
NASA/CR–2010-216204

A Revised Trajectory Algorithm to Support
En Route and Terminal Area Self-Spacing
Concepts

Terence S. Abbott
Booz Allen Hamilton, McLean, Virginia

February 2010



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk
at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320



NASA/CR–2010-216204

A Revised Trajectory Algorithm to Support
En Route and Terminal Area Self-Spacing
Concepts

Terence S. Abbott
Booz Allen Hamilton, McLean, Virginia

National Aeronautics and
Space Administration

Langley Research Center
	

Prepared for Langley Research Center
Hampton, Virginia 23681-2199

	
under Purchase Order L-70750D

February 2010



Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802



Table of Contents

Nomenclature................................................................................................................................................ v

Subscripts...................................................................................................................................................... v

Unitsand Dimensions ................................................................................................................................... v

Introduction................................................................................................................................................... 1

AlgorithmOverview ..................................................................................................................................... 2

AlgorithmInput Data .................................................................................................................................... 5

InternalAlgorithm Variables ........................................................................................................................ 5

Descriptionof Major Functions .................................................................................................................... 6

Generate Initial Tracks and Distances .......................................................................................................... 6

InitializeWaypoint Turn Data ...................................................................................................................... 7

ComputeTCP Altitudes ................................................................................................................................ 9

CopyCrossing Angles 	 ................................................................................................................................13

DoDescent Mach ........................................................................................................................................13

ComputeMach / CAS TCP .........................................................................................................................16

Compute Altitude / CAS Restriction TCP ..................................................................................................18

Test for Altitude / CAS Restriction Requirement .......................................................................................20

ComputeTCP	 Speeds ................................................................................................................................. 21

ComputeSecondary Speeds ........................................................................................................................22

UpdateTurn Data ........................................................................................................................................ 22

DeleteTCPs	 ................................................................................................................................................ 26

UpdateDTG Data ....................................................................................................................................... 27

CheckTurn Validity	 ................................................................................................................................... 28

ComputeTCP Times ...................................................................................................................................28

Compute TCP Latitude and Longitude Data ............................................................................................... 28

Description of Secondary Functions ...........................................................................................................31

ComputeGndSpeedUsingTrack.................................................................................................................. 31

ComputeGndSpeedUsingMachAndTrack .................................................................................................. 31

ComputedGndTrk....................................................................................................................................... 32

ComputeTcpCas.......................................................................................................................................... 32

ComputeTcpMach....................................................................................................................................... 37

DoTodAcceleration..................................................................................................................................... 42

DeltaAngle.................................................................................................................................................. 45

EstimateNextCas......................................................................................................................................... 45

iii



EstimateNextMach...................................................................................................................................... 46

GenerateWptWindProfile...........................................................................................................................47

GetTraj ectoryData ....................................................................................................................................... 48

GetTrajGndTrk ...........................................................................................................................................48

InterpolateWindAtDistance........................................................................................................................49

InterpolateWindWptAltitude...................................................................................................................... 50

RelativeLatLon........................................................................................................................................... 51

WptInTurn ................................................................................................................................................... 51

Summary..................................................................................................................................................... 51

References................................................................................................................................................... 52

AppendixExample Data Sets ................................................................................................................... 54

iv



Nomenclature

2D:	 2 dimensional

4D:	 4 dimensional

ADS-B: Automatic Dependence Surveillance Broadcast

CAS:	 Calibrated Airspeed

DTG:	 Distance-To-Go

MSL:	 Mean Sea Level

STAR:	 Standard Terminal Arrivals

TAS:	 True Airspeed

TCP:	 Trajectory Change Point

TOD:	 Top-Of-Descent

TTG:	 Time-To-Go

VTCP:	 Vertical Trajectory Change Point

Subscripts

Subscripts associated with waypoints and TCPs, e.g., TCP 2, denote the location of the waypoint or TCP in
the TCP list. Larger numbers denote locations closer to the end of the list, with the end of the list being
the runway threshold. Subscripts in variables indicate that the variable is associated with the TCP with
that subscript, e.g., Altitude2 is the altitude value associated with TCP 2 .

Units and Dimensions
Unless specifically defined otherwise, units (dimensions) are as follows:

time: seconds

position: degrees, + north and + east

altitude: feet, above MSL

distance: nautical miles

speed: knots

track: degrees, true, beginning at north, positive clockwise

v





Abstract

This document describes an algorithm for the generation of a
four dimensional trajectory. Input data for this algorithm are
similar to an augmented Standard Terminal Arrival (STAR) with
the augmentation in the form of altitude or speed crossing
restrictions at waypoints on the route. This version of the
algorithm accommodates descent Mach values that are different
from the cruise Mach values. The algorithm calculates the
altitude, speed, along path distance, and along path time for
each waypoint. Wind data at each of these waypoints are also
usedfor the calculation ofground speed and turn radius.

Introduction
Concepts for self-spacing of aircraft operating into airport terminal areas have been under

development since the 1970's (refs. 1-20). Interest in these concepts has recently been renewed
due to a combination of emerging, enabling technology (Automatic Dependent Surveillance
Broadcast data link, ADS-B) and the continued growth in air traffic with the ever increasing
demand on airport (and runway) throughput. Terminal area self-spacing has the potential to
provide an increase in runway capacity through an increase in the accuracy of runway threshold
crossing times, which can lead to a decrease of the variability of the runway threshold crossing
times. Current concepts use a trajectory based technique that allows for the extension of self-
spacing capabilities beyond the terminal area to a point prior to the top of the en route descent.

The overall NASA Langley concept for a trajectory-based solution for en route and terminal
area self-spacing is fairly simple and was originally documented in reference 21. By assuming a
4D trajectory for an aircraft and knowing that aircraft's position, it is possible to determine where
that aircraft is on its trajectory. Knowing the position on the trajectory, the aircraft's estimated
time-to-go (TTG) to a point, in this case the runway threshold, is known. To apply this to a self-
spacing concept, a TTG is calculated for a leading aircraft and for the ownship. Note that the
trajectories do not need to be the same. The nominal spacing time and spacing error can then be
computed as:

nominal spacing time = planned spacing time interval + traffic TTG.

spacing error = ownship TTG — nominal spacing time.

The foundation of this spacing concept is the ability to generate a 4D trajectory. The algorithm
presented in this paper uses as input a simple, augmented 2D path definition (i.e., a traditional
STAR, with relevant speed and altitude crossing constraints) along with a forecast wind speed
profile for each waypoint. The algorithm then computes a full 4D trajectory defined by a series of
trajectory change points (TCPs). The input speed (Mach or CAS) or altitude crossing constraint
includes the deceleration rate or vertical angle value required to meet the constraint. The TCPs
are computed such that speed values, Mach or CAS, and altitudes change linearly between them.
TCPs also define the beginning and ending segments of turns, with the midpoint defined as a fly-
by waypoint. The algorithm also uses the waypoint forecast wind speed profile in a linear
interpolation to calculate the wind speed at the altitude the computed trajectory crosses the
waypoint. Wind speed values are then used to calculate the ground speeds along the path.

The major complexity in computing a 4D trajectory involves the interrelationship of ground
speed with the path distance around turns. In a turn, the length of the estimated ground path and
the associated turn radius will interact with the waypoint winds and with any change in the

1



specified speed during the turn, i.e., a speed crossing-restriction at the waypoint. Either of these
conditions will cause a change in the estimated turn radius. The change in the turn radius will
affect the length of the ground path which can then interact with the distance to the deceleration
point, which thereby affects the turn radius calculation. To accommodate these interactions, the
algorithm uses a multi-pass technique in generating the 4D path, with the ground path estimation
from the previous calculation used as the starting condition for the current calculation.

Algorithm Overview
The basic functions for this trajectory algorithm are shown in figure 1. Note that waypoints are

considered to be TCPs but not all TCPs are waypoints.

For the 2D input, the first and last waypoints must be fully constrained, i.e., have both a speed
and altitude constraint defined. With the exception of the first waypoint, which is the waypoint
farthest from the runway threshold, constraints must also include a variable that defines the
means for meeting that constraint. For altitude constraints, this is the inertial descent angle; for
speed constraints, it is the air mass CAS deceleration rate. A separate, single Mach / CAS
transition speed (CAS) value may also be input for profiles that involve a constant Mach / CAS
descent segment. Additionally, an altitude / CAS restriction (e.g., in the U.S., the 10,000 ft / 250
kt restriction) may also be entered.

The algorithm computes the altitude and speed for each waypoint. It also calculates every point
along the path where an altitude or speed transition occurs. These points are considered vertical
TCPs (VTCPs). TCPs also define the beginning and ending segments of turns, with the midpoint
defined as a fly-by waypoint. Turn data are generated by dividing the turn into two parts (from
the beginning of the turn to the midpoint and from the midpoint to the end of the turn) to provide
better ground speed (and resulting turn radius) data relative to a single segment estimation. A
fixed, average bank angle value is used in the turn radius calculation. The algorithm also uses the
forecast wind speed profile for a waypoint in a linear interpolation to calculate the wind speed at
the altitude the computed trajectory crosses the waypoint (if the crossing altitude is not at a
forecast altitude). For non-waypoint TCPs, the generator uses the forecast wind speed profile
from the two waypoints on either side of the TCP in a double linear interpolation based on
altitude and distance (to each waypoint). Of significant importance for the use of the data
generated by this algorithm is that altitude and speeds (Mach or CAS) change linearly between
the TCPs, thus allowing later calculations of DTG or TTG for any point on the path to be easily
performed.



Trajectory calculation:
2D input data, crossing data,
and wind forecast data

Generate the initial tracks and distances: Using great-circle calculations, determine the
distances and ground tracks between waypoints. Calculate the DTG for each waypoint.

Initialize the waypoint turn data: Waypoints that have more than a 3 degree change in
ground track from the previous waypoint are considered turn-waypoints. Mark each as
a turn-waypoint and insert a turn-entry and turn-exit TCP on each side of this waypoint.

while this is not the last

Compute the TCP altitudes: Beginning at the runway (the last waypoint) work
backwards and compute the altitude at each prior TCP. If an altitude is computed to be
reached prior to the previous TCP, insert a new altitude TCP.

Copy crossing angles: Beginning at the runway, for TCPs that do not have crossing
angles, copy the downstream angle into this TCP.

