High Pressure Electrolyzer System Evaluation

Kevin Prokopius and Anthony Colozza
Analex Corporation, Cleveland, Ohio

February 2010
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world.

Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443–757–5803

- Telephone the NASA STI Help Desk at 443–757–5802

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
High Pressure Electrolyzer System Evaluation

Kevin Prokopius and Anthony Colozza
Analex Corporation, Cleveland, Ohio

Prepared under Contract NAS302150–100

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

February 2010
Level of Review: This material has been technically reviewed by expert reviewer(s).

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Available electronically at http://gltrs.grc.nasa.gov
High Pressure Electrolyzer System Evaluation

Kevin Prokopius and Anthony Colozza
Analex Corporation
Cleveland, Ohio 44135

Abstract

This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system’s present state and an estimate of the cost to bring it back to operational status was also produced.

Electrolyzer Stack Evaluation

This section summarizes the evaluation and testing of the Hamilton Standard high-pressure electrolyzer originally documented in the report titled “Hydrogen Generation through Renewable Energy Sources at the NASA Glenn Research Center” (Ref. 1). This evaluation consisted of a nitrogen pressure test of the electrolyzer stack to determine with greater detail the integrity of the stack membranes. Previous evaluation (described in Ref. 1) of the electrolyzer stack consisted of hydrating the stack by providing a deionized water feed to the stack through the water inlet port. From this initial evaluation it was concluded that the Hamilton Standard electrolyzer stack’s membranes were completely hydrated and there appeared to be water leakage from the stack to the pressure chamber that housed the stack. Checkout of the stack over the 4½ months prior to completion of the final report (Ref. 1) in May 2006 led to these conclusions. Since May 2006, there were periodic checks on the water level in the stack over the following 6 months. Table 1 provides volumes of deionized water added at certain times throughout the year through December 2006.

The collected data on the volume of water added to the electrolyzer was surprisingly encouraging with the exception of the last reading. Quantities of water added to the electrolyzer have leveled off and began to decrease somewhat. This can be seen from the last column in Table 1. This perhaps indicates the stack’s membranes are hydrated and the loss is due to evaporation, whose rate will be weather related. The last volume of water added to the electrolyzer on December 15, 2006, was submitted just prior to performing the pressure test on the unit. The reason for the added water volume per day increase shown in the last data point is not completely clear. The volume added for this last data point is approximate due to an error in measurement. This approximation of the volume or the lower humidity in December could be the cause of the higher mL/day rate for this last data point.

The purpose of the electrolyzer pressure test with nitrogen gas was to verify the stack condition and or the extent of leakage. The electrolyzer is normally filled with deionized water on the oxygen side of the stack so the pressure test will quantify leak rates to either the hydrogen side of the stack or directly into the pressure chamber. The ability for the stack to maintain pressure or the leak rate will provide a
detailed assessment of the integrity of the seals on the stack. If pressure is maintained this indicates that
the seals and cell membranes are intact. Or if a leak is detected this indicates a failure of one or more seals
and or membranes within the stack. The rate of leakage (pressure drop) will give an indication of the
severity of the failures. However, any rapid pressure drop of the gas represents an internal failure within
the stack.

<table>
<thead>
<tr>
<th>Date</th>
<th>Volume (mL)</th>
<th>mL/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 12, 2006</td>
<td>45</td>
<td>N/A</td>
</tr>
<tr>
<td>June 21, 2006</td>
<td>13</td>
<td>1.44</td>
</tr>
<tr>
<td>June 29, 2006</td>
<td>10</td>
<td>1.25</td>
</tr>
<tr>
<td>July 10, 2006</td>
<td>30</td>
<td>2.72</td>
</tr>
<tr>
<td>August 11, 2006</td>
<td>7</td>
<td>0.22</td>
</tr>
<tr>
<td>November 11, 2006</td>
<td>113</td>
<td>1.09</td>
</tr>
<tr>
<td>December 15, 2006</td>
<td>~100</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Electrolyzer Stack Testing Procedure

