mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Atti-
titude and position can be generated from each image; this image-based atti-
titude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will im-
prove the position estimates.

The algorithm uses normalized cor-
relation of grayscale images, producing
precise, sub-pixel images. The algo-
rithm has been broken into two sub-al-
gorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the fre-
quency domain, and (2) Mapped Land-
mark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature
selection, the homography transform, and 3D image correlation. The algo-
rithm is implemented in C++ and is
rated at Technology Readiness Level
(TRL) 4.

This work was done by Andrew Johnson, Adnan Ansar, and Larry Matthies of Caltech for NASA's Jet Propulsion Laboratory. Fur-
ther information is contained in a TSP (see page 1).

The software used in this innovation is available for commercial licensing. Please contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322. Refer to NPO-44463.

Web-Based Environment for Maintaining Legacy Software

Lyndon B. Johnson Space Center, Houston, Texas

“Advanced Tool Integration Envi-
rnment” ("ATIE") is the name of both a software system and a Web-based envi-
rnment created by the system for main-
taining an archive of legacy software and expertise involved in developing the legacy software. ATIE can also be used in
modifying legacy software and develop-
ing new software. The information that
can be encapsulated in ATIE includes
experts' documentation, input and out-
put data of tests cases, source code, and
compilation scripts. All of this informa-
tion is available within a common envi-
rnment and retained in a database for
case of access and recovery by use of
powerful search engines. ATIE also ac-
 commodates the embedment of sup-
porting software that users require for
their work, and even enables access to
supporting commercial-off-the-shelf
(COTS) software within the flow of the
experts' work.

The flow of work can be captured by
saving the sequence of computer pro-
grams that the expert uses. A user gains
access to ATIE via a Web browser. A
modern Web-based graphical user inter-
face promotes efficiency in the retrieval,
exection, and modification of legacy
code. Thus, ATIE saves time and money
in the support of new and pre-existing
programs.

This program was written by Michael
Tigges of Johnson Space Center; Nelson
Thompson, Mark Orr, and Richard Fox of
Dynacs, Inc.; and Rich Rohan of Lockheed
Martin Corp. Further information is con-
tained in a TSP (see page 1). MSC-23810-1

Information Metacatalog for a Grid

Ames Research Center, Moffett Field, California

SWIM is a Software Information
Metacatalog that gathers detailed in-
formation about the software compo-
nents and packages installed on a grid
resource. Information is currently
gathered for Executable and Linking
Format (ELF) executables and shared
libraries, Java classes, shell scripts, and
Perl and Python modules. SWIM is built
on top of the POUR framework, which is described in the preceeding ar-
ticle. SWIM consists of a set of Perl
modules for extracting software infor-
mation from a system, an XML schema
defining the format of data that can be
added by users, and a POUR XML
configuration file that describes how
descrete elements are used to generate pe-
Periodic software information is derived mainly from the package managers used on each system. SWIM collects information from native package managers in FreeBSD, Solaris, and IRX as well as the RPM, Perl, and Python package managers on multiple platforms. Because not all software is available, or installed in package form, SWIM also crawls the set of relevant paths from the File System Hierarchy Standard that defines the standard file system structure used by all major UNIX distributions. Using these two techniques, the vast majority of software installed on a system can be located. SWIM computes the same information gathered by the periodic routines for specific files on specific hosts, and locates software on a system given only its name and type.

This program was written by Paul Kolano of Advanced Management Technology for Ames Research Center. For further information, access http://opensource.arc.nasa.gov/ or contact the Ames Technology Partnerships Division at (650) 604-2954.
ARC-15469-1

Grid Task Execution
Ames Research Center, Moffett Field, California

IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries.

Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

This program was written by Chaumin Hu of Advanced Management Technology for Ames Research Center. For further information, access http://opensource.arc.nasa.gov/ or contact the Ames Technology Partnerships Division at (650) 604-2954.
ARC-15529-1

Parallel-Processing Software for Correlating Stereo Images
NASA’s Jet Propulsion Laboratory, Pasadena, California

A computer program implements parallel-processing algorithms for correlating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rover). Such correlations are used to create three-dimensional computational models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) operating simultaneously. Because each subimage is smaller than a full image, the correlation process takes less time than it would if full images were processed on one CPU. Segmentation and parallelization also make the process more robust in that the smaller subimages present fewer opportunities for a correlation algorithm to “get lost” and thereby fail to converge on a solution. The effectiveness of this program has been demonstrated on several parallel-processing computer systems. Whereas correlation processing of a typical stereoscopic pair of test images on a single CPU was found to take on the order of one hour, parallel processing of the same images on a 16-CPU cluster was found to take about 5 minutes.

This program was written by Gerhard Klimeck, Robert Deen, Michael Mcmudley, and Eric De Jong of Caltech for NASA’s Jet Propulsion Laboratory.

This software is available for commercial licensing. Please contact Karina Edmonds of the California Institute of Technology at (626) 395-2322. Refer to NPO-30631.

Knowledge Base Editor (SharpKBE)
NASA’s Jet Propulsion Laboratory, Pasadena, California

The SharpKBE software provides a graphical user interface environment for domain experts to build and manage knowledge base systems. Knowledge bases can be exported/translated to various target languages automatically, including customizable target languages. The tool enhances current practices by minimizing reliance on toolsmiths for system workflow management, and also improves the quality and maintenance of those systems by reducing the number of errors within the knowledge bases. This tool’s primary capability is in the area of expert systems modeling, specifically where there is a need to capture and efficiently manage large quantities of domain information (see figure).

The SharpKBE supports C# and SHINE targets, and in concert with SHINE additionally produces C and