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Ô0

^-o
O

DPA
	

Tb3+

FIG. 1 B



U.S. Patent	 Oct. 27, 2009	 Sheet 3 of 6	 US 7,608,419 B2

ITC*

3 ^ Ener
^' Trausfe,s 4

D

.° o
R4	 CA

o	 -C

^FJ=6-0

DPA	 Tb 3+

FIG. IC



U.S. Patent	 Oct. 27, 2009	 Sheet 4 of 6	 US 7,608,419 B2

FIG. 2

FIG. 3



U.S. Patent	 Oct. 27, 2009	 Sheet 5 of 6	 US 7,608,419 B2

ImageX nanoCCD
camera

Microscope objective

Red bandpass filter 	 4 Xenon flash lamp
(suitable for Eu3+)

e5

Stage ---►
45°

2 C-mount
elliptical lenses

FIG. 4



U.S. Patent	 Oct. 27, 2009	 Sheet 6 of 6	 US 7,608,419 B2

FIG. 5



US 7,608,419 B2
1

METHOD AND APPARATUS FOR
DETECTING AND QUANTIFYING

BACTERIAL SPORES ON A SURFACE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/519,851 filed on Nov. 13,
2003, whichis incorporated herein by reference in its entirety.
This application also claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/624,068 filed Nov. 1, 2004.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The present invention was made with support from the
United States Government under Grant number NAS7-1407
awarded by NASA. The United States Government has cer-
tain rights in the invention.

BACKGROUND

1 Field
The present disclosure relates to the field of chemical

detection. In particular, a method and apparatus for detecting
and quantifying bacterial spores on a surface is disclosed.

2. Description of Related Art
Lanthanide complexes, particularly those of Tb +3 and

Eu+3, exhibit luminescence properties for the detection of
aromatic biomolecules. The detection scheme is based on the
absorption-energy transfer-emission mechanism, which is
triggered by the binding of aromatic ligands to lanthanide
complexes under UV excitation. Recent efforts have been
focused on the detection of dipicolinic acid DPA (2,6-py-
ridinedicarboxylic acid), which is a unique constituent of
bacterial spores present at high concentrations (up to 1 M).
Dipicolinic acid is also a commercially available product
having the following characteristics: CAS #: 499-83-2, Syn-
onyms: 2,6 Pyridine Dicarboxylic Acid, Molecular Formula:
C,H5NO41 Molecular Weight: 167.12, Description: White
crystalline powder, SulphatedAsh: 0.3% max, Moisture Con-
tent: 0.5% max, Melting Point: 242.0 to 245.0° C., Assay:
99.0% min.

U.S. Pub. App. No. 2003-0138876 for "Method bacterial
endospore quantification using lanthanide dipicolinate lumi-
nescence" to Adrian Ponce discloses a lanthanide that is com-
bined with a medium to be tested for endospores. Dipicolinic
acid released from the endospores binds the lanthanides,
which have distinctive emission (i.e., luminescence) spectra,
and are detected using photoluminescence. The concentra-
tion of spores is determined by preparing a calibration curve
that relates emission intensities to spore concentrations for
test samples with known spore concentrations. A lanthanide
complex is used as the analysis reagent, and is comprised of
lanthanide ions bound to multidentate ligands that increase
the dipicolinic acid binding constant through a cooperative
binding effect with respect to lanthanide chloride. The result-
ing combined effect of increasing the binding constant and
eliminating coordinated water and multiple equilibria
increases the sensitivity of the endospore assay by an esti-
mated three to four orders of magnitude over prior art of
endospore detection based on lanthanide luminescence.

U.S. Publication application No. 2004-0014154 for
"Methods and apparatus for assays of bacterial spores" to
Adrian Ponce discloses a sample of unknown bacterial spores
which is added to a test strip. The sample of unknown bacte-

2
rial spores is drawn to a first sample region on the test strip by
capillary action. Species specific antibodies are bound to the
sample when the unknown bacterial spores match the species
specific antibodies, otherwise the sample is left unbound.