The pressure test of the electrolyzer stack was performed on December 15, 2006, using high purity
nitrogen gas over a range of pressures to provide a top level indication as to the stack’s condition. For the
testing, the nitrogen gas pressure was increased up to a level just below 30 psig. A relief valve, set at
30 psig, was used to ensure that this maximum pressure level was not exceeded. Figure 1 captures the
individual tests performed on the stack. The first step was to remove the deionized water from the stack
by opening all gas ports (nitrogen, oxygen, hydrogen) and then supplying nitrogen gas at 5 psig into the
distilled water feed line. This pressurized gas forced the majority of the deionized water out of the stack.
Each of the gas ports have been identified in the schematic (Fig. 1) along with the appropriate SSP fitting
used to perform the outlined tasks.

After removing the contained deionized water from the stack, the next step was to pressurize the
oxygen side of the stack with nitrogen to see if the gas passed onto the hydrogen side, which would
indicate a leak in either a seal or membrane. The nitrogen pressure was adjusted in 5 psig intervals up to a
supply pressure of 29 psig. At 25 psig, the cap was removed off the nitrogen port (8) to simultaneously
check for leaks into the pressure chamber. After performing the oxygen side pressure testing, it was
decided to confirm the electrolyzer’s normal mode of operation of being fed distilled water on the oxygen
side of the stack. This was accomplished by capping the hydrogen port (6), opening the oxygen port (1),
and applying 5 psig of nitrogen to the system through the water inlet port. The valve directly on the
nitrogen k-bottle was closed and the pressure was seen to drop immediately in the supply line confirming
water feed to the oxygen side.

The final step in the test procedure was to pressurize the oxygen side with nitrogen to see if leaks
occurred directly into the chamber. The nitrogen pressure was adjusted in the same manner as performed
earlier (5 psig intervals up to 29 psig).

After performing this final checkout test, the nitrogen test assembly was removed and all liquid/gas
ports were capped except for ports 1 and 6 located on the pressure chamber. This was done to allow for
evaporation of trace amounts of water from the stack pressure chamber prior to storage. These ports were
left open for 1 week and then capped on December 22, 2006, to keep the pressure chamber free of
contaminants.
Figure 1.—Individual electrolyzer stack checkout steps.

STEP 1: Remove DI water from stack using 5 psi N2.
1: DI/O2 OUTLET
2: N2 RECYCLATION
3: DIFFERENTIAL PRESSURE TAP
 KUJ-4, ZEWU-2, INLET
4: DISTILLED H2O INLET
 QB65-3, 6, Q560-4, 5, Q5
5: DIFFERENTIAL PRESSURE TAP
 KUJ-4, ZEWU-2, INLET
6: R3/101 OUTLET
7: H2 INLET
8: N2 OUTLET

STEP 2: Pass micro O2 side with N2 to see if leaks occur on the H2 side.
1: DI/O2 OUTLET
2: N2 RECYCLATION
3: DIFFERENTIAL PRESSURE TAP
 KUJ-4, ZEWU-2, Solid Rod
4: DISTILLED H2O INLET
 QB65-3, 6, Q560-4, 5, Q5
5: DIFFERENTIAL PRESSURE TAP
 KUJ-4, ZEWU-2, Solid Rod
6: R3/101 OUTLET
7: H2 INLET
8: N2 OUTLET

STEP 3: Pass micro O2 side with N2 to see if leaks occur in the chamber.
1: DI/O2 OUTLET
2: N2 RECYCLATION
3: DIFFERENTIAL PRESSURE TAP
 KUJ-4, ZEWU-2, Solid Rod
4: DISTILLED H2O INLET
 QB65-3, 6, Q560-4, 5, Q5
5: DIFFERENTIAL PRESSURE TAP
 KUJ-4, ZEWU-2, Solid Rod
6: R3/101 OUTLET
7: H2 INLET
8: N2 OUTLET
Electrolyzer Stack Test Results and Conclusions

During the water removal procedure (Step 1), most of the water was seen to blow out of the oxygen port at 5 psig. A small amount was seen to remain behind as it fell back by gravity down the oxygen port into the stack. Due to the pressurized nitrogen gas flow, the water within the stack abruptly shot into the air and was not able to be captured for measurement.