Do Descent Mach: If the descent Mach is different than the cruise Mach, change the
descent waypoint Mach as necessary and add any required, additional TCPs.

Compute the Mach / CAS TCP: If required, compute the Mach / CAS transition
altitude. Compute the DTG to this altitude and insert the Mach / CAS TCP.

if flag for an altitude / CAS
restriction, based on prior

computations, is
true

Compute an altitude / CAS TCP: In the U.S., this would be the 10,000ft / 250kt speed
restriction. If the speed crossing the trajectory at the specific altitude is greater than the
CAS restriction (from the test on the first time through), place a speed restriction at this
point on the profile. The trajectory must have already been computed at least once prior
to calling this routine.

Compute the TCP speeds: Beginning at the runway (the last waypoint) work backwards
and compute the speed at each prior TCP. If a speed is computed to be reached before
the next previous TCP, insert a new speed TCP.

continued
	 ^A^

Figure 1. Basic functions.



continued	 A

Compute secondary speeds for each TCP: Compute the Mach (for a CAS TCP) or CAS
(for a Mach TCP) and ground speed for each TCP.

if this is not the last loop

Update turn data: For each turn waypoints, use the new speed values to compute the
turn radius. Update the data for the turn waypoint, turn-entry, and turn-exit TCPs.

Delete VTCPs: Delete the VTCPs. Remove all special vertical flags.

Update the DTG Data: Beginning at the runway, work backwards and compute the
DTG for each TCP, adjusting for the turn distances.

Check turn validity: Check that each turn is completed prior to the next waypoint or the
start of the next turn.

if this test has never been performed

Test for the need for an altitude / CAS restriction: In the U.S., this would be the
10,000ft / 250kt speed restriction. If the speed crossing the trajectory at the specific
altitude is greater than the CAS restriction, set a flag for this requirement to true and
reset the loop counter to its initial value (i.e., start over).

Compute the TCP times: Beginning at the runway (the last waypoint) work backwards
and compute the TTG to each TCP.

Compute TCP latitude and longitude data: Compute the altitude and longitude data for
the altitude, speed, and Mach / CAS TCPs.

terminate

Figure 1 (continued). Basic functions.



Algorithm Input Data
The algorithm takes as input a list of waypoints, their trajectory-specific data, and associated

wind profile data. The list order must begin with the first waypoint on the trajectory and end with
the runway threshold waypoint. The trajectory-specific data includes: the waypoint's name and
latitude / longitude data, e.g., Latitude2 and Longitude2 ; an altitude crossing restriction, if one
exists, and its associated crossing angle, e.g., Crossing Altitude2 and Crossing Angle 2 ; and a speed
crossing restriction (Mach or CAS), if one exists, and its associated CAS rate, e.g., Crossing
CAS2 and Crossing Rate2 . A value of 0 as an input for an altitude or speed crossing constraint
denotes that there is no constraint at this point. A Crossing Mach may not occur after any non-
zero Crossing CAS input. The units for Crossing Rate are knots per second.

For the descent from the cruise altitude, a Mach value may be specified that is different from
the cruise Mach value. A CAS value may also be specified for the Mach / CAS transition speed
during the descent. Additionally, an CAS speed limit at a defined altitude may also be included.
In the U.S., this would typically be set to 250 kt at 10,000 ft.

For the wind forecast, a minimum of two altitude reports (altitude, wind speed, and wind
direction) should be provided at each waypoint. The altitudes should span the estimated altitude
crossing at the associated waypoint. The algorithm assumes that the input data are valid.

Internal Algorithm Variables
The significant variables computed by this algorithm are:

Altitude	 the computed altitude at the TCP

CAS	 the computed CAS at the TCP

DTG	 the computed, cumulative distance from the runway

Ground Speed	 the computed ground speed at the TCP

Ground Track	 the computed ground track at the TCP

Mach	 the computed Mach at the TCP

TTG	 the computed, cumulative time from the runway

Additionally, the algorithm denotes TCPs in accordance with how they are generated. TCPs are
identified as: input, from the input waypoint data; turn-entry, identifying a TCP that marks the
start of a turn; turn-exit, identifying a TCP that marks the end of a turn; vertical TCPs (VTCPs),
denoting a change in the altitude or speed profile; and a Mach / CAS TCP, denoting the Mach /
CAS transition point. TCPs are also denoted relative to the associated speed value, whether the
crossing speed is Mach or CAS derived.



Description of Major Functions
The functions shown in figure 1 are described in detail in this section. The functions are

presented in the order as shown in figure 1. Secondary functions are described in a subsequent
section. In these descriptions, the waypoints, which are from the input data and are fixed
geographic points, are considered to be TCPs but not all TCPs are waypoints. Nesting levels in
the description are denoted by the level of indentation of the document formatting. Additionally,
long sections of logic may end with end of statements to enhance the legibility of the text.

Generate Initial Tracks and Distances

This is an initialization function that initializes the Mach Segment flag, denoting that the speed
in this segment is based on Mach, and calculates the point-to-point distances and ground tracks
between input waypoints. Great circle equations are used for these calculations, noting that the
various dimensional conversions, e.g., degrees to radians, are not shown in the following text.

Generate the initial distances, the center-to-center distances, and ground tracks between input
waypoints

for (i = index number of the first waypoint; i:5 index number of the last waypoint; i = i + 1)

Start with setting the Mach segments flags to false.

Mach Segment i = false

Compute the waypoint-center to waypoint-center distances.

if (i = index number of the first waypoint) Center to Center Distance i = 0

else

Center to Center Distance i =
arccosine(sine(Latitudei-1) * sine(Latitude i) + cosine(Latitude i-1) *

cosine(Latitude i) * cosine(Longitudei-1 - Longitude i) )

Ground Tracki-1 =
arctangent2(sine(Longitude i - Longitudei-1) * cosine(Latitude i)^ cosine(Latitude i-

1) * sine(Latitude i) - sine(Latitudei-1) * cosine(Latitudei) *
cosine(Longitudei - Longitudei-1))

end offor (i = index number of the first waypoint; i:5 index number of the last waypoint; i = i
+ 1)

Now set the runway's ground track.

Ground Tracklast waypoint = Ground Tracklast waypoint -1

The cumulative distance, DTG, is computed as follows:

DTGlast waypoint = 0



for (i = index number of the last waypoint; i > index number of the first waypoint; i = i _1)

DTGi_1 = DTGi + Center to Center Distance i

Initialize Waypoint Turn Data

The Initialize Waypoint Turn Data function is used to determine if a turn exists at a waypoint
and if so, inserts turn-entry and turn-exit TCPs. Waypoints that have more than a 3 degree change
in ground track between the previous waypoint and the next waypoint are considered turn-
waypoints. The function is performed in the following manner:

i = index number of the first waypoint + 1

Last Track = Ground Trackfirst waypoint

Note that the first and last waypoints cannot be turns.

while (i < index number of the last waypoint)

Track Angle After = Ground Tracki

a = DeltaAngle(Last Track, Track Angle After)

Check for a turn that is greater than 135 degrees.

if (absolute(a) > 135)

Set an error and ignore the turn.

a=0

If the turn is more than 3-degrees, compute the turn data.

if (absolute(a) > 3)

half turn= a/ 2

Track Angle Center = Last Track + half turn

This is the center of the turn, e.g., the original input waypoint.

Ground Tracki = Track Angle Center

Turn Data Track1 i = Last Track

Turn Data Track2 i = Track Angle After

Turn Data Turn Radius i = 0

Turn Data Path Distance i = 0

7



Insert a new TCP at the end of the turn.

The new TCP is inserted at location i+1 in the TCP list. The TCP is inserted between
TCP i and TCPi+1 from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

InsertWaypoint(i + 1)

Note that TCPi+1 is the new TCP.

TCPi+1 = turn-exit

DTG i+1 = DTG i

Ground Track i+1= Track Angle After

The start of the turn TCP is as follows,

InsertWaypoint(i)

TCPi = turn-entry

Note that the original TCP is now at index i + 1.

DTGi = DTGi+1

Ground Track i = Last Track

Last Track= Track Angle After

i = i + 2

end of if (absolute(a) > 3)

else Last Track= Ground Track i

i=i+1

end of while (i < index number of the last waypoint)

Effectively, this function:

- Marks each turn-waypoint and sets its ground track angle to the computed angle at the
midpoint of the turn.

- Inserts a co-distance turn-entry TCP before this turn-waypoint with the ground track angle
for this turn-entry TCP set to the value of the inbound ground track angle.

- Inserts a co-distance turn-exit TCP after this turn-waypoint with the ground track angle for
this turn-exit TCP set to the value of the outbound ground track angle.

8



An example illustrating the inserted turn-start and turn-end TCPs is shown in figure 2.

Turn waypoint, Ground Tracki = 195o

Turn_exit, Ground Tracki+1 = 129o

Ground Tracki_2 = 99o

Turn_entry, Ground Tracki_1 = 99o

DTGi_1 = DTGi+1 = DTGi
Ground Tracki+2 = 129o

Figure 2. Initialized turn waypoint.

Compute TCP Altitudes

Beginning with the last waypoint, the Compute TCP Altitudes function computes the altitudes
at each previous TCP and inserts any additional altitude TCPs that may be required to denote a
change in the altitude profile. The function uses the current altitude constraint (TCP i in fig. 3),
searches backward for the previous constraint (TCP i_3 in fig. 3), and then computes the distance
required to meet this previous constraint. The altitudes for all of the TCPs within this distance are
computed and added to the data for the TCPs. If the along-path distance to meet the previous
constraint is not at a TCP, a new altitude VTCP is inserted at this distance. An example of this is
shown in figure 4. This function is performed in the following steps:

Figure 3. Input altitude crossing constraints.



TCP^_3;	 Teu' T P'	 ,	 `TC'P _1	 vu j'

Figure 4. Computed altitude profile with TCP added.

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint

Set the altitude of this waypoint to its crossing altitude,

Altitudecc = Crossing Altitudecc

While (cc > index number of the first waypoint)

Determine if the previous constraint cannot be met.

If (Altitudecc > Crossing Altitude cc)

The constraint has not been made.