5 DPA is released from the bacterial spores in the bound
sample. Terbium ions are combined with the DPA to form a
Tb-DPA complex. The combined terbium ions and DPA are
excited to generate a luminescence characteristic of the com-
bined terbium ions and DPA to detect the bacterial spores. A

io live/dead assay is performed by a release of the DPA for live
spores and a release of DPA for all spores. The detection
concentrations are compared to determine the fraction of live
spores. Lifetime-gated measurements of bacterial spores to
eliminate any fluorescence background from organic chro-

15 mophores comprise labeling the bacterial spore contents with
a long-lifetime lumophore and detecting the luminescence
after a waiting period. Unattended monitoring of bacterial
spores in the air comprises the steps of collecting bacterial
spores carried in the air and repeatedly performing the Tb-

2o DPA detection steps above.
DPA is released from the bacterial spores by microwaving

the spores, germinating the spores with L-alanine, sonicating
the spores with micro spheres or autoclaving the spores. These
methods by no means necessarily exhaust the ways in which

25 the DPA can be released from the spores and all othermethods
of lysing the spores are deemed equivalent.

Exciting the combined terbium ions and DPA generates a
luminescence characteristic of the combined terbium ions
and DPA. This is achieved by radiating the combined terbium

30 ions and DPA with ultraviolet light.
U.S. Pub. App. No. 2004-0014154 further discloses a

method for live/dead assay for bacterial spores comprising
the steps of: providing a solution including terbium ions in a
sample of live and dead bacterial spores; releasing DPA from

35 viable bacterial spores by germination from a first unit of the
sample; combining the terbium ions with DPA in solution
released from viable bacterial spores; exciting the combined
terbium ions and DPA released from viable bacterial spores to
generate a first luminescence characteristic of the combined

40 terbium ions and DPA to detect the viable bacterial spores;
releasing DPA from dead bacterial spores in a second unit of
the sample by autoclaving, sonication or microwaving; com-
bining the terbium ions with the DPA in solution released
from dead bacterial spores; exciting the combined terbium

45 ions and DPA released from dead bacterial spores to generate
a second luminescence characteristic of the combined ter-
bium ions and DPA to detect the dead bacterial spores; gen-
erating a ratio of the first to second luminescence to yield a
fraction of bacterial spores which are alive.

50 U.S. Pub. App. No. 2004-0014154 further discloses a
method for unattended monitoring of bacterial spores in the
air comprising the steps of collecting bacterial spores carried
in the air; suspending the collected bacterial spores in a solu-
tion including terbium ions; releasing DPA from the bacterial

55 spores; combining the terbium ions with DPA in solution;
exciting the combined terbium ions and DPA to generate a
luminescence characteristic of the combined terbium ions
and DPA; detecting the luminescence to determine the pres-
ence of the bacterial spores; and generating an alarm signal

60 when the presence of bacterial spores is detected or the con-
centration thereof reaches a predetermined magnitude.

The step of collecting bacterial spores carried in the air
comprises capturing the bacterial spores with an aerosol sam-
pler or impactor. The step of detecting the luminescence to

65 determine the presence of the bacterial spores comprises
monitoring the luminescence with a spectrometer or fluorim-
eter.
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Preferably, the step of collecting bacterial spores carried in 	 consequently has low luminescence intensity. The Tb 31 ion

the air comprises continuously sampling the air and the step 	 can bind the light harvesting DPA (absorption cross section
of detecting the luminescence to determine the presence of

	
>104M-1) originating from the spore. DPA binding gives rise

the bacterial spores comprises continuously monitoring the	 to bright Tb luminescence.
luminescence.	 5	 FIG. 1C is a diagram of a photophysical scheme for DPA

When the step of releasing DPA from the bacterial spores 	 sensitized luminescence of the Tb complex (absorption-en-
comprises microwaving the bacterial spores to heat the solu-	 ergy transfer-emission, AETE).
tion, the step of combining the terbium ions with the DPA in

	
FIG. 2 depicts a photograph of a backlight illuminated

solution comprises cooling the heated solution to increase the 	 quartz slide with three solidified agar drops. (A) No Tb 31
fraction of bound Tb-DPA complex.	 io added. (B) Tb 3 ' added but no L-alanine (C) Tb3'+L-alanine

Currently, bioburden levels are determined using the cul- 	 after germination completion.
ture-depended methods, with which bacterial spores are