The first nitrogen leak test from the oxygen to the hydrogen side of the stack resulted in no observed pressure drop at supply pressures of 5, 10, 15 and 20 psig. The nitrogen pressure held at each interval for approximately 2 min. At 25 psig, nitrogen port 8 at the bottom of the vessel was opened and the pressure was seen to hold steady for about 5 min confirming no major leaks to either the hydrogen side of the stack or into the chamber. Port 8 was kept open and the pressure was increased to 29 psig. After 10 min had elapsed, the pressure was seen to drop to only 28 psig. Overall, after a total of 20 min of elapsed time, the pressure dropped to only 27 psig.

The second leak test from the oxygen side of the stack to the pressure chamber similarly resulted in no observed pressure drop at supply pressures of 5, 10, 15, 20 and 25 psig. The nitrogen pressure was held at each interval for roughly 2 min except at 25 psig where the stack held at pressure for about 4 min. The pressure was then increased to 29 psig and after 10 min had elapsed, the pressure was seen to drop to only 28.5 psig. The stack remained at 28.5 psig for another 5 min before the checkout was terminated.

Both tests indicate that there is no major defect with the stack. The observed 2 psig drop during the first test was due to the membrane’s permeability and perhaps very minute leaks at the electrolyzer’s fittings. The water level in hydrogen port 6 rose slightly during the first test confirming the membrane’s permeability.

A torn membrane or a ruptured/cracked seal would have resulted in a very rapid drop in pressure, even at low supply pressures such as 5 psig. Since this type of event did not occur during the oxygen side to hydrogen side pressure testing, it can be concluded with a high degree of certainty that the high pressure electrolyzer stack is in good condition and free from any appreciable leaks due to membrane or seal failure.

Evaluation of the State of the Electrolyzer System

The purpose of this evaluation is to identify the components and/or systems (other than the actual stack) that will need to be refurbished or replaced. A visual inspection was performed on the electrolyzer system, noting most of the significant components that make up the balance of plant. Overall the state of the electrolyzer system components was fairly poor. The majority of the system will need to be replaced and due to the age of the system and the compatibility of the components installed with commercially available newer components, it may be more cost beneficial to completely rebuild the fluid and control systems than to try and salvage any of the components.

There are a number of open lines and severed electrical connections that would need to be completely replaced. The open lines are of particular concern since the cleanliness of the system is critical to the operation of the electrolyzer stack and with the use of oxygen in the process lines. Figures 2 through 7 provide examples of the present state of the system components.

The above figures show an example of the state of the system’s mechanical and electrical components. Although some components may be salvageable, it is recommended that the system be completely rebuilt utilizing the electrolyzer stack and containment vessel. The containment vessel was sealed off from the fluid lines and therefore should be contaminant free and based on the results of the pressure testing the stack should be in good operational condition. Table 2 gives a summary of the estimated replacement cost for most of the major system components.
Figure 2.—System cabinet.

Figure 3.—Electrolyzer system cabinet base.
Figure 4.—Cut power and data cable interfaces.

Figure 5.—Disconnected internal components.
Figure 6.—Electrolyzer stack pressure vessel with disconnected fluid lines.

