EXPERIMENTAL INVESTIGATION OF SPACE RADIATION PROCESSING IN LUNAR SOIL ILMENITE: COMBINING PERSPECTIVES FROM SURFACE SCIENCE AND TRANSMISSION ELETTRON MICROSCOPY. R. Christoffersen1,2, L. P. Keller1, C. Dukes3, Z. Rahman1,2 and R. Baragiola3

1ARES, Mail Code KR, NASA Johnson Space Center, Houston, TX, 77058, roy.christoffersen-1@nasa.gov, 2Jacobs Technology, ESCG, Mail Code JE23, Houston, TX, 77058, 3Laboratory for Atomic and Surface Physics, University of Virginia, Charlottesville, VA 22904.

Introduction. Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO$_3$) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4].

Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper-penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (~5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

XPS Methods and Results: A synthetic FeTiO$_3$ powder was used in order to meet sample volume requirements for XPS and match the Fe/Ti stoichiometry and Fe oxidation state of lunar ilmenites. Baseline high-resolution scans of the Fe and Ti 2p peaks in this material show Fe and Ti are primarily in the +3 and +4 oxidation states respectively, likely the result of atmospheric reactions operating on the 1-5 nm depth scales probed by XPS. Following acquisition of the baseline XPS scans the sample was immediately ion-irradiated in-situ with 4 keV He$^+$ ions to a first dose of 1×1017 He$^+$/cm2 and a final dose of 3×1017 He$^+$/cm2, with XPS data acquired after each irradiation. Based on shifts in binding energy of the Fe and Ti 2p peaks, the post-irradiation XPS spectra at each dose step show conversion of surface Fe from +3 to a mixture of +2 and 0 (metallic) state at the first dose step, and then ultimately to a final, nearly complete, metallic state (Fig. 1). In addition, Ti progresses with ion dose from +4 to a mixture of more reduced states, likely +3 and +2 (Fig. 2). These chemical state changes are accompanied by a progressive factor of 2 to 3 decrease in surface O/Fe and O/Ti atomic ratios, showing dramatic surface O loss by preferential sputtering. A less dramatic 15-30% decrease in Fe/Ti ratio is also observed as irradiation progresses, consistent with some preferential sputtering of Fe relative to Ti.
FE-STEM Methods and Results: For TEM study, a focused ion beam (FIB) section was extracted from the top surface of a 10 µm-diameter irradiated ilmenite grain from the uppermost layer of the XPS sample. Surface damage artifacts from the FIB ion-assisted deposition and milling were minimized by using electron beam deposition for the protective C and Pt “strap” layers. The combined results of STEM bright-field imaging and energy-dispersive x-ray (EDX) spectral imaging with a 2 nm probe size revealed a sequence of four microstructurally and compositionally distinct regions within the top 100 nm of the sample (Fig. 3). Compositional line-profiles across these regions were extracted and quantified from EDX spectrum images (Figs. 3,4). Moving inward from the surface, Region D is a porous, low-density, layer that is Fe-rich relative to stoichiometric ilmenite (Fe/Ti atomic ratio of ~3-4). High-resolution TEM imaging and EDX analysis indicate this layer is comprised predominantly of a network of nanophase Fe metal particles, although other phases may be present. At a depth of ~50 nm, Region D transitions to a 10-20 nm-thick Fe-depleted layer (Region C; Fe/Ti = 0.6-0.75). Although similarly porous like Region D, the void spaces in Region C are larger and appear to be He-“bubbles” formed by coalescence of implanted He in voids or vacancy clusters. Below Region C, the Fe/Ti atomic ratio shifts briefly to near unity before changing, in Region B, to a second set of slightly Fe-depleted values (Fe/Ti ~ 0.8-0.9). Region B is about 50 nm thick and transitions to the bottom or “base” layer of un-altered ilmenite at a depth of ~100 nm.

Discussion: Allowing for reasonable changes in target density during the irradiation, there is qualitative agreement between the ~100 nm total thickness of the altered surface layers and He⁺ ion range data from SRIM calculations [5]. This supports the interpretation that the observed effects are from radiation processing, but it is notable that the final He⁺ dose did not result in amorphization of the sample at any depth. If the He⁺ dose is converted to ion-deposited atomic collision energy (E_d) using SRIM, our results place a lower limit on the threshold E_d for ilmenite amorphization of 120 keV/nm³, roughly an order of magnitude higher than the E_d values for silicates [6]. The complex microstructural and composition changes in the sample may suggest, however, that amorphization is overshadowed, or possibly prevented, by conversion of the irradiated region to “non-ilmenite” bulk compositions/phase assemblages. For the top-most ~1-5 nm surface region, the compositional changes are dominated by a dramatic loss of O relative to cations due to preferential sputtering. The associated metalization of Fe in this top-most region is shown by TEM to extend well below the typical ~1-5 nm surface depth probed by XPS. Preferential sputter removal aided by radiation enhanced diffusion of O from this depth is not, however, inconsistent with other studies [7].

The Fe/Ti compositional relations observed by TEM show for the first time that ion radiation alone is capable of broadly re-producing the “surface Fe enriched /interior Fe depleted” compositional pattern on natural lunar ilmenites [1,3]. Details such as the “double-dip” in the Fe/Ti ratio and presence of He bubbles in the experimental sample remain to be matched with the natural ilmenite rims samples, but as noted in [3], the natural samples are subjected to a range of additional processes that may operate to smooth out or removed these features. Our finding that XPS shows Ti/Fe > 1 on the top-most surface of the “D” layer, when TEM suggests this layer is mostly Fe metal, likely reflects the details of a surface reconstruction layer that XPS measures but TEM does not.