	
FIG. 3 depicts Eu3+ microspheres (1-µm) on fluorescent

quantified in terms of colony forming units (CFU's) that	 paper imaged with an ImageX-TGi gated CCD camera
become visible on growth plates after incubation. There are 	 mounted on a Carl Zeiss fluorescence microscope with 40x
several limitations for culture-depended methods. First, this 15 objective, excited with a 300-Hz Perkin Elmer flashlamp.
process requires 3-5 days to complete. Second, a large num- 	 Images are obtained (A) without gating, (B) with gating (100-
ber of bacterial spores can aggregate on individual particu-	 µs delay, 2.7-ms gate), and (C) 100-µm reference graticule to
lates giving rise to a single CFU, and thus a large underesti- 	 estimate spatial resolution.
mation of the bioburden. Third, colony-counting methods

	
FIG. 4 depicts a schematic apparatus for imaging quanti-

only account for cultivable spore-forming species, which 20 fying and counting of bacterial spores.
constitute less than 1% in environmental samples. 	 FIG. 5 depicts two lifetime gated photographs showing

It is desirable to provide a very sensitive method and appa- 	 bacterial spores on R2A agar before germination (leftportion
ratus for counting bacterial spores after a short time.

	

	 of the figure) and after germination (right portion of the
figure).

SUMMARY	 25
DETAILED DESCRIPTION

According to a first aspect, a method for detecting and
quantifying bacterial spores on a surface is disclosed, com- 	 Bacterial spores are generally accepted to be indicator
pri sing: a) providing a matrix including lanthanide ions on the 	 species for validating sterility since they are the most resilient
surface containing the bacterial spores; b) releasing function-  30 form of life towards sterilization regimens. Sterility testing of
alized aromatic molecules from the bacterial spores on the	 surfaces is traditionally performed with RODAC growth
surface; c) forming a complex of the lanthanide ion and the 	 plates that require 3-5 days before results are available. The
aromatic molecule on the surface; d) exciting the complex of

	
method and apparatus according to the present disclosure will

the lanthanide ion and the aromatic molecule to generate a 	 yield results within minutes for obtaining total bacterial spore
characteristic luminescence of the complex on the surface; 35 counts, and an hour for obtaining viable bacterial spore
and e) detecting and quantifying the bacterial spores exhibit- 	 counts on surfaces.
ing the luminescence of the complex on the surface. 	 Dipicolinic acid (DPA, 2,6 pyridinedicarboxylic acid) is

According to a second aspect, a method for detecting and 	 present in high concentrations (about 1 molar or about 15% of
quantifying bacterial spores on a surface is disclosed, com- 	 by weight) in the core of bacterial spores 38 as a 1:1 complex
prising: a) transferring the bacterial spores from the surface 40 with Ca 2+ as shown in FIG. la. For all known lifeforms, DPA
containing bacterial spores to a test surface; b) providing a 	 is unique to bacterial spores and is released into bulk solution
matrix including lanthanide ions on the test surface; c) releas- 	 upon germination, which is the process of spore-to-vegetative
ing functionalized aromatic molecules from the bacterial 	 cell transformation. Thus, DPA is an indicator molecule for
spores on the test surface; d) forming complexes of the lan- 	 the presence of bacterial spores. DPA is also a classic inor-
thanide ions and the aromatic molecules on the test surface; e) 45 ganic chemistry ligand that binds metal ions with high affin-
exciting the complexes of the lanthanide ions and the aro- 	 ity. DPA binding to terbium ions (or other luminescent lan-
matic molecules to generate a characteristic luminescence of

	
thanide or transition metal ions) triggers intense green

the complexes on the test surface; and f) detecting and quan- 	 luminescence under UV excitation as shown in FIGS. lb  and
tifying the bacterial spores exhibiting the luminescence of the 	 lc. The green luminescence turn-on signal indicates thepres-
complexes on the test surface.	 5o ence of bacterial spores. The intensity of the luminescence

The disclosure also provides an apparatus for detecting and
	

can be correlated to the number of bacterial spores per milli-
quantifying bacterial spores on a surface including lanthanide

	
liter.

ions and aromatic molecules released from the bacterial
	

The Tb-DPA luminescence assay can be employed to
spores on the surface comprising: an UV light radiation	 detect bacterial spores on surfaces, including the surfaces of
device for exciting a complex of a lanthanide ion and an 55 air filters, water membrane filters, and adhesive polymers or
aromatic molecule to generate a characteristic luminescence 	 agarusedto collect bacterial spores from surfaces to be tested.
of the complex on a surface; a microscope for detecting and

	
In this disclosure, surfaces to be analyzed with the Tb-DPA

quantifying bacterial spores exhibiting the luminescence of	 assay are called "test surfaces". For example, the Tb-DPA
the complex on the surface; and an imaging devise for imag-	 luminescence assay can be combined with an optically trans-
ing bacterial spores exhibiting the luminescence.

