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cludes these features initially for zero
cost. It is also assumed that the feature ac-
quisition (FA) cost associated with each
feature is known in advance, and that the
FA cost for a given feature is the same for
all instances. Finally, CFA requires that
the base-level classifiers produce not only
a classification, but also a confidence (or
posterior probability).

CFA trains an ensemble of classifiers
M0 . . . Mf that use successively larger
subsets of the features to classify in-
stances. M0 uses only the “free” (zero
cost) features, and M1 additionally in-

corporates costly features F1 through Fi .
CFA reduces FA cost in that model Mi is
trained only on instances that cannot be
classified with sufficient confidence by
model Mi – 1. Therefore, values for fea-
ture Fi are acquired only for the in-
stances that require it. At test time, each
test instance is successively classified by
M0, M1, M2 . . . until its classification is
sufficiently confident (i.e., until the con-
fidence of the prediction reaches the
confidence threshold). Again, features
are acquired for the new instance only as
required. In an empirical comparison

with an existing method (Cost-Sensitive
Naive Bayes) that makes acquisition de-
cisions only during test time (and there-
fore requires that all training items be
fully acquired), CFA achieves the same
(or higher) level of performance at a
much reduced cost (by at least an order
of magnitude).

This work was done by Kiri L. Wagstaff of
Caltech and Marie desJardins and James Mac-
Glashan of the University of Maryland for
NASA’s Jet Propulsion Laboratory. For more in-
formation, contact iaoffice@jpl.nasa.gov.
NPO-46886

A two-stage predictive method was de-
veloped for lossless compression of cali-
brated hyperspectral imagery. The first
prediction stage uses a conventional lin-
ear predictor intended to exploit spatial
and/or spectral dependencies in the
data. The compressor tabulates counts
of the past values of the difference be-
tween this initial prediction and the ac-
tual sample value. To form the ultimate
predicted value, in the second stage,
these counts are combined with an

adaptively updated weight function in-
tended to capture information about
data regularities introduced by the cali-
bration process. Finally, prediction
residuals are losslessly encoded using
adaptive arithmetic coding.

Algorithms of this type are commonly
tested on a readily available collection of
images from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) hyper-
spectral imager. On the standard calibrated
AVIRIS hyperspectral images that are most

widely used for compression benchmark-
ing, the new compressor provides more
than 0.5 bits/sample improvement over the
previous best compression results.

The algorithm has been implemented
in Mathematica. The compression algo-
rithm was demonstrated as beneficial on
12-bit calibrated AVIRIS images.
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A recently developed algorithm for de-
modulation and decoding of a pulse-posi-
tion-modulation (PPM) signal is suitable
as a basis for designing a single hardware
decoding apparatus to be capable of han-
dling any PPM order. Hence, this algo-
rithm offers advantages of greater flexi-
bility and lower cost, in comparison with
prior such algorithms, which necessitate

the use of a distinct hardware implemen-
tation for each PPM order. In addition, in
comparison with the prior algorithms,
the present algorithm entails less com-
plexity in decoding at large orders.

An unavoidably lengthy presentation of
background information, including defi-
nitions of terms, is prerequisite to a mean-
ingful summary of this development. As

an aid to understanding, the figure illus-
trates the relevant processes of coding,
modulation, propagation, demodulation,
and decoding. An M-ary PPM signal has M
time slots per symbol period. A pulse (sig-
nifying 1) is transmitted during one of the
time slots; no pulse (signifying 0) is trans-
mitted during the other time slots.

The information intended to be con-
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Processing of Information in an M-ary PPM communication system includes the sequence of steps depicted here. The l-bit marginalizer is a feature of the
innovation reported here; the other features are typical of PPM systems in general.
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