If this is the last pass through the algorithm, set an error condition

Altitudecc = Crossing Altitudecc

Find the prior waypoint index number pc that has an altitude constraint, e.g., a crossing
altitude (Crossing Altitudepc :^ 0). This may not always be the previous (i.e., cc - 1)
waypoint.

Initial condition is the previous TCP.

pc=cc -I

while ((pc > index number of the first waypoint) and ((TC0pc :^ input waypoint) or
(Crossing Altitude pc = 0)) )pc= pc - I

Save the previous crossing altitude,

Prior Altitude= Crossing Altitudepc

10



Save the current crossing altitude (Test Altitude) at TCPcc and the descent angle (Test
Angle) noting that the first and last waypoints always have altitude constraints and except
for the first waypoint, all constrained altitude points must have descent angles.

Test Altitude = Crossing Altitudecc

Test Angle= Crossing Anglecc

Compute all of the TCP altitudes between the current TCP and the previous crossing
waypoint.

k= cc

while k > pc

If the previous altitude has already been reached, set the remaining TCP altitudes to
the previous altitude.

if (Prior Altitude < Test Altitude)

for (k = k -1; k > pc; k = k -1) Altitudek = Test Altitude

Set the altitude at the last test point.

Altitudepc = Test Altitude

else

Compute the distance from TCPk to the Prior Altitude using the altitude
difference between the Test Altitude and the Prior Altitude with the Test Angle. If
there is no point at this distance, add a TCP at that distance.

Compute the distance dx to make the altitude.

dx = (Prior Altitude - Test Altitude) / (6076 * tangent(Test Angle))

Compute the altitude z at the previous TCP.

z = ((DTGk-1 - DTGk) * 6076) * tangent(Test Angle) + Test Altitude

If there is a TCP prior to this distance or if z is very close to the Prior Altitude,
compute and insert its altitude.

if ( (DTGk-1 < (DTGk + dx)) or ( absolute(z - Prior Altitude) < some small value)
)

if (absolute(z - Prior Altitude) < some small value) Altitude k-1 = Prior
Altitude

else Altitude k-1 = z

Check to see if the constraint has been reached, if not, set an error condition.

11



if ((k-1) = pc)

if (absolute(Altitudepc - CrossingAltitudepc) > 100ft) set an error here

Always set the crossing exactly to the crossing value.

Altitudepc = Crossing Altitudepc

Update the Test Altitude.

Test Altitude = Altitude k-1

Decrement the counter to set it to the prior TCP.

k=k-1

end of if ( (DTGk- 1 < (DTGk + dx)) or (absolute(z - Prior Altitude) < some small
value) )

else

The altitude constraint is reached prior to the TCP, a new VTCP will need to
be inserted at that point. The distance to the new TCP is,

d = DTGk + dx

Compute the ground track at distance d along the trajectory and save it as
Saved Ground Track.

Saved Ground Track= GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted
between TCPk-1 and TCPk from the original list. The function InsertWaypoint
should be appropriate for the actual data structure implementation of this
function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCP k.

DTGk = d

Altitudek = Prior Altitude

Add the ground track data which must be computed if the new VTCP occurs
within a turn. The functions WptlnTurn and ComputedGndTrk are described
in subsequent sections.

if (WptlnTurn(k)) Ground Trackk = ComputedGndTrk(k, d)

else Ground Trackk = Saved Ground Track

12



Compute and add the wind data at distance d along the path to the data of
TCPk.

GenerateWptWindProfile(d, TCPk)

Test Altitude= Prior Altitude

Since TCPk, has now been added prior to pc, the current constraint counter cc
needs to be incremented by 1 to maintain its correct position in the list.

cc= cc + 1

The function loops back to while k > pc.

Now go to the next altitude change segment on the profile.

cc= k

The function loops back to while cc > index number of the first waypoint.

Copy Crossing Angles

The Copy Crossing Angles is a simple function that starts with the next to last TCP and copies
the subsequent crossing angle if the current TCP does not have a crossing angle. E.g.,

for (i = index number of the last waypoint -1; i > index number of the first waypoint; i = i -
1)

if (Crossing Angle i = 0) Crossing Angle i = Crossing Angle i+1

Do Descent Mach

The Do Descent Mach function changes the descent waypoint Mach if the descent Mach,
MachDescentMach, is different than the cruise Mach. The function also will add any required,
additional TCPs.

The calling program provides as input and retains the subsequent outputs for the following
variables: Tod/d, TodMach, and TodMachRate. The variable Todld is the name of the top-of-
descent waypoint and is initialized as a null string by the calling program. Since this function may
overwrite the Mach and speed change rate for an input waypoint, these variables allow the
function to retain the original values for Mach and speed change rate and to then reset these
variables to their original values prior to recomputing new values.

If the Mach value for the first waypoint is not set, i.e., the path does not start with a Mach
segment, or there is no defined descent Mach, MachDescentMach = 0, the function terminates.
Otherwise,

If the previous TOD data for an input waypoint have been changed, these data are restored to
their original values.

fini = false

13



i=0

The last designated Mach waypoint,

LastMachldx = 0

The first designated CAS waypoint,

FirstCasldx = 0

Todldx = 0

if Todld is not an empty string, then

while ( (i <index number of the last waypoint) and (fini = false) )

if (waypoint ,d i = Todld)

fini = true

Restore the old values.

Crossing Mach i = TodMach

CAS Rate i = TodMachRate

Todld = empty string

Find the Mach and CAS waypoints.

fini = false

i=0

while ( (i <index number of the last waypoint) and (fini = false) )

if (Crossing Mach i > 0) LastMachldx = i

else if (Crossing CASi > 0)

FirstCasldx = i

fini = true

i=i+1

Find the TOD waypoint and Mach.

fini = false

i=0

14



while ( (i <index number of the last waypoint) and (fini = false) )

if (Altitude i < Altitudefirstwaypoint)

Todjdx = i - I

fini = true

else if (Crossing Mach i > 0)

MachAtTod = Crossing Mach i

i=i+1

if (Todjdx > 0), mark this TCP as the Top-of-Descent.

Check for errors. There cannot be a programmed descent Mach if there is a downstream
Mach restriction.

if ( (LastMachjdx > Todjdx) DD (FirstCasjdx <= Todjdx) ) mark this as an error condition

else

Save the Mach values for all input waypoints so that they may be reset on subsequent
passes back to their original input values.

if (WaypointTodjdx is an input waypoint)

copy the name of WaypoiontTodjdx intoTodjd

TodMach = Crossing Mach Todjdx

TodMachRate = Crossing Rate Todjdx

if ( (Waypoint Todjdx is an input waypoint) && (Crossing Rate Todjdx > 0) )

CAS Rate= Crossing RateTodjdx

else CAS Rate = 0.75 kt / sec (a default value)

The following is added to force a subsequent speed calculation.

Crossing RateTodjdx = CAS Rate

If the aircraft will slow during the descent, do the following:

if (MachAtTod >= MachDescentMach)

Overwrite the TOD Mach value.

Crossing Mach Todjdx = MachDescentMach

15



else

This is a special case where the aircraft is accelerating to the descent Mach.

Invoke the secondary function DoTodAcceleration. This function is described in a
subsequent section.

Crossing Mach TodIdx = MachAtTod

Compute Mach / CAS TCP

If a Mach-to-CAS transition is required, this functions computes the Mach / CAS altitude and
inserts a Mach / CAS TCP. This function is only performed if the input data starts with a Mach
Crossing Speed for the first waypoint. The function determines the appropriate Mach and CAS
values, calculates the altitude that these values are equal, and then determines the along-path
distance where this altitude occurs on the profile. A Mach / CAS TCP is then inserted into the
TCP list.

Find the last Crossing Mach and the first Crossing CAS in the list.

First CAS = 0

i = index number of the first waypoint

while ( (i <index number of the last waypoint) and (First CAS = 0) )

if (Crossing Mach i > 0)

Last Mach= Crossing Mach i

Last Mach Altitude = Altitude i

else if (Crossing CASi > 0)

First CAS = Crossing CASi

CAS Rate= CAS Rate i

i=i+1

If there is a Mach / CAS transition speed input, use this value for the First CAS value.

if (Mach CAS Transition > 0) First CAS = Mach CAS Transition

Compute the Mach / CAS transition altitude.

z = (1.0 - (((((0.2 * ((FirstCas/661.48) 2.0) + 1.0)3.5) -1.0) /

(((0.2 * (LastMach2.0) + 1.0)3.5) -1.0)) 0.19026)) / 0.00000687535

16



For an actual implementation, it would be beneficial to check for an error at this point. If z is
greater than the altitude associated with the Last Mach TCP or if z is less than the altitude
associated with the First CAS TCP, then an error should be noted.

Find where z first occurs.

i = index number of the first waypoint + I

finished = false

while ( (i < index number of the last waypoint) and (finished = false))

if (Altitude i > z) i = i + I

else finished = true

Find the distance to this altitude.

x = Altitude i-I - Altitude i

if(x70)ratio =0

else ratio = (z - Altitude i) /x

d = ratio * (DTGi-I - DTGi) + DTG i

Compute the ground track at distance d along the trajectory and save it as Saved Ground
Track.

Saved Ground Track= GetTrajGndTrk(d)

Insert a new TCP at location i in the TCP list. The TCP is inserted between TCPi-I and TCP i

from the original list. The function InsertWaypoint should be appropriate for the actual data
structure implementation of this function.

InsertWaypoint(i)

Mark this TCP as the Mach / CAS transition TCP.

Add the data for this new TCP.

Crossing Mach i = Last Mach

Crossing CASi = First CAS

CAS Rate i = CAS Rate

DTGi = d

Altitude i = z

Crossing Angle i = Crossing Angle i+I

17



Ground Tracki = Saved Ground Track

Mach i = Last Mach

CASi = First CAS

Compute and add the wind data at distance d along the path to the data of TCP i .

GenerateWptWindProfile(DTGi^ TCP i)

Mark all TCPs from the first TCP (TCPfirst waypoint) to TCPi-I as Mach TCPs.