	

	 60 parent, adhesive polymer or agar to collect bacterial spores
from surfaces to be tested. Once the bacterial spores are

BRIEF DESCRIPTION OF THE DRAWINGS

	

	
located on the test surface, they can be induced to release their
DPA content by germination or physical lysis, for example by

FIG. lA is a microscopic image of a spore (about 1 µm in	 autoclaving or microwaving. The highly concentrated DPA
diameter) highlighting a DPA rich spore core. 	 65 from the spores spills into the surrounding area, generating a

FIG. 1B is a diagram of a Tb` ion (shaded ball) which by
	

high concentration region around the spore body. The
itself has a low absorption cross section (<10 M- 'cm') and	 reagents used for detection and induction of germination, if
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that is the chosen method for DPA release, can be added into

	
during which DPA (i.e., the chemical marker that is unique to

the matrix before or after the spores are sampled. The Tb-DPA
	

bacterial spores) is released, in less than 40 minutes. See FIG.
luminescence arising from the region around the spore body

	
2. A DPA-triggered Tb luminescence with Tb-doped agar was

is then imaged onto a camera. The bacterial spore regions
	

investigated. The samples were prepared by adding —100 ld of
manifest themselves as bright spots which can be counted. 5 agar doped with 1 mM TbC1 3 onto a quartz slide and allowing
Due to the long-lived excited states of luminescent lan- 	 it to solidify. On top of the agar, we added 10 µl of 109
thanides, lifetime-gated detection enables any fluorescent 	 spores/ml Bacillus subtilis spores (i.e., 10' spores), and then
background from interferrents to be elimated. Lifetime gating 	 added a drop of 10 µl of 1-mM L-alanine to induce germina-
drastically reduces the background and enables much greater 	 tion.
contrast between the Tb-DPA luminescence regions and the 10 Under UV (blacklight) illumination, the luminescence of
background.	 the embedded Tb increased dramatically upon germination

One example of an adhesive polymer for the Tb-DPA lumi- 	 within 40 minutes of the bacterial spores, while the embedded
nescence assay for bacterial spores on surfaces is polydim- 	 Tb luminescence in the control sample that had no exposure
ethyl siloxane (PDMS) doped with TbC13 and L-alanine. The	 to L-alanine remained weak. See FIG. 2. An agar control
L-alanine induces germination to release the DPA from the 15 sample without Tb that was covered with bacterial spores also
core of the spore to the immediate surroundings. The TbC13	 did not yield detectable luminescence. Note that the bright
binds the DPA, which triggers green luminescence (543.5

	
edges of the spots are artifacts of drying due to refraction from

mu) under UV excitation (250-300 mu) that can be quantified
	

accumulated material, which would not appear in a lifetime-
with a photodetector. Specifically, imaging individual germi- 	 gated image.
nating spores within a microscope field of view using a life- 20	 The pictures in FIG. 2 were taken without magnification,
time-gated camera will be used as an example. 	 and thus the individual spores cannot be enumerated as they

One example of an adhesive polymer for the Tb-DPA lumi- 	 germinate. However, in the proposed effort, germinating bac-
nescence assay for bacterial spores on surfaces is polydim- 	 terial spores will be imaged with a lifetime-gated microscope.
ethyl siloxane (PDMS) doped with TbC13 and L-alanine. The

	
As the spores germinate, DPA is released from the core to

L-alanine induces germination to release the DPA from the 25 generate local high DPA concentrations, which will show up
core of the spore to the immediate surroundings. The TbC13	 as bright green luminescent halos surrounding the spore body.
binds the DPA, which triggers green luminescence (543.5

	
These results demonstrate that viable bacterial spores on sur-

mu) under UV excitation (250-300 mu) that can be quantified
	

faces by employing the JPL Endo spore Viability Assay can be
with a photodetector. Specifically, we will use the example of

	
enumerated.

imaging individual germinating spores within a microscope 30	 Lifetime-gated images of Eu 3+ microspheres on highly
field of view using a lifetime-gated camera. 	 fluorescent paper were obtained with a lifetime-gated camera

From the perspective of our sensor design, we treat the
	

(Photonic Research Systems Ltd, United Kingdom). See FIG.
bacterial spore essentially as a —1-µm sphere containing —109

