Polarization Imaging Apparatus
Lyndon B. Johnson Space Center, Houston, Texas

A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic® material—a ceramic that has a high electro-optical coefficient.

This work was done by Yingyin K. Zou and Quishui Chen of Boston Applied Technologies, Inc. for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:
Boston Applied Technologies
6F Gill Street
Woburn, MA 01801
Phone No.: (781) 935-2800
Refer to MSC-24173-1, volume and number of this NASA Tech Briefs issue, and the page number.

Stereoscopic Machine-Vision System Using Projected Circles
This system identifies obstacles in relatively short processing times.
John H. Glenn Research Center, Cleveland, Ohio

A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine-vision systems to enable robotic vehicles (“rovers”) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe.

In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe.

Concentric Circles of Light are projected forward and observed by a stereoscopic pair of cameras. Distortions of the circle images in the cameras are used to identify and locate objects large enough to constitute obstacles.