Compute Altitude / CAS Restriction TCP

If an altitude / CAS restriction is required, the Compute Altitude / CAS Restriction TCP
function computes the altitude / CAS restriction point and insert an altitude / CAS TCP. This is
the (U.S.) point where the trajectory transitions through 10,000 ft and a 250 kt restriction is
required. This function is only performed if the previously computed flag NeedI0KRestriction is
true. The function determines the along-path distance where this altitude / CAS occurs on the
profile. A TCP is then inserted into the TCP list at this point. The restriction values are Descent
Crossing Altitude and Descent Crossing CAS.

Find the first TCP that is below the Descent Crossing Altitude in the list.

i = index number of the first waypoint

k = i

fini = false

while ( (i <index number of the last waypoint) and (fini = false) )

if (Altitude i < Descent Crossing Altitude)

k = i

fini = true

i=i+I

Find the last CAS restriction prior to the first waypoint below Descent Crossing Altitude.

i=k-I

fini = false

Last CAS = 0

18



while ( (i > 0) and (fini = false) )

if (Crossing CASi > 0)

Last CAS = Crossing CASi

fini = true

i=i -I

Determine if an altitude / CAS TCP is required. If it is, add it.

if ( (TCPk is a Mach segment) and (Last CAS > Descent Crossing CAS) )

i=k;

Find the distance to this altitude.

x = Altitude i-I - Altitude i

if(x<0)ratio =0

else ratio = (Descent Crossing Altitude - Altitude i) /x

d = ratio * (DTGi-I - DTGi) + DTG i

Compute the ground track at distance d along the trajectory and save it as Saved Ground
Track.

Saved Ground Track= GetTrajGndTrk(d)

Insert a new TCP at location i in the TCP list. The TCP is inserted between TCPi-I and
TCP i from the original list. The function InsertWaypoint should be appropriate for the
actual data structure implementation of this function.

InsertWaypoint(i)

Mark this TCP as the altitude / CAS restriction TCP.

Add the data for this new TCP.

Crossing Mach i = 0

Crossing CASi = Descent Crossing CAS

Use a high value, arbitrary CAS rate.

CAS Rate i = 0.75 kt / sec

DTGi = d

Altitude i = Descent Crossing Altitude

19



Crossing Angle i = Crossing Angle i+I

Set the Mach flagfor TCP i to false

Ground Tracki = Saved Ground Track

Mach i = 0

CASi = Descent Crossing CAS

Compute and add the wind data at distance d along the path to the data of TCP i .

GenerateWptWindProfile(DTGi^ TCP i)

Test for Altitude / CAS Restriction Requirement
The Test for Altitude / CAS Restriction Requirement function determines if the addition of an

altitude / CAS restriction point is required. This is the (U.S.) point where the trajectory transitions
through 10,000 ft and a 250 kt restriction is required. This function determines the value of the
NeedI0KRestriction flag. The function can only be called after an initial, preliminary trajectory
has been generated. The restriction values are Descent Crossing Altitude and
Descent Crossing CAS.

NeedI0KRestriction =false

if ((Descent Crossing Altitude > ) and (Descent Crossing CAS > 0)) ok = true

else ok = false

If we don't start above 10,000ft, skip this whole routine.

if (ok and (A ltitudefirst waypoint > Descent Crossing Altitude) )

Find the first point below Descent Crossing Altitude

fini = false

i=0

while ( (i <index number of the last waypoint) and (fini = false) )

if (Altitude i < Descent Crossing Altitude)

Find the distance to this altitude.

x = Altitude i-I - Altitude i

if(x70)ratio =0

else ratio = (Descent Crossing Altitude - Altitude i) /x

20



s = ratio * (CASi-1 - CASi) + CASi

if (s > (Descent Crossing Cas + 2.0)) Need10KRestriction =true

fini = true

i=i+1

Compute TCP Speeds

The Compute TCP Speeds function is similar to Compute TCP Altitudes in its design.
Beginning with the last waypoint, this function computes the Mach or CAS at each previous TCP
and inserts any additional speed TCPs that may be required to denote a change in the speed
profile. The function uses the current speed constraint, searches backward for the previous
constraint, and then computes the distance required to meet this previous constraint. The speeds
for all of the TCPs within this distance are computed and added to the data for the TCPs. If the
along-path distance to meet the previous constraint is not at a TCP, a new speed VTCP is inserted
at this distance. This function invokes two secondary functions, described in the subsequent text,
with the invocation dependent on the constraint speed, whether it is a Mach or a CAS value. This
function is performed in the following steps:

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint

The speed of the first waypoint is set to its crossing speed.

if (Crossing Machfirst waypoint > 0)

Mach first waypoint = Crossing Mach first waypoint

CASfirstwaypoint = MachToCas(Mach first waypoint Altitude first waypoint)

else

CASfirstwaypoint = Crossing CASfirstwaypoint

Mach first waypoint = CasToMach(CASfirstwaypoini Altitude first waypoint)

The speed of the last waypoint is set to its crossing speed,

CAS cc = Crossing CAScc .

A flag signifying that Mach segment computation has begun is set to false,

Doing Mach =false

While (cc > index number of the first waypoint)

Set the Mach flag if the current TCP is the Mach / CAS transition point.

if (TCPcc = Mach CAS Transition) Doing Mach = true

21



if (Doing Mach) ComputeTcpMach(cc)

else ComputeTcpCas(cc)

end of while cc > index number of the first waypoint

Compute Secondary Speeds

The Compute Secondary Speeds function adds the Mach values to CAS TCPs, the CAS values
to Mach TCPs, and the ground speed values to all TCPs. This function is preformed in the
following steps:

Doing Mach =false

Working backwards form the runway, compute the relevant speeds.

for (i = index number of the last waypoint; i > index number of the first waypoint; i = i -1)

Set the flag if the current TCP is the Mach / CAS transition point.

if (TCPi = Mach CAS Transition) Doing Mach = true

if (Doing Mach) Cas i = MachToCas(Mach i, Altitude i)

else Mach i = CasToMach(Cas i, Altitude i)

Compute the ground track.

if (i = index number of the first waypoint) track = Ground Track i

else if (WptInTurn(i) or (TCP i = turn-exit)) track = Ground Tracki

else track= Ground Tracki-1

Compute the ground speed. Compute the wind at this point.

InterpolateWindWptAltitude(Wind Profile i, Altitude i, Wind Speed, Wind Direction)

Ground Speedi = ComputeGndSpeedUsingTrack (Cas i, track, Altitude i, Wind Speed,
Wind Direction)

end offor (i = index number of the last waypoint; i > index number of the first waypoint; i =
i-1)

Update Turn Data

The Update Turn Data function computes the turn data for each turn waypoint and modifies
the associated waypoint's turn data sub-record. This function performs as follows:

KtsToFps = 1.69

22



Nominal Bank Angle = 22

index = index number of the first waypoint + I

while (index < index number of the last waypoint)

Find the next input waypoint with a turn.

while ((index < index number of the last waypoint) and ((TCP index :^ input waypoint) or
(not WptlnTurn(index)))) index = index + I

If there are no errors and there is a turn of more than 3-degrees, compute the turn data.

if (index < index number of the last waypoint)

Find the start of the turn.

i = index - I

while (TCPi :^ turn-entry) i = i - I

start = i

The following are all approximations and are based on a general, constant radius turn.

The start of turn to the midpoint data is as follows, noting that the ground speeds for
all points must be valid at this point.

The overall distance d for this part of the turn is,

d = DTGstart - DTGin dex

The special case with 0 distance between the points is,

if (d <= 0) AvgGsFirstHalf = (Ground Speed start + Ground Speedindex) / 2

else

The overall average ground speed is computed as follows, noting that it is the
sum of segment distance / overall distance * average segment ground speed.

AvgGsFirstHalf = 0

for (j = start; j < (index -I)6 j = j + I)

dx = DTGj - DTGj+I

AvgGsFirstHalf = AvgGsFirstHalf + (dx / d)
* (Ground Speedj + Ground Speedj+I) /2

Now, find the end of the turn.

23



i = index + 1

while (TCPi :^ turn-exit) i = i + 1

end= i

Now, find the midpoint to the end of the turn.

The overall distance for this part of the turn is,

d = DTGindex - DTGend

Test for the special case, 0 distance between the points.

if (d :5 0)

AvgGsLastHalf = (Ground Speedindex + Ground Speedend) / 2

else

Compute the overall average ground speed noting that it is the sum of
segment distance / overall distance * average segment ground speed.

AvgGsLastHalf = 0

for (j = index, j:5 (end -1); j = j+ 1)

dx =DTGj - DTGj+1

AvgGsLastHalf = AvgGsLastHalf + (dx / d) *
(Ground Speedj + Ground Speedj+1) / 2

end offor (j = index; j <= (end -1); j = j + 1)

end of else if (d:5 0)

The general equation is turn rate = c tan(bank angle) / v. If the bank angle is a
constant, turn rate = c0 / v. The Nominal Bank Angle = 22 degrees.

c0 = 57.3 * 32.2 /KtsToFps * tangent(Nominal Bank Angle)

full turn = DeltaAngle(Ground Trackstart^ Ground Trackend)

half turn = full turn / 2

Compute the outputs from the average ground speed.

Average Ground Speed = (AvgGsFirstHalf + AvgGsLastHalf) / 2

Save the ground speed data in the turn data for this waypoint.

24



Turn Data Average Ground Speedinde5 = Average Ground Speed

w = c0 /Average Ground Speed

The time to make the turn is,

Turn Data Turn Timeinde5 = absolute(full turn) / w

The turn radius is,

Turn Data Turn Radius inde5 = (57.3 * KtsToFps *Average Ground Speed)
/ (6076 * w)

The along-path distance for the turn is,

Turn Data Path Distance inde5 = absolute(full turn) * Turn Data Turn Radius inde5 / 57.3

Save the turn data for the first half of the turn, denoted by the "1" in the variable
name.

Turn Data Cas' inde5 = CASstart

Turn Data Average Ground Speed' inde5 = AvgGsFirstHalf

Turn Data Track' inde5 = Ground Trackstart

The Straight Distance values are the distances from the turn-entry TCP to the
waypoint and from the waypoint to the turn-exit TCP. See the example in figure 5.

Turn Data Straight Distance' inde5 = Turn Data Turn Radius inde5 *
tangent( absolute(half turn))

Figure 5. Turn distances for waypoint i .

The Path Distance values are the along-the-path distances from the turn-entry TCP to
a point one-half way along the turn and from this point to the turn-exit TCP. See the
example in figure 5.