	
3. Eu3+ microspheres were employed because they are com-

molecules of DPA. In our previous experiments, we collected
	

mercially available and have analogous photophysical prop-
spores from surfaces using the standard cotton swabbing 35 erties. The ImageX system effectively rejected all of the
method, resuspended the spores into water, and then released

	
strong background fluorescence when a delay time of 100 µs

the DPA contents into bulk solution by germination or physi-	 was used. It is striking that the microspheres exhibiting weak,
cal lysing and subsequently performed the Tb-DPA lumines- 	 long-lived luminescence immobilized on a highly fluorescent
cence assay. This approach led to very dilute DPA solutions 	 matrix are imaged with high contrast against a silent back-
(e.g., 1 spore per ml of solution yields [DPA]1 pM), which 40 ground when gating is applied.
ultimately limits the sensitivity.	 Another example of the invention is illustrated in FIG. 5,

Instead of diluting the DPA into bulk solution, we immo- 	 where bacterial spores were added onto the surface of R2A
bilize the bacterial spores onto an adhesive polymer (e.g., 	 agar doped with 10 mM L-alanine to induce germination and
PDMS), and then induce germination or physically lysis in

	
100 uM TbC13 to generate bright luminescent spots around

the spore population on the polymer to generate local high 45 the spore body as they germinated and released DPA. A
DPA concentrations (i.e, the DPA remains in the immediate

	
Xe-flash lamp firing at 300 Hz with a 275 nm interference

surroundings of the spore body). To obtain viable counts, 	 filter provided excitation for the Tb-DPA complex, and the
germination will be induced by doping L-alanine (or other 	 corresponding bright spots from the bacterial spore Tb-DPA
germination inducing agents) into the polymer matrix; TbC131	 luminescent halos where imaged with a lifetime-gated cam-
also doped into the polymer, report the presence of bacterial 50 era set at a delay time of 100 µs and an integration time of 2
spores by triggering luminescence in the presence of DPA. To 	 ms. The individual bacterial spores become clearly visible as
obtain total counts, the bacterial spores immobilized on the 	 countable spots after they germinated. The images shown in
TbC13 containing polymer will be physical lysed (e.g., by

	
FIG. 5 can be obtained by an apparatus as shown in FIG. 4,

heat, microwaving, or autoclaving) leads to DPA release and
	

which contains a Xenon flash lamp, a microscope objective, a
luminescence turn-on.	 55 microscope, and a lifetime gated camera mounted on the

The present disclosure also includes a method and appara- 	 microscope.
tus to measure the fraction of bacterial spores that remain
viable or alive, hence a live/dead assay for bacterial spores.	 EXAMPLES
The method combines dipicolinic acid triggered terbium
luminescence and dipicolinic acid release from (1) viable 60	 Comparative Example 1 Performed According to
bacterial spore through germination, and (2) all viable and

	
U.S. Pub. App. No. 2004-0014154

nonviable bacterial spores by autoclaving, sonication, or
microwaving. The ratio of the results from steps (1) and (2)

	
Aerosolized bacterial spores were captured with an aerosol

yield the fraction of bacterial spores that are alive. 	 biosampler. The biosampler was filled with 20 ml of 10 µM
The traditional culture based assays require 3 days for 65 TbC1 3 glycerol solution, which has a 95% transfer efficiency

colonies to grow and be counted. However, a significant frac- 	 for microbe-containing aerosols. Once bacterial spores were
tion of bacterial spores can undergo stage-1 germination, 	 suspended in the biosampler collection vessel, DPA was
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released by microwave into the bulk solution within 8 min-
utes. The resulting free DPA then bounded Tb in bulk solu-
tion, giving rise to luminescence turn-on under UV excita-
tion. A fiber optic probe immersed in the sample solution
transmitted the luminescence to a spectrometer.

Approximately 10,000 bacterial spores per 1 ml solution
produced enough DPA to obtain sufficient amount of DPA-Tb
complexes to provide enough luminescence turned-on under
UV excitation to be detected by a spectrometer.

Comparative Example 2 Performed According to
U.S. Pub. App. No. 2004-0014154

Comparative Example 2 was performed like Comparative
Example 1. A fiber optic probe immersed in the sample solu-
tion transmitted the luminescence to a fluorimeter.

