ISS PRA:
Modeling Payload Stowage Impacts to Fire Risks On-board the International Space Station

April 8, 2010

Kellie E. Anton, Ph.D.
Patrick F. Brown
Purpose/Background

• **Purpose:** To determine the risks of fire on-board the ISS due to non-standard stowage

• **Background:**
 - ISS stowage is constantly being re-examined for optimality
 - Non-standard stowage involves stowing items outside of rack drawers
 - Fire risk is a key concern and is heavily mitigated
 - Methodology needed to account for fire risk due to non-standard stowage to capture the risk
Fire Risk Background

• Why is fire a concern on-board ISS?
 – Experience: Mir
 – Crew safety
 » Air quality
 » Injury
 » Death
 – Lead to other failures
General Assumptions

• Materials
 – Material selection
 » Control combustibility
 » Control fire propagation
 » Minimize fire risk
 – Propagation is mitigated in material selection
 » Tests for propagation to determine suitability

• Human factors
 – Processes are in place to minimize fire risk
 » Minimum distances between payloads and ignition sources
 » Personal effects stowage
 – Dependent on human adherence to the process

• Microgravity
 – Fire behaves differently
 » Hotter
 » Shape and movement
 » Oxygen sourcing
Modeling Techniques

- Qualitative
 - Payloads
 » Volume layouts
 » Flammability factors
 - Co-location
 » Human Error Probabilities (HEP)
 » Proximity likelihood
 - Fire
 » Modeling
 » Expert elicitation

- Quantitative
 - Basic events probabilities derived from qualitative analysis
 » Factor indices
 - SAPHIRE event tree and fault tree structure
Success flows up and to the right
Failure flows down

Event Sequence Diagram (ESD):

Payload in habitable volume

No Non-Standard Stowage in Module

No Ignition Sources in Module

Flammable items are kept the minimum operational distance from ignition sources

No Ignition Occurs

Fire

Fire Response Model
Qualitative Fire Analysis

<table>
<thead>
<tr>
<th>Module</th>
<th>Quantity</th>
<th>% Utilization (1-5)</th>
<th>Age (1-5)</th>
<th>PCU Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRLOCK</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>ATV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMBUS</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGB</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>HTV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEM</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>JLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NODE 2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>NODE 3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>PGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>SYZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US LAB 15A</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>US LAB 20A</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>27</td>
</tr>
</tbody>
</table>

- Use counts, utilization, age

Define factors
 - Weighted products of parameters

SAMPLE NUMBERS, NOT ACTUAL
Qualitative Fire Analysis

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>Likely hood Factor (1-5)</th>
<th>ATV</th>
<th>COLUMBUS</th>
<th>JEM</th>
<th>JLP</th>
<th>NODE 1</th>
<th>NODE 2</th>
<th>NODE 3</th>
<th>US LAB 15A</th>
<th>US LAB 20A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU_SSC</td>
<td>4</td>
<td>0</td>
<td>32</td>
<td>20</td>
<td>0</td>
<td>36</td>
<td>20</td>
<td>56</td>
<td>96</td>
<td>120</td>
</tr>
<tr>
<td>Display & Monitor</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>39</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Printer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Exercise Equip</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Battery</td>
<td>4</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>O2 Supply Tank</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Galley</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Payload (Misc. Equip.)</td>
<td>3</td>
<td>0</td>
<td>78</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>69</td>
<td>147</td>
<td>117</td>
</tr>
<tr>
<td>Compressor</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Electrical Heater</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pump Assembly</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>2</td>
<td>0</td>
<td>34</td>
<td>34</td>
<td>0</td>
<td>46</td>
<td>20</td>
<td>68</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>15A</td>
<td></td>
<td>1%</td>
<td>7%</td>
<td>9%</td>
<td>0%</td>
<td>5%</td>
<td>6%</td>
<td>26%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td></td>
<td>1%</td>
<td>6%</td>
<td>8%</td>
<td>0%</td>
<td>4%</td>
<td>6%</td>
<td>11%</td>
<td>23%</td>
<td></td>
</tr>
</tbody>
</table>

Develop indices
- % of overall fire risk

Convert to quantitative factor
- Ignition source index

SAMPLE NUMBERS, NOT ACTUAL

Kellie Anton 281-244-1973
SAMPLE Qualitative Results for Fire Risk
Qualitative Stowage Analysis

Calculating the Stowage Factor

- **Volume**
 - Habitable volume
 - Stowage CTBEs
 - Table of high to low

- **Combustibility**
 - Level of flammability
 - Table of high to low

- Define factors
- Develop index value
- Quantitative factor

<table>
<thead>
<tr>
<th>Module</th>
<th>Stowage Density (Vol stow/habit vol)</th>
<th>Density factor (0-10)</th>
<th>Combustibility (0-5)</th>
<th>Stowage Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRLOCK</td>
<td>0.40</td>
<td>8</td>
<td>1</td>
<td>0.16</td>
</tr>
<tr>
<td>ATV</td>
<td>0.80</td>
<td>10</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>COLUMBUS</td>
<td>0.20</td>
<td>4</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>DC1</td>
<td>0.10</td>
<td>2</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>PGB</td>
<td>0.25</td>
<td>5</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>HTV</td>
<td>0.80</td>
<td>10</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>JEM</td>
<td>0.45</td>
<td>9</td>
<td>2</td>
<td>0.36</td>
</tr>
<tr>
<td>JLP</td>
<td>0.30</td>
<td>6</td>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>NODE 1</td>
<td>0.10</td>
<td>2</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>NODE 2</td>
<td>0.20</td>
<td>4</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>NODE 3</td>
<td>0.20</td>
<td>4</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>PGS</td>
<td>0.70</td>
<td>10</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>SM</td>
<td>0.50</td>
<td>10</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>SYZ</td>
<td>0.10</td>
<td>2</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>US LAB 20A</td>
<td>0.15</td>
<td>3</td>
<td>2</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Co-location factor to account for:

- Processes for minimum distance
- Human Error
 - CREAM or THERP analysis

Ignition factor to account for:

- Likelihood that fuel and ignition source will start fire
- Expert elicitation or fire modeling

SAMPLE NUMBERS, NOT ACTUAL

Kellie Anton 281-244-1973
SAMPLE Qualitative Results for Non-Standard Stowage
Quantitative Analysis
Basic Event Data

- **Ignition Likelihood**
 - Microgravity sensitive
 - Expert elicitation

- **Co-location**
 - Human error
 - Items are not placed according to established processes

- **Ignition Source**
 - Analysis of potential sources

- **Stowage**
 - Analysis of non-standard stowage

All conditions have to come together simultaneously to have a fire.
Conclusions

• Attempt to capture fire risk on-board station

• Placement of stowage and selection of materials is well mitigated
 – Mitigations in place
 – Materials testing
 – Human inclusion creates uncertainty
 » Follow processes
 » Personal effects

• New methodology
 » Utilizes qualitative analysis
 » Develop the quantitative factors from qualitative results and elicitation
Conclusions

- **Improve the fidelity of the current ISS PRA Fire Model**
 - Accounting of factors not currently modeled
 - Converge towards true fire risk

- **Heavily mitigated**
 - Materials and processes are designed to eliminate fire risk
 - Risk still remains
 - Personal effects add uncertainty
 - Human behavior is a contributor
 - Overall, risk likely to be low