Turn Data Path Distance' inde5 = absolute(half turn) * Turn Data Turn Radius inde5 /
57.3

w = c0 /AvgGsFirstHalf

25



Turn Data Turn Time' index = absolute(half turn) /w

The data for the midpoint to the end of the turn, denoted by the "2" in the variable
name, are as follows:

Turn Data Cas2index = CASend

Turn Data Average Ground Speed2 index = AvgGsLastHalf

Turn Data Track2 index = Ground Trackend

The distances for the second half of the turn are the same as for the first, but their
calculations are recomputed here for clarity.

Turn Data Straight Distance2 index = Turn Data Turn Radius index *
tangent( absolute(half turn))

Turn Data Path Distance2 index = absolute(half turn) * Turn Data Turn Radius index /
57.3

w = c0 /AvgGsLastHalf

Turn Data Turn Time2 index = absolute(half turn) / w

The DTG values are as follows:

DTGstart = DTGindex + Turn Data Path Distance' index

DTGend = DTGindex - Turn Data Path Distance2 index

Since the turn waypoints have been moved, the wind data need to be updated for the
new locations.

GenerateWptWindProfile(DTGstart^ TCPstart)

GenerateWptWindProfile(DTGend^ TCPend)

end of if (index < index number of the last waypoint)

index = index + I

end of while (index < index number of the last waypoint)

Delete TCPs

The Delete TCPs function deletes the altitude, speed, and Mach / CAS TCPs. The remaining
TCPs will only consist of input waypoints, turn-entry, and turn-exit TCPS. This function also
removes any flags that associate any remaining TCPs with a speed or altitude change, e.g., a
waypoint marked as the 10,000 ft, 250 kt restriction.

26



Update DTG Data

The Update DTG Data function is performed after the turn data have been updated and the
VTCPs have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this
time.

DTGfirst waypoint = 0

i = index number of the last waypoint

while (i > 0)

Determine if there is a turn at either end and adjust accordingly.

if (WptlnTurn(i))

DTGi-' = DTGi + Turn Data Path Distance' i

The following is the difference between going directly from the waypoint to going
along the curved path.

PriorDistanceOffset = Turn Data Straight Distance' i - Turn Data Path Distance' i

else PriorDistanceOffset = 0

Find the next input waypoint.

nn=i - '

while (TCPnn :^ input waypoint) nn = nn - I

if (WptlnTurn(nn))

The following is the difference between going directly from the waypoint to going
along the curved path.

DistanceOffset = Turn Data Straight Distance2 nn - TurnData.PathDistance2 nn

The DTG to the input waypoint is then:

DTGnn = (Center to Center Distance i - PriorDistanceOffset - DistanceOffset) + DTG i

The turn-exit DTG is then,

DTGnn+' = DTGnn - Turn Data Path Distance2 nn

27



else

The next waypoint is not in a turn.

DTGnn = Center to Center Distance i _ PriorDistanceOffset + DTG i

i=nn

end of while (i > 0)

Check Turn Validity
The Check Turn Validity function is performed after the turn data have been updated and the

VTCPs have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this
time. The function simple checks that there are no turns within turns.

for (i = index number of the first waypoint; i < index number of the last waypoint; i = i + 1)

if (DTGi < DTGi+1) mark this as an error condition

Compute TCP Times
Beginning at the runway (the last waypoint), work backwards and compute the TTG to each

TCP.

TTGindex number of the last waypoint = 0

for (i = index number of the last waypoint; i > index number of the first waypoint; i = i _1)

Average Ground Speed = (Ground Speedi_1+ Ground Speedi) / 2

x = DTGi_1 _ DTGi

Delta Time = 3600 * x /Average Ground Speed

TTGi_1 = TTGi + Delta Time

Compute TCP Latitude and Longitude Data
With the exception of the input waypoints, the Compute TCP Latitude and Longitude Data

function computes the latitude and longitude data for all of the TCPs.

In Turn =false

Past Center =false

Last Base = index number of the first waypoint

Next Input = index number of the first waypoint

Turn Index = index number of the first waypoint
28



Turn is Clockwise = true

Turn Adjustment= 0

Base Latitude= LatitudeLast Base

Base Longitude = LongitudeLast Base

for (i = index number of the first waypoint; i< index number of the last waypoint; i = i + 1)

if (TC0i == turn-entry)

Turn Adjustment= 0

InTurn = True;

Find the major waypoint for this turn.

Next Input = i+ 1

while ((TC0Next  In ut :^ input waypoint) and (Next Input < index number of the last
waypoint) ) Next Input = Next Input + 1

Turn Index = Next Input

Find the center of the turn.

a = DeltaAngle(Ground Tracki^ Ground TrackNext  Input)

x = Turn Data Turn RadiusTurn Index / cosine(a)

if (a > 0) Turn Clockwise =true

else Turn Clockwise =false

if (Turn Clockwise) a1= Ground TrackTurn Index + 90

else a1= Ground TrackTurnIndex - 90.0

Now compute the relative latitude and longitude values. The function RelativeLatLon
is described in a subsequent section.

RelativeLatLong(Latitude Turn Index. Longitude Turn Index, a1^ x), returning Center Latitude
and Center Longitude

end of if (TC0i = turn-entry)

if (In Turn)

Turn Adjustment= 0

if (Turn Clockwise) a1= Ground Track i - 90

29



else a1= Ground Tracki + 90

if (TCPi = input waypoint)

RelativeLatLong(Center Latitude, Center Longitude, al, x), returning Turn Data
Latitudei and Turn Data Longitude i

Compute the location for the center of the turn.

a2 = DeltaAngle(Turn Data Track' i, Turn Data Track2 i)

if (a2 > 0) b = Ground Track i + 90

else b = Ground Tracki - 90

Compute the latitude and longitude from Turn Data Latitude i, Turn Data
Longitude i, the angle b, and the distance, Turn Data Turn Radius i^

RelativeLatLon(Turn Data Latitude i, Turn Data Longitude i, b,
Turn Data Turn Radius i), returning Turn Data Center
Latitude i and Turn Data Center Longitude i ^

end of if (TCPi = input waypoint)

else RelativeLatLon(Center Latitude, Center Longitude, al, Turn Data Turn
RadiusNextInput), returning Latitude i and Longitude i

if (TCPi = turn-exit)

Turn Adjustment = Turn Data Straight Distance2 Turn Index -

Turn Data Path Distance2Turn Index

In Turn = false

Last Base = Next Input

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

end of if (In Turn)

else

if (TCPi = input waypoint)

Turn Adjustment= 0

Last Base= i

Base Latitude= LatitudeLast Base

30



Base Longitude = LongitudeLast Base

else

RelativeLatLong(Base Latitude, Base Longitude, Ground Track i-1, DTGLast Base -

DTGi + Turn Adjustment), returning Latitude i and Longitude i

end offor (i = index number of the first waypoint; i:5 index number of the last waypoint; i = i
+ 1)

Description of Secondary Functions
The secondary functions are listed in alphabetical order. Note that standard aeronautical

functions, such as CAS to Mach conversions, CasToMach, are not expanded in this document but
may be found numerous references, e.g., reference 22. It may also be of interest to include
atmospheric temperature or temperature deviation in the wind data input and calculate the
temperature at the TCP crossing altitudes to improve the calculation of the various speed terms.

ComputeGndSpeedUsingTrack
The ComputeGndSpeedUsingTrack function computes a ground speed from track angle (versus

heading), CAS, altitude, and wind data.

b = DeltaAngle(track, Wind Direction)

if (CAS <= 0) r = 0

else r = (Wind Speed/ CasToTas Conversion(CAS, Altitude)) * sine(b)

Limit the correction to something reasonable.

if (absolute(r) > 0.8) r = 0.8 * r / absolute(r)

heading= track + arcsine(r)

a= DeltaAngle(heading, Wind Direction)

TAS = CasToTas Conversion(CAS, Altitude)

Ground Speed = (Wind Speed'+ TAS' - '.0 * Wind Speed * TAS * cosine(a) ) 0.s

ComputeGndSpeedUsingMachAndTrack
The ComputeGndSpeedUsingMachAndTrack function computes a ground speed from track

angle (versus heading), Mach, altitude, and wind data.

CAS = MachToCas(Mach,Altitude)

Ground Speed = ComputeGndSpeedUsingTrack

31



ComputedGndTrk

The ComputedGndTrk function computes the ground track at the along-path distance equal to
distance., where distance must lie between TC0i-I and TC0i+I. It is assumed that the value for
Ground Tracki is invalid. The function uses a linear interpolation based on DTGi-I and DTGi+I ,
with the index value i input into the function and where the distance distance must lie between
these points.

d = DTG i-1 - DTG i+1

if (d:5 0) Ground Track= Ground Track i-1

else

a = (I.0 - (distance - DTG i+1) /d) * DeltaAngle(Ground Tracki-1^ Ground Track i+1)

Ground Track = Ground Track i-1 + a

ComputeTcpCas

The variable cc is passed into and out of the ComputeTcpCas function. Beginning with the last
waypoint, this function computes the CAS at each previous TCP and inserts any additional speed
TCPs that may be required to denote a change in the speed profile. The function uses the current
speed constraint, searches backward for the previous constraint, and then computes the distance
required to meet this previous constraint. The speeds for all of the TCPs within this distance are
computed and added to the data for the TCPs. If the along-path distance to meet the previous
constraint is not at a TCP, a new speed VTCP is inserted at this distance. Because there is no
general closed form solution to compute distances to meet the deceleration constraints, an
iterative technique is used in this function. This function is performed in the following steps:

While ((cc > index number of the first waypoint) and (TCP cc :^ Mach CAS Transition))

Determine if the previous constraint cannot be met.

If (CAScc > Crossing CAScc)

If this is the last pass through the algorithm, set this as an error condition

CAScc = Crossing CAScc

Find the prior waypoint index number pc that has a CAS constraint, e.g., a crossing CAS
(Crossing CASpc :^ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

pc=cc -I

while ((pc > index number of the first waypoint) and (TC0pc :^ Mach CAS Transition)
and (Crossing CASpc = 0) )pc = pc - I

Save the previous crossing speed,

Prior Speed= Crossing CASpc

32



Save the current crossing speed (Test Speed) at TC0cc and the deceleration rate (Test
Rate) noting that the first and last waypoints always have speed constraints and except for
the first waypoint, all constrained speed points must have deceleration rates.

