Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443–757–5803

- Telephone the NASA STI Help Desk at 443–757–5802

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

Dongming Zhu and Charles M. Spuckler
Glenn Research Center, Cleveland, Ohio

Prepared for the
33rd International Conference and Exposition on Advanced Ceramics and Composites
sponsored by the American Ceramic Society
Daytona Beach, Florida, January 18–23, 2009

National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

February 2010
This work was sponsored by the Fundamental Aeronautics Program at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Available electronically at http://gltrs.grc.nasa.gov
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

Dongming Zhu and Charles M. Spuckler
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

The lattice and radiation conductivity of ZrO₂-Y₂O₃ thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
Revolutionary Ceramic Coatings Greatly Impact Gas Turbine Engine Technology

- Ceramic thermal and environmental barrier coating system development goals
 - Meet engine temperature and performance requirements
 - Ensure long-term durability
 - Improve technology readiness
 - Develop design tools and lifing methodologies

- Crucial for envisioned supersonic vehicles: reduced engine emission, improved efficiency and long-term supersonic cruise durability

Step increase in temperature capability

- **Combustor TBC**: 2700 °F (1482 °C)
- **SiC/SiC CMC and Si$_3$N$_4$ coatings**: 3100 °F (1650 °C)
- **Ceramic Matrix Composite**: 2400 °F (1316 °C)
- **Single Crystal Superalloy**: 2000 °F (1093 °C)
- **Gen IV**
- **Gen III - Current commercial**

Revolutionary Ceramic Coatings Impact Gas Turbine Engine Technology (Continued)
Objectives

- Evaluate thermal conductivity and thermal radiation resistance of ceramic coatings at high temperatures (2700 to 3200 °F), under realistically thermal gradient conditions
- Facilitate the development of advanced thermal and environmental barrier coatings
- Improve understanding of the coating thermal radiation performance

NASA Steady-State Laser Heat-Flux Approach for Ceramic Coating Thermal Conductivity Measurements

- A uniform laser (wavelength 10.6 µm) power distribution achieved using integrating lens combined with lens/specimen rotation
- The ceramic surface and substrate temperatures measured by 8 µm and two-color pyrometers and/or by an embedded miniature thermocouple
- Thermal conductivity measured at 5 sec intervals in real time
Ceramic Coating Thermal Conductivity Measurement Approach by the Laser High-Heat-Flux Testing

\[k_{\text{ceramic}}(t) = \frac{q_{\text{thru}}}{\Delta T_{\text{ceramic}}(t)} \]

Where

\[q_{\text{thru}} = q_{\text{delivered}} - q_{\text{reflected}} - q_{\text{radiated}} \]

and

\[\Delta T_{\text{ceramic}}(t) = T_{\text{ceramic-surface}} - T_{\text{metal}} - \Delta T_{\text{metal-substrate}} - \Delta T_{\text{metal-bond}} \]

Two-color and 8 μm pyrometers for \(T_{\text{ceramic-surface}} \)

Optional miniature thermocouple for additional heat-flux calibration

Thermal Conductivity of Fully Dense Oxides

The radiation conductivity component evaluated

Significant conductivity increase due to increased radiation at high temperatures especially under thermal gradients

- Laser heat flux
- Laser heat flux
- Laser heat flux

Ceramic coating

(a) Internal radiation
(b) Combined internal & external radiation
(c) External radiation

La₂Zr₂O₇

Hot-pressed specimens

Increasing porosity

La₂Zr₂O₇ sol-gel hot-press
La₂Zr₂O₇ sol-gel hot-press
La₂Zr₂O₇ hot-press

ZrO₂-8wt%Y₂O₃ plasma-sprayed porous coating

Free-standing coating

La₂Zr₂O₇ hot-press

Increasing porosity

La₂Zr₂O₇ sol-gel hot-press
La₂Zr₂O₇ sol-gel hot-press
La₂Zr₂O₇ hot-press

www.nasa.gov
Thermal Conductivity of Fully Dense Oxides (Continued)

![Graph showing thermal conductivity vs. surface temperature](image)

Evaluation of Lattice and Radiation Thermal Conductivity of TEBC Systems at High Temperatures

- ZrO$_2$-8wt%Y$_2$O$_3$/BSAS/mullite+20wt%BSAS/Si coating on SiC/SiC CMC substrate
- Conductivity determined by a steady-state laser heat-flux technique
- Coating surface radiation can contribute 5 to 15% total heat transfer at 1650 °C

![Graph showing normalized thermal conductivity vs. time](image)

![Graph showing normalized thermal conductivity vs. temperature](image)
 Radiative Diffusion Models