Approximately 1,000,000 bacterial spores per 1 ml solu-
tion produced enough DPA to obtain sufficient amount of
DPA-Tb complexes to provide enough luminescence turned-
on under UV excitation to be detected by a spectrometer.

Example 1

Bacteria spores were immobilized onto a test sample sur-
face of thin, flexible, clear, adhesive polymer polydimethyl-
siloxan (PDMS). PDMS was doped with L-alanine to induce
germination and generate local high concentration of DPA.
TbC13 was also doped into the PDMS sample. The bacterial
spores immobilized on the L-alanine and TbC1 3 containing
polymer was physically lysed by microwave irradiation,
wherein DPA was released and luminescence was turned on.
The detection of bacterial spores on the PDMS adhesive
polymer was manifested itself as a bright green luminescence
that was imaged with a lifetime gated microscope. The green
dots within the microscope field of view were counted to
determine the concentration of viable spores found on the
surfaces that was sampled. Therefore, every bacterial spore
releasing luminescence can be individually counted. A con-
centration of 10,000 bacterial spores per 1 ml as in compara-
tive example 1 or 1,000,000 bacterial spores per 1 ml in
comparative example 2 is not required in example 1. As a
consequence, the method according to the disclosure can be
carried out even with an extremely low concentration of bac-
terial spores, even a single bacterial spore.

Another embodiment of the present invention is an appa-
ratus for detecting and quantifying bacterial spores on a sur-
face including lanthanide ions and aromatic molecules
released from the bacterial spores on the surface. See FIG. 4.
The apparatus comprises an UV-light radiation device for
exciting a complex of a lanthanide ion and an aromatic mol-
ecule to generate a characteristic luminescence of the com-
plex on a surface. The source for the UV-light is preferably a
Xenon flash lamp, which is approximately 5 cm away the test
surface. Between the Xenon flash lamp and the test surface
are two C-amount elliptical lenses. The Xenon flash lamp and
the test substrate are positioned in an angel of 45° to each
other. The area of irradiation by the Xenon flash lamp is
observed by a microscope objective with a red bandpass filter
suitable for Eu" for detecting and quantifying bacterial
spores exhibiting the luminescence of the complex on the
surface. The image is transferred from the microscope to the
imaging devise for imaging bacterial spores exhibiting the
luminescence, preferably an imageX nanoCCD camera.

The method and apparatus of the present disclosure pro-
vide the imaging of the spherical resolution of the high con-
centrating region of DPA around each spore body, which has

8
been lysed. The present method makes it possible to detect
and quantify extremely low concentrations of bacterial spores
in very short time.

Bioburden testing is an assessment of the numbers and
5 types of microorganisms present on a product, and may be

used to support sterilization validations. Sterility determina-
tion for surfaces are required by the pharmaceutical, health
care, and food preparation industries for compliance with
bioburden standards as outlined by USP, FDA, PDA, and

i o AAMI.
While several illustrative embodiments have been shown

and described in the above description, numerous variations
and alternative embodiments will occur to those skilled in the
art. Such variations and alternative embodiments are contem-

15 plated, and can be made without departing from the scope of
the invention as defined in the appended claims.

What I claim is:
1. A method for detecting and quantifying individual bac-

terial spores on a test surface comprising:
20	 providing a matrix including one or more lanthanide ions

on the test surface containing the bacterial spores;
releasing functionalized aromatic molecules from the bac-

terial spores onto the surface;
forming a complex of the lanthanide ion and the aromatic

25	 molecule on the test surface;
exciting the complex of the lanthanide ion and the aromatic

molecule to generate a characteristic luminescence of
the complex on the test surface; and

detecting and quantifying, through lifetime-gated imaging,
30	 the individual bacterial spores exhibiting the lumines-

cence of the complex on the test surface.
2. The method according to claim 1, wherein one or more

lanthanide ions are provided to the matrix prior to the bacte-
rial spores, after the bacterial spores.

35 3. The method according to claim 1, wherein the provided
lanthanide ions are terbium or europium ions or a mixture
thereof.

4. The method according to claim 1, wherein the released
aromatic molecules are dipicolinic acid (DPA) and/or deriva-

40 tives thereof.
5. The method according to claim 1, wherein the aromatic

molecules are released from the bacterial spores by micro-
waving the bacterial spores.

6. The method according to claim 1, wherein the aromatic
45 molecules are released from the bacterial spores by germinat-

ing the bacterial spores with L-alanine, inosine and mixtures
thereof.