Test Speed= Crossing CAScc

Test Rate= Crossing Ratecc

Compute all of the TCP speeds between the current TCP and the previous crossing
waypoint.

k= cc

while k> pc

If the previous speed has already been reached, set the remaining TCP speeds to the
previous speed.

if (Prior Speed :5 Test Speed)

for (k=k-1; k>pc; k=k-1)

CASk = Test Speed

Machk = CasToMach(CASk^ Altitudek)

Set the speeds at the last test point.

CASpc = Test Speed

if (Machpc = 0) Machpc = CasToMach(CASpc^ Altitudepc)

else

Estimate the distance required to meet the crossing restriction using the winds at
the current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind 0rofilek^ Altitudek^ Wind Speed1^ Wind
Direction1)

The ground track at the current point is,

if (WptlnTurn(k)) Track= Ground Trackk

else Track= Ground Trackk-1

33



Current Ground Speed= ComputeGndSpeedUsingTrack(Test Speed, Track,
Altitudek, Wind Speed], Wind Direction])

Compute the wind speed and direction at the prior altitude.

InterpolateWindWptAltitude(Wind Profilek_], Altitudek, Wind Speed], Wind
Direction])

The ground speed at the prior point.

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, GndTrack k_ ],
Altitudek_], Wind Speed], Wind Direction])

Average Ground Speed= (Prior Ground Speed + Current Ground Speed) /2.

The distance estimate, dx, is Average Ground Speed * t.

dx = Average Ground Speed * t / 3600

Recompute the distance required to meet the speed using the previous estimate
distance dx.

Begin by computing the altitude, AltD, at distance dx.

if (Altitudek > Altitude k_ ]) AltD = Altitudek

else AltD = (6076 * dx) * tangent( Crossing Anglek) + Altitudek

The new distance x is DTGk + dx.

Compute the winds at AltD and distance x.

,nterpolateWindAtDistance(AltD, x, Wind Speed2, Wind Direction2)

The track angle at this point, with GetTrajGndTrk defined in this section:

Track2 = GetTrajGndTrk(x)

The ground speed at altitude AltD is then,

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, Track2,
AltD, Wind Speed2, Wind Direction2)

Average Ground Speed= (Prior Ground Speed + Current Ground Speed) /2.

dx = Average Ground Speed * t / 3600

If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.

34



if ((DTGk-I < (DTGk + dx + some small value) )

if (absolute(DTGk-I - DTGk - dx) < some small value) CASk-I = Prior Speed

else

Compute the speed at the waypoint using v2 = vo
2 + 2ax to get v.

The headwind at the end point is,

HeadWind2 = Wind Speed2 * cosine(Wind Direction2 - Ground Track k- I)

dx = DTGk- I - DTGk

The value of CASk-I is computed using function EstimateNextCas,
described in this section.

CASk-I = EstimateNextCas(Test Speed, Current Ground Speed, Prior
Speed, Head Wind2, Altitude k, dx, Crossing
Ratecc)

Determine if the constraint is met.

if ((k-I) = pc)

Was the crossing speed met within 1 kt? If not, set this as an error.

if (absolute(CASpc - Crossing CASpc) > I.0) Mark this as an error
condition

Always set the crossing exactly to the crossing speed.

CASpc = Crossing CASpc

Set the test speed to the computed speed.

Test Speed= CASk- I

Back up the index counter to the next intermediate TCP.

k=k-I

end of if ( (DTGk-I < (DTGk + dx + some small value) )

else

The constraint occurs between this TCP and the previous TCP. A new VTCP
needs to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGk + dx

35



Save the ground track value at this distance.

Saved Ground Track= GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted
between TCPk_I and TCPk from the original list. The function InsertWaypoint
should be appropriate for the actual data structure implementation of this
function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCP k.

DTGk = d

The altitude at this point is computed as follows, recalling that the new
waypoint is TCPk:

if (Altitudek+ I > Altitudek_I) Altitudek = Altitudek_I

else Altitudek = (6076 * dx) * tangent(Crossing Anglek+I) + Altitudek+I

CASk = Prior Speed

Add the ground track data which must be computed if the new VTCP occurs
within a turn. The functions WptlnTurn and ComputedGndTrk are described
in this sections.

if (WptlnTurn(k)) Ground Trackk = ComputedGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of
TCPk.

GenerateWptWindProfile(d^ TCPk)

Test Speed = Prior Speed

Since TCPk, has now been added prior to pc, the current constraint counter cc
needs to be incremented by 1 to maintain its correct position in the list.

cc= cc + I

end of while k > pc.

Now go to the next altitude change segment on the profile.

cc= k

end of while cc > index number of the first waypoint

36



ComputeTcpMach

The variable cc is passed into and out of the ComputeTcpMach function. This function is
similar to ComputeTcpCas with the exception that the computed Mach rate will need to be
recomputed with any change of altitude. Beginning with the last Mach waypoint (the Mach
waypoint that is closest to the runway in terms of DTG), this function computes the Mach at each
previous TCP and inserts any additional speed TCPs that may be required to denote a change in
the speed profile. The function uses the current speed constraint, searches backward for the
previous constraint, and then computes the distance required to meet this previous constraint. The
speeds for all of the TCPs within this distance are computed and added to the data for the TCPs.
If the along-path distance to meet the previous constraint is not at a TCP, a new speed VTCP is
inserted at this distance. Because there is no general closed form solution to compute distances to
meet the deceleration constraints, an iterative technique is used in this function. This function is
performed in the following steps:

While (cc > index number of the first waypoint)

Determine if the previous constraint cannot be met.

If (Machcc > Crossing Machcc)

If this is the last pass through the algorithm, mark this as an error condition

Machcc = Crossing Machcc

Find the prior waypoint index number pc that has a Mach constraint, e.g., a crossing
Mach (Crossing Machpc :^ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

pc=cc -I

finished = false

while ((pc > index number of the first waypoint) and (TC0pc :^ Mach CAS Transition)
and (Crossing CASpc = 0) )pc = pc - I

Save the previous crossing speed,

Prior Speed= Crossing Machpc

Save the current crossing speed (Test Speed) at TCP cc and the deceleration rate (Test
Rate) noting that the first and last waypoints always have speed constraints and except for
the first waypoint, all constrained speed points must have deceleration rates.

Test Speed= Crossing Machcc

Test Rate= CasToMach(Altitude cc^ Crossing Ratecc)

Compute all of the TCP speeds between the current TCP and the previous crossing
waypoint.

k= cc

37



while k > pc

If the previous speed has already been reached, set the remaining TCP speeds to the
previous speed.

if (Prior Speed :5 Test Speed)

for (k=k-]; k>pc; k=k-])

Machk = Test Speed

CASk = MachToCas(Machk, Altitudek)

Mark TCPk as a Mach segment.

Set the speeds at the last test point.

Machpc = Test Speed

CASpc = MachToCas(Machpc, Altitudepc)

else

Estimate the distance required to meet the crossing restriction using the winds at
the current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilek, Altitudek, Wind Speed], Wind
Direction])

The ground track at the current point is,

if (WptInTurn(k)) Track= Ground Trackk

else Track= Ground Trackk-]

Current Ground Speed= ComputeGndSpeedUsingMachAndTrack(Test Speed,
Track, Altitudek, Wind Speed], Wind Direction])

Compute the wind speed and direction at the prior altitude.

InterpolateWindWptAltitude(Wind Profilek-] , Altitudek, Wind Speed], Wind
Direction])

The ground speed at the prior altitude and speed is,

38



Prior Ground Speed= ComputeGndSpeedUsingMachAndTrack(Prior Speed,
GndTrackk- ', Altitudek- ', Wind Speed], Wind
Direction])

Average Ground Speed= (Prior Ground Speed + Current Ground Speed) /2.

The distance estimate, dx, is Average Ground Speed * t.

dx = Average Ground Speed * t / 3600

Compute the distance required to meet the speed using the previous estimate
distance dx.

Begin by computing the altitude, AltD, at distance dx.

if (Altitudek >= Altitudek-') AltD = Altitudek

else AltD = (6076 * dx) * tangent( Crossing Anglek) + Altitudek

Compute the average Mach rate.

MRatel = CasToMach(Crossing Ratecc, Altitudek)

MRate2 = CasToMach(Crossing Rate cc, AltD)

Test Rate = (MRatel + MRate2) / 2

t = (Prior Speed - Test Speed) / Test Rate

The new distance x is DTGk + dx.

Compute the winds at AltD and distance x.

InterpolateWindAtDistance(AltD, x, Wind Speed2, Wind Direction2)

The track angle at this point, with GetTrajGndTrk defined in this section, is:

Track2 = GetTrajGndTrk(x)

The ground speed at altitude AltD is then,

Prior Ground Speed= ComputeGndSpeedUsingMachAndTrack(Prior Speed,
Track2, AltD, Wind Speed2, Wind Direction2)

Average Ground Speed= (Prior Ground Speed + Current Ground Speed) /2.

dx = Average Ground Speed * t / 3600

If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.

39



if ((DTGk-' < (DTGk + dx + some small value) )

if (abso^ute(DTGk-' - DTGk - dx) < some small value)

Machk-' = Prior Speed

Mark TCPk as a Mach segment.

else

Compute the speed at the waypoint using v2 = v0
2 + 2ax to get v.

The headwind at the end point is,

HeadWind2 = Wind Speed2 * cosine(Wind Direction2 - Ground Track k- ')

dx = DTGk- ' - DTGk

Compute the average Mach rate.

MRatel = CasToMach(Crossing Ratecc, Altitudek)

MRate2 = CasToMach(Crossing Rate cc, A^titudek-')

Test Rate= (MRatel + MRate2) / 2

The value of Machk-' is computed using function EstimateNextmach,
described in this section.

Machk-' = EstimateNextMach(Test Speed, Current Ground Speed, Prior
Speed, Head Wind2, A^titude k, dx, Test
Rate)

Determine if the constraint is met.

if ((k-1) = pc)

Was the crossing speed met within 0.002 Mach? If not, set this as an
error.

if (absolute(Machpc - Crossing Machpc) > 0.002)
Mark this as an error condition

Always set the crossing exactly to the crossing speed.

