The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test

Prasad Kutty
Analytical Mechanics Associates, Inc.
NASA Dryden Flight Research Center, Edwards, CA

William Pratt
Lockheed Martin Space Systems Company
Denver, CO
Constellation, Orion Overview

- Space Shuttle set to retire in the near future
- Constellation to succeed the Space Shuttle Program
- Orion Program consists of crewed portion of Constellation
Abort Flight Test, PA-1 Overview

- Abort Flight Test (AFT) Program dedicated to flight testing the Launch Abort System (LAS)
- LAS provides the crew with an egress system in the event of an emergency
- AFT includes a series of flight tests (pad and ascent) that Orion will leverage in developing the LAS
- Pad Abort One (PA-1) is the first flight test scheduled for early 2010, at White Sands Missile Range (WSMR), New Mexico
Debris Catalog Analysis

• With each flight test a Range Safety Data Package is assembled to understand the potential consequences of various failure scenarios
• Debris catalog analysis considers an overpressure failure of the Abort Motor and the resulting debris field created
 1. Characterize debris fragments generated by failure: weight, shape, and area
 2. Compute fragment ballistic coefficients
 3. Compute fragment ejection velocities
Fragment Distribution

- Propellant only distribution – motor case fragments considered negligible due to composite material
- Statistical model is applied to characterize AM fragments created in overpressure failure
- Previous investigations of solid rocket launch vehicle failures reveal consistent trends in fragment distribution
- Log-normal Distribution can be used to represent fragment distribution

![Graph showing Normal and Log-normal distributions](image)
Fragment Distribution

- Distribution model applied at four points, burn stages, along the PA-1 trajectory
- Burn stages correspond to amount of propellant burned at time of destruct:
 - 1: 0 % Burned (on the pad)
 - 2: 25% Burned
 - 3: 50 % Burned
 - 4: 75 % Burned

![Graph showing fragment distribution with different burn stages]
Ballistic Coefficient Computation

• Function of mass, area, and drag coefficient:

\[\beta = \frac{m}{c_d A} \]

• Lower drag coefficients and higher mass to area ratios yield higher ballistic coefficients
• Higher ballistic coefficient items travel farther downrange
• Mass and area of fragment obtained during catalog distribution determination
• Drag coefficient taken from accepted aerodynamic data
Ejection Velocity Model

• Energy transfer approach
 – Potential energy from overpressure is converted into fragment kinetic energy
 – Pressure wave results, distribution of force is applied to fragments
 – Fragments attain an ejection velocity within a few microseconds

• Assume that case debonds from propellant creating a pressurized control volume

*Not to scale
Velocity Model Energy Balance

• Three control volumes:
 – motor chamber
 – propellant-case gap
 – atmosphere

• For each control volume:

\[\dot{E}_i = \dot{E}_{i, \text{flowin}} - \dot{E}_{i, \text{flowout}} - \dot{W}_{\text{fragment}} \]

• Assume that energy can only flow out of the chamber and into the atmosphere:

\[\dot{E}_{1, \text{flowin}} = 0 \]
\[\dot{E}_{3, \text{flowout}} = 0 \]
Project Orion Abort Flight Test

Final Ejection Velocity

- Pressure of each control volume can be calculated from corresponding energy states
- Force applied to fragment is obtained from pressure distribution
- Acceleration and velocity are derived from force
- Simulation is propagated until pressures reach equilibrium and velocity asymptotes
Results

• Key behavior is inverse relationship between fragment size and fragment ejection velocity
• As fragments become more massive, force is applied on a smaller area per unit mass
• This behavior accounts for two trends:
 – Decrease in velocity with increasing weight class
 – Increase in velocity with increasing burn stage

<table>
<thead>
<tr>
<th>Burn Stage</th>
<th>Smallest Fragment</th>
<th>Largest Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass (lbm)</td>
<td>Velocity (ft/s)</td>
</tr>
<tr>
<td>0%</td>
<td>0.43</td>
<td>690</td>
</tr>
<tr>
<td>25%</td>
<td>0.41</td>
<td>730</td>
</tr>
<tr>
<td>50%</td>
<td>0.31</td>
<td>790</td>
</tr>
<tr>
<td>75%</td>
<td>0.29</td>
<td>860</td>
</tr>
</tbody>
</table>
Results

- Minimum and maximum velocities converge towards later burn stages
- Converging behavior reflects reduction in propellant remaining at progressive burn stages
Assumptions, Suggested Future Work

• Assumptions
 – Applicability of statistical distribution model towards PA-1 Abort Motor
 – Effect of composite case on distribution model and velocity model

• Future Work
 – More robust distribution discretization method
 – Complete analysis for future AFT missions
Questions?
References

AM Propellant Grain Geometry

True grain geometry

AM case
AM propellant

AM grain cavity

Idealized grain geometry

Web thickness

*Not to scale
Fragment Class Clustering

Group Distribution

Class Distribution