7. The method according to claim 1, wherein the aromatic
molecules are released from the bacterial spores by sonicat-

50 ing the bacterial spores with microspheres.
8. The method according to claim 1, wherein the aromatic

molecules are released from the bacterial spores by autoclav-
ing.

9. The method according to claim 1, wherein the complex
55 of the lanthanide ion and the aromatic molecule is excited by

UV light.
10. The method according to claim 1, wherein the lifetime-

gated imaging comprises counting bright spots due to DPA
triggered luminescence around the bacterial spores shown in

60 images obtained by a camera, preferably mounted on top of a
microscope.

11. The method according to claim 10, wherein the imag-
ing shows the specific resolution of the concentration of dipi-
colinic acid around the individual bacterial spores, which

65 release dipicolinic acid.
12.A method for detecting and quantifying individual bac-

terial spores on a surface comprising:
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transferring the bacterial spores from the surface contain-
ing bacterial spores to a test surface;

providing a matrix including lanthanide ions on the test
surface;

releasing functionalized aromatic molecules from the bac-
terial spores on the test surface;

forming complexes of the lanthanide ions and the aromatic
molecules on the test surface;

exciting the complexes of the lanthanide ions and the aro-
matic molecules to generate a characteristic lumines-
cence of the complexes on the test surface; and

detecting and quantifying through lifetime-gated imaging,
the individual bacterial spores exhibiting the lumines-
cence of the complexes on the test surface.

13. The method according to claim 12, wherein the test
surface contains at least one polymer.

14. The method according to claim 12, wherein the test
surface contains at least one adhesive polymer.

15. The method according to claim 12, wherein the test
surface contains at least one adhesive polymer, which is trans-
parent until about 250 mu, thereby providing a transparent
test surface.

16. The method according to claim 12, wherein the test
surface contains at least one lanthanide ions and L-alanine
doped polymer.

17. The method according to claim 12, wherein the test
surface contains at least one lanthanide ion and L-alanine
doped polydimethylsiloxane polymer.

18. The method according to claim 12, wherein the test
surface contains at least one agar.

19. The method according to claim 12, wherein the pro-
vided lanthanide ions are terbium or europium ions or a
mixture thereof.

20. The method according to claim 12, wherein the
released aromatic molecules are dipicolinic acid (DPA).

21. The method according to claim 12, wherein the aro-
matic molecules are released from the bacterial spores by
microwaving the bacterial spores.

22. The method according to claim 12, wherein the aro-
matic molecules are released from the bacterial spores by
germinating the bacterial spores with L-alanine.

10
23. The method according to claim 12, wherein the aro-

matic molecule are released from the bacterial spores by
sonicating the bacterial spores with microspheres.

24. The method according to claim 12, wherein the com-
5 plex of the lanthanide ion and the aromatic molecule is

excited by UV light.
25. The method according to claim 12, wherein the imag-

ing shows the specific resolution of the concentration of dipi-
colinic acid around bacterial spores, whichrelease dipicolinic

io acid.
26. The method according to claim 1, wherein the matrix

containing bacterial spores comprises at least one air filter.
27. The method according to claim 12, wherein the matrix

containing bacterial spores comprises at least one air filter.
15	 28. The method according to claim 1, wherein the matrix

containing bacterial spores comprises at least one water filter.
29. The method according to claim 12, wherein the matrix

containing bacterial spores comprises at least one water filter.
30. An apparatus for detecting and quantifying individual

20 bacterial spores on a surface including lanthanide ions and
aromatic molecules released from the bacterial spores on the
surface comprising:

a test surface having thereon bacterial spores, lanthanide
ions and aromatic molecules released from the bacterial

25 spores, wherein the aromatic molecules have been
released on the test surface by germination of bacterial
spores by the addition of L-alanine, inosine or mixtures
thereof or the lysis of bacterial spores by means of one
selected from autoclaving, microwaving, heating and

30	 sonlcation;
a UV-light radiation device for exciting a complex of lan-

thanide ion and aromatic molecule to generate a charac-
teristic luminescence of the complex on the test surface;

a microscope for detecting and quantifying bacterial spores
35	 exhibiting the luminescence of the complex on the test

surface; and
a lifetime-gated imaging device for imaging bacterial

spores exhibiting the luminescence.
31. The method according to claim 1, wherein one or more

40 lanthanide ions are provided as a mixture with the bacterial
spores.
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