Machpc = Crossing Machpc

Set the test speed to the computed speed.

Test Speed= Mach k- '

40



Back up the index counter to the next intermediate TCP.

k=k_'

end of if ( (DTGk_1 < (DTGk + dx + some small value) )

else

The constraint occurs between this TCP and the previous TCP. A new VTCP
needs to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGk + dx

Save the ground track value at this distance.

Saved Ground Track= GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted
between TCPk_I and TCPk from the original list. The function InsertWaypoint
should be appropriate for the actual data structure implementation of this
function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCP k.

DTGk = d

The altitude at this point is computed as follows, recalling that the new
waypoint is TCPk:

if (Altitudek+) > Altitudek_1) Altitudek = Altitudek_,

else Altitudek = (6076 * dx) * tangent(Crossing Anglek+) + Altitudek+)

Machk = Prior Speed

Mark TCPk as a Mach segment.

Add the ground track data which must be computed if the new VTCP occurs
within a turn. The functions WptlnTurn and ComputedGndTrk are described
in this sections.

if (WptlnTurn(k)) Ground Trackk = ComputedGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of
TCPk.

41



GenerateWptWindProfile(d^ TCPk)

Test Speed = Prior Speed

Since TCPk, has now been added prior to pc, the current constraint counter cc
needs to be incremented by 1 to maintain its correct position in the list.

cc= cc + I

end of while k > pc.

Now go to the next altitude change segment on the profile.

cc= k

end of while cc > index number of the first waypoint.

DoTodAcceleration

The DoTodAcceleration function handles the special case when there is an acceleration to the
descent Mach at the top-of-descent. This function is invoked from Do Descent Mach, which
passes in the index number for the TOD waypoint, Tod,dx, and the Mach value at the TOD,
MachAtTod.

Perform an initialization of flags and counters.

fini = false

skip = true

cc = Todldx

k= cc

Make an initial guess of the distance to the new Mach value.

Descent Speed = MachDescentMach

Mach Rate, = CasToMach(0. 75 kt / sec, Altitudecc)

Compute the time required to do the deceleration.

t = (Descent Speed — MachAtTod) /Mach Rate,

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude( Wind Profilecc^ Altitudecc^ Wind Speed, Wind Direction )

Get the ground track at the current point.

if ( WptlnTurn( Waypointcc) ) track = Ground Trackcc

42



else track= Ground Trackcc+1

TOD Ground Speed= ComputeGndSpeedUsingMachAndTrack(MachAtTod, track,
Altitudecc, Wind Speed, Wind Direction )

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Descent Speed, track,
Altitudecc, Wind Speed, Wind Direction )

The average ground speed is as follows:

Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2

The distance estimate, dx, is Average Ground Speed * t with a conversion to nm.

dx = Average Ground Speed * t / 3600

AltitudeD = Altitudecc - (dx * 6076) * tan(Altitude CrossingAnglecc )

Now compute better estimates, doing this twice to refine the estimation.

for (i=1;i<=2;i=i+1)

skip =false

Determine if this distance is beyond the next downstream waypoint.

k= cc

d =.DTGcc - dx

while ((k < (index number of the last waypoint —1)) && ( DTGk+1 > d) )

if ((k!= cc) && (Crossing Ratek > 0)) skip = True;

k=k+1

if ( WptInTurn( Waypointk) ) track= Ground Trackk

else track= Ground Trackk+1

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Descent Speed, track,
AltitudeD, Wind Speed, Wind Direction )

Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2

Mach Rate2 = CasToMach(Crossing Rate k, AltitudeD)

Test Rate = (Mach Rate 1 + Mach Rate2) / 2

Compute the wind speed and direction at the new altitude.

InterpolateWindWptAltitude( Waypoint k, Altitudek, Wind Speed, Wind Direction)

43



The ground speed at the this point is:

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Descent Speed,
Ground Trackk, Altitudek, Wind Speed, Wind Direction)

The average ground speed is:

Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2

The distance, dx, is:

dx = Average Ground Speed * t / 3600

If there is a valid deceleration point, add it.

if ( !skip )

Add the VTCP for the end of the TOD acceleration.

d = DTGcc - dx

This needs to be here so the return data are valid.

Old Ground Track= GetTrajGndTrk(d )

Temporarily save the wind data at the distance d into a temporary record, SavedWind.

GenerateWptWindProfile(d, SavedWind)

This needs to be inserted downstream from the TOD.

k=k+1

InsertWaypoint(k)

Mark waypointk as a VTCP

If waypointk is not marked as any specific type of VTCP, mark it as the TOD acceleration.

DTGk = d

Altitudek = Altitudecc - (dx * 6076) * tan(Crossing Angle k+ 1)

Machk = Descent Speedl

Crossing Machk = Descent Speed

Mark waypointk as a Mach segment.

Crossing Ratek = 0.75 kt /sec

44



if (WptlnTurn(k)) Ground Trackk = ComputedGndTrk(k,d)

else Ground Trackk = Old Ground Track

Add the saved wind data to this new waypoint.

Copy SavedWind into WindDatak

else set an error condition

DeltaAngle

The DeltaAngle function returns angle a, the difference between Angle1 and Angle2. The
returned value may be negative, i.e., -180 degrees > DeltaAngle > 180 degrees.

a = Angle2 - Angle1

Adjust "a" such that 0 > a > 360

if (a > 180) a = a - 360

EstimateNextCas

EstimateNextCas is an iterative function to estimate the CAS value, CAS, at the next TCP.
Note that there is no closed-form solution for this calculation of CAS. The input variable names
described in this function are from the calling routine. Also, the input deceleration value must be
greater than 0, Test Rate > 0.

CAS = Test Speed

Set up a condition to get at least one pass.

d=-10*dx

size= 1.01 * (Prior Speed - Test Speed)

count= 0

if ( (dx > 0) and (Test Rate > 0) )

Iterate a solution. The counter count is used to terminate the iteration if the distance
estimation does reach a solution within 0.001 n.mi.

45



while ( (absolute(d - dx) > 0.001) && (count < 10) )

if (d > dx) CAS = CAS - size

else CAS = CAS + size

size = size/ 2

The estimated time t to reach this speed,

t = (CAS - Test Speed) / Test Rate

The new ground speed,

Gs2 = CasToTas Conversion(guess, Altitude) - Head Wind2

d = ((Current Ground Speed + Gs2) / 2) * (t / 3600)

count= count + 1

end of the while loop

Limit the computed CAS, if necessary.

if (CAS > Prior Speed) CAS = Prior Speed

EstimateNextMach

EstimateNextMach is an iterative function to estimate the Mach value, Mach, at the next TCP.
Note that there is no closed-form solution for this calculation. The input variable names described
in this function are from the calling routine. Also, the input deceleration value must be greater
than 0, Mach Rate > 0.

Mach = Test Speed

Set up a condition to get at least one pass.

d=-10*dx

size= 1.01 * (Prior Speed - Test Speed)

count= 0

if ( (dx > 0) and (Test Rate > 0))

Iterate a solution. The counter count is used to terminate the iteration if the distance
estimation does reach a solution within 0.001 n.mi.

while ( (absolute(d - dx) > 0.001) && (count < 10))

if (d > dx) Mach = Mach - size

46



else Mach = Mach + size

size= size/ 2

The estimated time t to reach this speed,

t = (Mach _ Test Speed) / Test Rate

The new ground speed,

CAS = MachToCas(Mach, Altitude)

Gs2 = CasToTas Conversion(CAS, Altitude) _ Head Wind2

d = ((Current Ground Speed + Gs2) / 2) * (t / 3600)

count= count + I

end of the while loop

Limit the computed Mach, if necessary.

if (Mach > Prior Speed) Mach = Prior Speed

GenerateWptWindProfile

The function GenerateWptWindProfile is used to compute new wind profile data. This function
is a double-linear interpolation using the wind data from the two bounding input waypoints to
compute the wind profile for a new VTCP, TCPk. The interpolations are between the wind
altitudes from the input data and the ratio of the distance d at a point between TCPi_I and TCP i

and the distance between TCPi_I and TCPi. E.g.,

— Find the two bounding input waypoints, TCPi_I and TCPi, between which d lies, e.g.,
TCPi_I > d > TCPi.

— Using the altitudes from the wind profile of TCP i, compute and temporarily save the wind
data at these altitudes using the wind data from TCPi_I (e.g., Wind SpeedTe^porary, AltitudeI).

— Compute the wind speed and wind direction for each altitude using the ratio r of the
distances. Assuming that the difference between DTGi_I and DTGi :^ 0, and that DTGi_I >
DTGi .

r = (DTGi_I _ d) / (DTG i_I _ DTGi)

Iterate the following for each altitude in the profile.

Wind Speedk, AltitudeI = ( (I.0 _ r) * Wind SpeedT,,nw,ry, AltitudeI) + (r * Wind Speedi, AltitudeI)

a= DeltaAngle(Wind Direction Te ̂ porary, AltitudeI, Wind Direction i, AltitudeI)

Wind Directionk, AltitudeI = Wind Direction k AltitudeI + (r * a)

47



Figure 6 is an example of the computation data for a the wind computation at a 9,000 ft
altitude. In this example, TCPi-1 has wind data at 10,000 and 8,000 ft and TCP i has wind data at
9,000 ft.

Wind Datai-1^
10000ft

Wind Datai-1^
8000ft

(1 - r) * Wind Datai-1,

computed for 9000ft
------------ii

^	 DTGi-1 - d

r * Wind Datai

------

DTGi-1 - DTGi

Wind Datai^
9000ft

TCPi-1	 TCPk	 TCPi

Figure 6. Example for computing a single wind data altitude.

GetTrajectoryData

The GetTrajectoryData function computes the trajectory data at the along-path distance equal
to d and saves these data in a temporary TCP record. The function uses a linear interpolation
based on the DTG values of the two TCPs bounding this distance and the distance d to compute
the trajectory data at this point.

