n) \) of the collection of CNS sub-arrays and the corresponding reference values \(\text{EPV}(n; C_2(\text{ref} 2)) \), where \(C_1 \) and \(C_2 \) are unknown.

At this point, the most-probable concentration values, \(C_1(\text{opt}) \) and \(C_2(\text{opt}) \), for the first and second target molecules are known. In a first embodiment, it is sufficient to estimate the most-probable concentration values for the test gas.

In an extension, an error value is computed, based on differences between the measured values \(\text{EPV}(n) \) for the \(N \)-sub-arrays and computed concentration-dependent reference values, \(\text{EPV}(n; C_1(\text{opt}); \text{ref} 1) \) and \(\text{EPV}(n; C_2(\text{opt}); \text{ref} 2) \), using Eq. (1) or Eq. (3) for the EPV for the first or second target molecule. Only if the first error value (or the second error value) is less than a selected first error threshold value (or less than a selected second error threshold value) is the most-probable concentration value \(C_1(\text{opt}) \) (or \(C_2(\text{opt}) \)) accepted as the concentration value for the first
target molecule (or the second target molecule) in the gas. In this extension, the procedures of steps 56-62 are optionally combined with the procedures of steps 51-55.

In step 56, a first error value \(\varepsilon(1) \) and a second error value \(\varepsilon(2) \) are computed, depending upon (1) differences between the N measured values \(EPV(n) \) of the first CNS sub-array and the corresponding most-probable values \(EPV(n;C1=Cl(opt); ref) \) and (2) differences between the N measured values \(EPV(n) \) of the second CNS sub-array and the corresponding most-probable values \(EPV(n;C2=Cl2(opt); ref) \).

In step 57, the first error value is compared with a first threshold value \(\varepsilon(1; thr) \). In step 58, when the first error value is less than the first error threshold value, the system interprets this condition as indicating that the first target molecule is present in the test gas with a selected first concentration \(C1-C1(opt) \). In step 59, when the first error value is at least equal to the first error threshold value, the system interprets this condition as indicating that the first target molecule is not present in the gas, or is present in the test gas with concentration substantially different from the most-probable concentration, \(C1-C1(opt) \).

In step 60, the second error value is compared with a second error threshold value \(\varepsilon(2; thr) \). In step 61, when the second error value is less than the second error threshold value, the system interprets this condition as indicating that the second target molecule is present in the test gas with a selected second concentration \(C2-C2(opt) \). In step 62, when the second error value is at least equal to the second error threshold value, the system interprets this condition as indicating that the second target molecule is not present in the test gas, or is present in the test gas with concentration substantially different from the most-probable concentration, \(C2-C2(opt) \).

Optionally, the system can test for presence of one of \(K \geq 2 \) different target molecules substantially simultaneously. One advantage of the invention is its flexibility: presence of any reasonable number of target molecules can be tested for with a single set of EPV measurements.

FIGS. 5A, 5B and 5C graphically illustrate measurements of normalized (dimensionless) responses,

\[
NR(t) = \left(R(t) - R_0 \right) / R_0,
\]

of electrical resistance of a loaded CNT, measured before and after introduction of a reference gas \(H_2O \) (5A), \(H_2O \) (5B) and \(CH_3OH \) (5C), into a chamber containing the loaded CNT, minus the measured resistance \(R_0 \) of an unloaded CNT, divided by \(R_0 \). The curve marked “gas,” which rises substantially vertically beginning at a time \(t=0.43 \) min, indicates introduction of the reference gas into the chamber. As an example, the changes in \(NR(t) \) for \(C12 \), measured at times before and after introduction of the reference gas, are measured: \(\Delta NR(t) = -0.05 \) (\(H_2O \)), \(-0.02 \) (\(H_2O \)) and \(-0.01 \) (\(CH_3OH \)) for the reference gases examined.

FIGS. 6A, 6B and 6C graphically illustrate histograms representing re-normalized responses for the respective reference gases \(H_2O \), \(H_2O \) and \(CH_3OH \), computed as

\[
NR(t;before) - NR(t;after) / NR(t;before),
\]

for 8 sensors among 24 sensors in an embodiment (FIG. 1), where “before” and “after” have the meanings discussed in connection with FIGS. 6A, 6B and 6C. Note that most of the histogram amplitudes are positive, with the exception of the renormalized responses for sensors no. 2, 3 and 4 for \(H_2O \) and for \(CH_3OH \).

