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Constellation, Orion Overview 

•  Space Shuttle set to retire in the near future 
•  Constellation to succeed the Space Shuttle Program 
•  Orion Program consists of crewed portion of Constellation 
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Abort Flight Test, PA-1 Overview 

•  Abort Flight Test (AFT) Program dedicated to flight testing the 
Launch Abort System (LAS) 

•  LAS provides the crew with an egress system in the event of an 
emergency 

•  AFT includes a series of flight tests (pad and ascent) that Orion will 
leverage in developing the LAS 

•  Pad Abort One (PA-1) is the first flight test scheduled for early 2010, 
at White Sands Missile Range (WSMR), New Mexico 
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Pitch-over Phase 

Downrange Phase Reorientation Phase 
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Debris Catalog Analysis 

•  With each flight test a Range Safety Data Package is assembled to 
understand the potential consequences of various failure scenarios 

•  Debris catalog analysis considers an overpressure failure of the 
Abort Motor and the resulting debris field created 

1.  Characterize debris fragments generated by failure: weight, 
shape, and area 

2.  Compute fragment ballistic coefficients 
3.  Compute fragment ejection velocities 
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Fragment Distribution 

•  Propellant only distribution – motor case fragments considered 
negligible due to composite material 

•  Statistical model is applied to characterize AM fragments created in 
overpressure failure 

•  Previous investigations of solid rocket launch vehicle failures reveal 
consistent trends in fragment distribution 

•  Log-normal Distribution can be used to represent fragment 
distribution 
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Fragment Distribution 

•  Distribution model applied at four points, burn stages, along the PA-1 
trajectory 

•  Burn stages correspond to amount of propellant burned at time of 
destruct: 

–  1: 0 % Burned (on the pad) 
–  2: 25% Burned 
–  3: 50 % Burned 
–  4: 75 % Burned 
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Ballistic Coefficient Computation 
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•  Function of mass, area, and drag coefficient: 

•  Lower drag coefficients and higher mass to area ratios yield higher 
ballistic coefficients 

•  Higher ballistic coefficient items travel farther downrange 
•  Mass and area of fragment obtained during catalog distribution 

determination 
•  Drag coefficient taken from accepted aerodynamic data 
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Ejection Velocity Model 

•  Energy transfer approach 
–  Potential energy from overpressure is converted into fragment kinetic 

energy 
–  Pressure wave results, distribution of force is applied to fragments 
–  Fragments attain an ejection velocity within a few microseconds 

•  Assume that case debonds from propellant creating a pressurized 
control volume 
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Velocity Model Energy Balance 

•  Three control volumes: 
– motor chamber 
–  propellant-case gap 
–  atmosphere 

•  For each control volume: 

•  Assume that energy can only flow out of the chamber and into the 
atmosphere: 
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Final Ejection Velocity 

•  Pressure of each control volume can be calculated from 
corresponding energy states 

•  Force applied to fragment is obtained from pressure distribution 
•  Acceleration and velocity are derived from force 
•  Simulation is propagated until pressures reach equilibrium and 

velocity asymptotes 
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Results 

•  Key behavior is inverse relationship between fragment size and 
fragment ejection velocity 

•  As fragments become more massive, force is applied on a smaller 
area per unit mass 

•  This behavior accounts for two trends: 
–  Decrease in velocity with increasing weight class 
–  Increase in velocity with increasing burn stage 
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Smallest Fragment Largest Fragment 

Burn 
Stage 

Mass 
(lbm) 

Velocity 
(ft/s) 

Mass 
(lbm) 

Velocity 
(ft/s) 

0% 0.43 690 42 400 
25% 0.41 730 33 480 
50% 0.31 790 23 600 
75% 0.29 860 12 850 
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Results 

•  Minimum and maximum velocities converge towards later burn 
stages 

•  Converging behavior reflects reduction in propellant remaining at 
progressive burn stages 
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Assumptions, Suggested Future Work 
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•  Assumptions 
–  Applicability of statistical distribution model towards PA-1 Abort 

Motor 
–  Effect of composite case on distribution model and velocity model 

•  Future Work 
– More robust distribution discretization method 
–  Complete analysis for future AFT missions 
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Control Systems Seminar 
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Questions? 
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AM Propellant Grain Geometry 
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Fragment Class Clustering 
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