Figure 7.—Disconnected internal fluid lines.
TABLE 2.—ELECTROLYZER SYSTEM COMPONENT COST SUMMARY

<table>
<thead>
<tr>
<th>Component type</th>
<th>Manufacturer</th>
<th>Part number</th>
<th>Quantity</th>
<th>Total estimate replacement cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally Closed Actuated Valve</td>
<td>Nupro</td>
<td>SS-HBS6-C</td>
<td>5</td>
<td>$1,616</td>
</tr>
<tr>
<td>Normally Open Actuated Valve</td>
<td>Nupro</td>
<td>SS-HBS6-O</td>
<td>3</td>
<td>$970</td>
</tr>
<tr>
<td>Back Pressure Regulator</td>
<td>Not Available</td>
<td>Not Available</td>
<td>2</td>
<td>$1,600</td>
</tr>
<tr>
<td>Circulation Pump</td>
<td>Midland Ross</td>
<td>970P100</td>
<td>1</td>
<td>$1,100</td>
</tr>
<tr>
<td>Check Valve</td>
<td>Not Available</td>
<td>Not Available</td>
<td>10</td>
<td>$650</td>
</tr>
<tr>
<td>Differential Back Pressure Regulator</td>
<td>General Electric</td>
<td>Not Available</td>
<td>1</td>
<td>$800</td>
</tr>
<tr>
<td>Differential Back Pressure Regulator</td>
<td>Tescom</td>
<td>269-403</td>
<td>2</td>
<td>$1,600</td>
</tr>
<tr>
<td>Differential Back Pressure Regulator</td>
<td>Tescom</td>
<td>269-454-2</td>
<td>1</td>
<td>$800</td>
</tr>
<tr>
<td>Differential Back Pressure Regulator</td>
<td>Tescom</td>
<td>269-402</td>
<td>1</td>
<td>$800</td>
</tr>
<tr>
<td>Differential Pressure Regulator</td>
<td>General Electric</td>
<td>Not Available</td>
<td>2</td>
<td>$1,600</td>
</tr>
<tr>
<td>Differential Pressure Transducer</td>
<td>Shaevitz</td>
<td>P2194-001</td>
<td>3</td>
<td>$2,250</td>
</tr>
<tr>
<td></td>
<td>Viatran</td>
<td>220-15</td>
<td>1</td>
<td>$750</td>
</tr>
<tr>
<td>Electronic Control Valve</td>
<td>Hewlett Packard</td>
<td>Not Available</td>
<td>3</td>
<td>$3,315</td>
</tr>
<tr>
<td>Filter</td>
<td>Not Available</td>
<td>Not Available</td>
<td>6</td>
<td>$300</td>
</tr>
<tr>
<td>Rotameter</td>
<td>Fischer & Porter</td>
<td>10A3135</td>
<td>3</td>
<td>$450</td>
</tr>
<tr>
<td>Feed Pump</td>
<td>March Mfg. Co.</td>
<td>TE-7R-MD</td>
<td>1</td>
<td>$1,200</td>
</tr>
<tr>
<td>Gas Analyzer</td>
<td>Control Inst.</td>
<td>B7SNR006</td>
<td>3</td>
<td>$6,000</td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td>Not Available</td>
<td>Not Available</td>
<td>1</td>
<td>$750</td>
</tr>
<tr>
<td>Hydrogen Phase Separator</td>
<td>Not Available</td>
<td>Not Available</td>
<td>2</td>
<td>$7,000</td>
</tr>
<tr>
<td>Heater</td>
<td>Not Available</td>
<td>Not Available</td>
<td>1</td>
<td>$900</td>
</tr>
<tr>
<td>Level Switch</td>
<td>IMO Delaval</td>
<td>Not Available</td>
<td>3</td>
<td>$590</td>
</tr>
<tr>
<td>Oxygen Phase Separator</td>
<td>Not Available</td>
<td>Not Available</td>
<td>1</td>
<td>$8,000</td>
</tr>
<tr>
<td>Orifice</td>
<td>Not Available</td>
<td>Not Available</td>
<td>8</td>
<td>$160</td>
</tr>
<tr>
<td>Pressure Gauge</td>
<td>Not Available</td>
<td>Not Available</td>
<td>7</td>
<td>$420</td>
</tr>
<tr>
<td>Pressure Regulator</td>
<td>Not Available</td>
<td>Not Available</td>
<td>3</td>
<td>$2,400</td>
</tr>
<tr>
<td>Pressure Switch</td>
<td>Kratos</td>
<td>50820</td>
<td>1</td>
<td>$75</td>
</tr>
<tr>
<td>Pressure Transducer</td>
<td>Shaevitz</td>
<td>P793-001</td>
<td>5</td>
<td>$3,750</td>
</tr>
<tr>
<td>Resistivity Sensor</td>
<td>Foxboro</td>
<td>CEL-272</td>
<td>3</td>
<td>$1,275</td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>RdF</td>
<td>21SP-A-10</td>
<td>4</td>
<td>$360</td>
</tr>
<tr>
<td>Relief Valve</td>
<td>Circle Seal</td>
<td>P13-485</td>
<td>7</td>
<td>$840</td>
</tr>
<tr>
<td>Solenoid Valve</td>
<td>Asco</td>
<td>Not Available</td>
<td>15</td>
<td>$1,800</td>
</tr>
<tr>
<td>Manual Valve</td>
<td>Circle Seal, Hoke</td>
<td>Not Available</td>
<td>21</td>
<td>$4,850</td>
</tr>
<tr>
<td>Venturi</td>
<td>Not Available</td>
<td>Not Available</td>
<td>1</td>
<td>$125</td>
</tr>
<tr>
<td>Resistivity Monitor</td>
<td>Foxboro</td>
<td>874RS-AT</td>
<td>1</td>
<td>$300</td>
</tr>
<tr>
<td>DH-485 PC Interface</td>
<td>Allen Bradley</td>
<td>1747-KE</td>
<td>1</td>
<td>$600</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$45460</td>
</tr>
</tbody>
</table>