What is claimed is:

1. A method for estimating presence of a target molecule in a gas, the method comprising:

- providing N carbon nanostructure ("CNS") sub-arrays, numbered \(n=1, \ldots, N \) (\(N \geq 2 \)) on a substrate, each CNS sub-array is loaded with a selected sensitizing substance comprising Au nanoparticles;
- estimating a first functional relationship \(EPV(C1;1) \) between a concentration \(C1 \) of a first target molecule and a first measured electrical parameter value \(EPV(n=1) \) in a gas, where the first relationship has a first approximate form \(EPV(n=1) = a1 + b1 \cdot \log(C1) \) in a first concentration range of \(C1 \) and has a second approximate form \(EPV(n=1) = a1 + b1 \cdot C1 \) in a second concentration range of \(C1 \), where \(a1', b1', a1 \) and \(b1 \) are selected real numbers;
- estimating a second functional relationship \(EPV(C2;2) \) between a concentration \(C2 \) of a second target molecule and a second measured electrical parameter value \(EPV(n=2) \) in a gas, where the second relationship has a second approximate form \(EPV(n=2) = a2 + b2 \cdot \log(C2) \) in a first concentration range of \(C2 \) and has a fourth approximate form \(EPV(n=2) = a2 + b2 \cdot C2 \) in a second concentration range of \(C2 \), where \(a2', b2' \) and \(\beta2 \) are selected real numbers;
- exposing the CNS sub-array no. \(n(=1, \ldots, N) \) to the gas, and measuring the electrical parameter value \(EPV(n) \) in a time interval of length no more than about 15 sec;
- estimating a probable value of concentration, \(C1(\text{opt}) \) and \(C2(\text{opt}) \), of the first target molecule and the second target molecule, respectively, in the gas, based upon (1) differences between the value \(EPV(n=1) \) and the first functional relationship for the first target molecule and upon (2) differences between the value \(EPV(n=2) \) and the second functional relationship for the second target molecule;
- computing a first error value depending upon differences between the measured values \(EPV(n) \) of the CNS sub-array no. \(n=1 \) and reference values \(E(C1(\text{opt}); ref, n=1) \) that corresponds to presence of the first target molecule in a gas with a concentration of \(C1(\text{opt}) \);
- computing a second error value depending upon differences between the measured values \(EPV(n) \) of the CNS sub-array no. \(n=2 \) and reference values \(E(C2(\text{opt}); ref, n=2) \) that corresponds to presence of a second target molecule in a gas with a concentration of \(C2(\text{opt}) \);
- when the first error value is less than a selected first error threshold value, interpreting this condition as indicating that the first target molecule is not present in the gas with a concentration of about \(C1(\text{opt}) \);
- when the second error value is less than a selected second error threshold value, interpreting this condition as indicating that the second target molecule is not present in the gas with a concentration of about \(C2(\text{opt}) \);
- when the first error value is at least equal to the first error threshold value, interpreting this condition as indicating that the second target molecule is present in the gas with a concentration substantially less than \(C1(\text{opt}) \); and
- when the second error value is at least equal to the second error threshold value, interpreting this condition as indicating that the second target molecule is not present in the gas or is present in the gas with a concentration substantially less than \(C2(\text{opt}) \).
2. The method of claim 1, further comprising:
computing said first error value as a sum

\[e_1 = \sum_{n=1}^{N} w_1(n) \left(EPV(n) - E(C_1(\text{opt}); \text{ref}; n = 1) \right)^2, \]

where \(EPV(n) \) is said measured parameter value of said first CNS sub-array, \(EPV(C_1(\text{opt}); \text{ref}; n = 1) \) is a corresponding reference parameter value for said first target molecule, \(w_1(n) \) is a non-negative weighting value for said first target molecule, and \(p_1 \) is a selected positive number.

3. The method of claim 1, further comprising:
computing said second error value as a sum

\[e_2 = \sum_{n=1}^{N} w_2(n) \left(EPV(n) - E(C_2(\text{opt}); \text{ref}; n = 2) \right)^2, \]

where \(EPV(n) \) is said measured parameter value of said second CNS sub-array, \(EPV(C_2(\text{opt}); \text{ref}; n = 2) \) is a corresponding reference parameter value for said second target molecule, \(w_2(n) \) is a non-negative weighting value for said second target molecule, and \(p_2 \) is a selected positive number.

4. The method of claim 1, further comprising choosing said electrical parameter value \(EPV(n) \) from the group of parameters consisting of electrical impedance, electrical conductance, capacitance and inductance.

5. The method of claim 1, further comprising estimating said first functional relationship where said probable value of concentration \(C_1(\text{opt}) \) is no greater than about 5 ppm.

6. The method of claim 5, further comprising estimating said first functional relationship where said probable value of concentration \(C_1(\text{opt}) \) is no greater than about 5 ppm.