The diffusion conduction equations

\[q_{\text{total}} = k_{\text{cond}} \frac{dT}{dx} + \frac{16\sigma \cdot n^2 \cdot T_{m}^3}{3(a + \sigma_s)} \frac{dT}{dx} = \left(k_{\text{cond}} + \frac{16\sigma \cdot n^2 \cdot T_{m}^3}{3(a + \sigma_s)} \right) \frac{dT}{dx} \]

\[k_{\text{effective}} = k_{\text{cond}} + \frac{16\sigma \cdot n^2 \cdot T_{m}^3}{3(a + \sigma_s)} = k_{\text{cond}} + k_{\text{rad}} \]

\[q_{r1} \]

\[T_{g1} \]

\[D \]

\[T_{g2} \]

\[q_{r2} \]

\[T_{s1} \]

\[q_{s} \]

\[T_{s2} \]

\[T_{g} \]

\[T_{m} \]

\[T_{ave} \]

\[\sigma \]

\[\sigma_s \]

\[a \]

\[n \]

\[\text{Stefan-Boltzman constant} \]

\[5.6704 \times 10^{-8} \text{ W/(m}^2\text{-K}^4) \]

\[2.2 \]

\[\text{Absorption coefficient, cm}^{-1} \]

\[\text{Refractive index} \]

\[\text{Scattering coefficient, cm}^{-1} \]

\[\text{Average temperature of the material, K} \]

\[\text{Total heat flux} \]

\[k_{\text{cond}} \]

\[k_{\text{rad}} \]

\[k_{\text{effective}} \]

\[\text{Intrinsic lattice conductive thermal conductivity} \]

\[\text{Radiation thermal conductivity} \]

\[\text{Effective thermal conductivity} \]

\[\sigma = 5.6704 \times 10^{-8} \text{ W/(m}^2\text{-K}^4) \]

\[a = \text{Absorption coefficient, cm}^{-1} \]

\[n = \text{Refractive index} \]

\[\sigma_s = \text{Scattering coefficient, cm}^{-1} \]

\[T_{ave} \]

\[q_{r1} < q_{r2} \]

\[q_{s} \]

\[T_{s1} \]

\[T_{s2} \]

\[T_{g1} \]

\[T_{g2} \]

\[D \]

Regions of optical thickness

[Image: Diagram of radiative diffusion models for nongray materials]
Evaluation of Lattice and Radiation Thermal Conductivity of 3000 °F Coating Systems

- Freestanding coatings and gray layer radiative diffusion assumption models

\[\begin{align*}
q_{\text{ext}} &= k_{\text{cond}} \frac{dT}{dx} + \frac{16\sigma \cdot \pi^2 \cdot T_d^2}{\lambda(a + \sigma)} \frac{dT}{dx} \\
&= \left(k_{\text{cond}} + \frac{16\sigma \cdot \pi^2 \cdot T_d^2}{3(a + \sigma)} \right) \frac{dT}{dx} \\
q_{\text{scatt}} &= k_{\text{cond}} + \frac{16\sigma \cdot \pi^2 \cdot T_d^2}{3(a + \sigma)} = k_{\text{cal}} + k_{\text{cond}}
\end{align*} \]

Radiation component

Thermal radiation evaluation of advanced coating materials

Scattering Component of Plasma-Sprayed Coating Systems

Absorption scattering:
- Baseline coatings
- Advanced coatings

Blackbody radiation penetration \(I/I_0 \)

Coating thickness, microns
Evaluation of Radiation Flux Resistance of Oxide Coating Systems

Preliminary results showed doped HfO₂ coatings had better radiation resistance.

\[q_{\text{radthru}} = h(T_{\text{back}} - T_{\text{air}}) \]
Concluding Remarks

- Laser heat-flux approach established for radiation thermal conductivity measurements and advanced coating development
- Lattice and radiation conductivity determined for dense materials and coatings
- The diffusion conduction models established for gray and nongray coating materials
- Scattering and absorption determined for coatings under realistic thermal gradients at high temperatures
- Advanced coatings promising in reducing radiation conductivity
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

Zhu, Dongming; Spuckler, Charles, M.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

10. SPONSORING/MONITOR’S ACRONYM(S)
NASA

11. SPONSORING/MONITORING REPORT NUMBER
NASA/TM-2010-215670

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 23, 24, and 27
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

14. ABSTRACT
The lattice and radiation conductivity of ZrO$_2$-Y$_2$O$_3$ thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

15. SUBJECT TERMS
Thermal conductivity; Coatings; Scattering; Absorption; Absorbents; Thermal radiation; Oxides

16. SECURITY CLASSIFICATION OF:
a. REPORT
U
b. ABSTRACT
U
c. THIS PAGE
U