The electrolyzer system can be refurbished in house at NASA Glenn or returned to the manufacturer for complete refurbishment. The majority of the cost for rebuilding the electrolyzer in-house will be in technician and engineering time. Without being able to evaluate the electrolyzer stack in detail, the manufacturer cannot provide a detailed cost estimate for its refurbishment. However, based on previous system work an estimate of the refurbishment cost and or labor hours can be made. These are given in Table 3.

TABLE 3.—ELECTROLYZER SYSTEM REFURBISHMENT COST ESTIMATE

<table>
<thead>
<tr>
<th>Estimated manufacturer refurbishment</th>
<th>In-house refurbishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$435,000 labor</td>
<td>320 engineering hours</td>
</tr>
<tr>
<td>$ 65,000 parts</td>
<td>400 technician hours</td>
</tr>
</tbody>
</table>
Should a program arise to use the electrolyzer system, the recommendation would be to have Hamilton Standard aka Hamilton Sundstrand refurbish the system. Hamilton Sundstrand would come on-site to perform a complete, detailed analysis of the stack’s integrity and quote an actual refurbishment cost based on their observations and findings. Their prior working knowledge of the overall system is invaluable and the refurbishment cost will most likely be lower than having the work performed in-house.

References

High Pressure Electrolyzer System Evaluation

1. REPORT DATE
01-02-2010

2. REPORT TYPE
Final Contractor Report

3. DATES COVERED

4. TITLE AND SUBTITLE
High Pressure Electrolyzer System Evaluation

5a. CONTRACT NUMBER
NAS302150-100

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 038957.04.06.03.03

6. AUTHOR(S)
Prokopius, Kevin; Colozza, Anthony

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Analex Corporation
Cleveland, Ohio 44135

8. PERFORMING ORGANIZATION REPORT NUMBER
E-17193

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR’S ACRONYM(S)
NASA

11. SPONSORING/MONITORING REPORT NUMBER
NASA/CR-2010-216110

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 07, 20, and 28
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system’s present state and an estimate of the cost to bring it back to operational status was also produced.

15. SUBJECT TERMS
Electrolysis; Hydrogen production; Oxygen production

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
15

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

19b. TELEPHONE NUMBER (include area code)
443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18