GetTraj GndTrk

The GetTrajGndTrk function computes the ground track at the along-path distance, distance.

if ((distance < 0) or (distance > DTGfirst !aypoint) ) Ground Track = Ground Trackfirst !aypoint

else

Find where distance is on the path.

i = index number of the last waypoint

while (distance > DTG i) i = i -1

if (distance = DTG i) Ground Track= Ground Track i

else

x = DTGi - DTGi+1

if(x50.0)r= 0

else r = (distance - DTGi+1) /x

dx = r * DeltaAngle(Ground Track i^ Ground Tracki+1)

Ground Track = Ground Tracki + dx

48



InterpolateWindAtDistance

The function InterpolateWindAtDistance is used to compute the wind speed and direction at an
altitude, Altitude, for a specific distance, Distance, along the path. This function is a linear
interpolation using the wind data from the input waypoints that bound the along-path distance.

Find the bounding input waypoints.

i0 = index number of the first waypoint

j= 0;

fini = false

if (Distance < 0) Distance = 0

while ( (fini = false) && (j < (index number of the last waypoint -1) ) )

if ( (TCPj = input waypoint) and (DTGj > = Distance) ) i0 = j

if (DTGj < Distance) fini = true

end of the while loop

i1=i0+1

j= i1

fini = false

while ( (fini =false) && (j < index number of the last waypoint) )

if ((TCPj = input waypoint) and (DTGj <= Distance) )

i1= j

fini = true

end of if

j=j+1

end of the while loop

if (i1 > index number of the last waypoint) i1= index number of the last waypoint

if (i0 = i1) InterpolateWindWptAltitude(TCP i0, Altitude)

else

Interpolate the winds at each waypoint.

InterpolateWindWptAltitude(TCPi0, Altitude), returning Spd0 and Dir0

49



Interp^lateWindWptAltitude(TC0 i1, Altitude), returning Spd1 and Dir1

Interpolate the winds between the two waypoints.

r = (DTGi9 - Distance) / (DTGi9 - DTGi1)

Wind Speed = ((1.0 - r) * SpdO) + (r * Spd1)

a = DeltaAngle(DirO, Dir1)

Wind Direction = DirO + (r * a)

InterpolateWindWpt^ltitude

The function Interp^late WindWptAltitude is used to compute the wind speed and direction at
an altitude, Altitude, for a specific TCP. This function is a linear interpolation using the wind data
from the current TPC.

Find the index numbers, p0 and p1, for the bounding altitudes.

p9= 0

p1=0

for (k = 1; k <= Number of Wind Altitudes i6 k = k + 1)

if (Wind Altitude i, k <= Altitude) p0 = k

if ( (Wind Altitude i, k >= Altitude)and (p1= 0) ) p1= k

if (p1= 0) p1= Number of Wind Altitudes i

If Altitude = Wind Altitudep9 or if Altitude = Wind Altitudep1 then the wind data from that
point is used. Otherwise, Altitude is not at an altitude on the wind profile of TC0 i, i.e., z =
Wind Altitude i, k, then:

r = (Altitude - Wind Altitudep9) /(Wind Altitudep1 - Wind Altitudep9)

Wind Speed= ((1 - r) * Wind Speedpo) + (r * Wind Speedp1)

a= DeltaAngle(Wind Directionpo, Wind Directi^np1)

Wind Direction = Wind Directionpo + (r * a)

50



RelativeLatLon

The function RelativeLatLon computes the latitude and longitude from input values of latitude,
BaseLat, longitude, BaseLon, angle, Angle, and range, Range.

if (Angle = 180) Latitude = -range / 60 + BaseLat

else Latitude = ((Range * cos(Angle) ) / 60) + BaseLat

if ( (BaseLat = 0) or (BaseLat = 180) ) Longitude = BaseLon

else if (Angle = 90) Longitude = BaseLon + range/ (60 * cos(BaseLat) )

else if (Angle= 270) Longitude= BaseLon -Range / (60 * cos(BaseLat) )

else

r1 = tangent(45 + 0.5 * Latitude)

r2 = tangent(45 + 0.5* BaseLat)

if ( (r1 = 0) or (r2 = 0) ) Longitude = 20, just some number, this is an error.

else Longitude = BaseLon + (180 /pi * (tangent(Angle) * (log(r1) - log(r2))))

WptInTurn

The WptInTurn function simply determines if the waypoint is between a turn-entry TCP and a
turn-exit TCP. If this is true, then the function returns a value of true, otherwise it returns a value
of false.

Summary
The algorithm described in this document takes as input a list of waypoints, their trajectory-

specific data, and associated wind profile data. A full 4D trajectory can then be generated by the
techniques described. A software prototype has been developed from this documentation. An
example of the data input and the prototype-generated output is provided in the Appendix.

51



References

1. Abbott, T. S.; and Moen, G. C,: Effect of Display Size on Utilization of Traffic Situation Display
for Self-Spacing Task, NASA TP-1885, 1981.

2. Abbott, Terence S.: A Compensatory Algorithm for the Slow-Down Effect on Constant-Time-
Separation Approaches, NASA TM-4285, 1991.

3. Sorensen, J. A.; Hollister, W.; Burgess, M.; and Davis, D.: Traffic Alert and Collision Avoidance
System (TCAS) - Cockpit Display of Traffic Information (CDTI) Investigation, DOT/FAA/RD-
91/8,1991.

4. Williams, D. H.: Time-Based Self-Spacing Techniques Using Cockpit Display of Traffic
Information During Approach to Landing in a Terminal Area Vectoring Environment, NASA TM-
84601,1983.

5. Koenke, E.; and Abramson, P.: DAG-TM Concept Element 11, Terminal Arrival: Self Spacing for
Merging and In-trail Separation, Advanced Air Transportation Technologies Project, 2004.

6. Abbott, T. S.: Speed Control Law for Precision Terminal Area In-Trail Self Spacing, NASA TM
2002-211742,2002.

7. Osaguera-Lohr, R. M.; Lohr, G. W.; Abbott, T. S.; and Eischeid, T. M.: Evaluation Of
Operational Procedures For Using A Time-Based Airborne Interarrival Spacing Tool, AIAA-
2002-5824, 2002.

8. Lohr, G. W.; Osaguera-Lohr, R. M.; and Abbott, T. S.: Flight Evaluation of a Time-based
Airborne Inter-arrival Spacing Tool, Paper 56, Proceedings of the 5th USA/Europe ATM Seminar
at Budapest, Hungary, 2003.

9. Krishnamurthy, K.; Barmore, B.; Bussink, F. J.; Weitz, L.; and Dahlene, L.: Fast-Time
Evaluations Of Airborne Merging and Spacing In Terminal Arrival Operations, AIAA-2005-
6143, 2005.

10. Barmore, B.; Abbott, T. S.; and Capron, W. R.: Evaluation of Airborne Precision spacing in a
Human-in-the-Loop Experiment, AIAA-2005-7402, 2005.

11. Hoffman, E.; Ivanescu, D.; Shaw, C.; and Zeghal, K.: Analysis of Constant Time Delay Airborne
Spacing Between Aircraft of Mixed Types in Varying Wind Conditions, Paper 77, Proceedings of
the 5th USA/Europe ATM Seminar at Budapest, Hungary, 2003.

12. Ivanescu, D.; Powell, D.; Shaw, C.; Hoffman, E.; and Zeghal, K.: Effect OfAircraft Self-Merging
In Sequence On An Airborne Collision Avoidance System, AIAA 2004-4994, 2004.

13. Weitz, L.; Hurtado, J. E.; and Bussink, F. J. L.: Increasing Runway Capacity for Continuous
Descent Approaches Through Airborne Precision Spacing, AIAA 2005-6142, 2005.

14. Barmore, B. E.; Abbott, T. S.; and Krishnamurthy, K.: Airborne-Managed Spacing in Multiple
Arrival Streams, Proceedings of the 24th Congress of the International Council of Aeronautical
Sciences,, 2004.

15. Baxley, B.; Barmore, B.; Bone, R.; and Abbott, T. S.: Operational Concept for Flight Crews to
Participate in Merging and Spacing ofAircraft, 2006 AIAA Aviation Technology, Integration and
Operations Conference, 2006.

52



16. Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; Capron, W. R.; and Howell, C. T.: Airborne
Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool, NASA/TM-
2005-213772, 2005.

17. Oseguera-Lohr, R. M.; and Nadler, E. D.: Effects of an Approach Spacing Flight Deck Tool on
Pilot Eyescan, NASA/TM-2004-212987, 2004.

18. Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; and Capron, W. R.: A Time-Based Airborne
Inter-Arrival Spacing Tool: Flight Evaluation Result, ATC Quarterly, Vol 13 no 2, 2005.

19. Barmore, B.; Krishnamurthy, K.; Capron, W.; Baxley, B.; and Abbott, T. S.: An Experimental
Validation ofMerging and Spacing by Flight Crew, 2006 AIAA Aviation Technology, Integration
and Operations Conference, 2006.

20. Krishnamurthy, K.; Barmore, B.; and Bussink, F. J. L.: Airborne Precision Spacing in Merging
Terminal Arrival Routes: A Fast-time Simulation Study, Proceedings of the 6th USA/Europe ATM
Seminar, 2005.

21. Abbott, T. S.: A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing
Concepts, NASA CR-2007-214899, 2007.

22. Olson, Wayne M.: Aircraft Performance Flight Testing, AFFTC-TIH-99-01, 2000.

53



Appendix Example Data Sets

Input Trajectory Data

An example input trajectory data set is provided in Table A1.

The descent Mach is 0.82. The Mach / CAS transition speed for this example is 310 knots.
Note that Waypoint-18 is the runway threshold at a 50 ft crossing height.

Table A1. Example of trajectory input data.

Identifier Latitude Longitude
Crossing
Altitude

Crossing
Angle

Crossing
CAS

Crossing
Mach

Crossing
Rate

Waypoint-01 31.87476 -103.244 37000 0 0 0.78 0

Waypoint-02 32.48133 -99.8635 0 0 0 0 0

Waypoint-03 32.20548 -98.9531 0 0 0 0 0

Waypoint-04 32.19398 -98.6621 0 0 0 0 0

Waypoint-05 32.17042 -98.113 0 0 0 0 0

Waypoint-06 32.15959 -97.8777 0 0 0 0 0

Waypoint-07 32.34026 -97.6623 0 0 0 0 0

Waypoint-08 32.46908 -97.5079 0 0 0 0 0

Waypoint-09 32.64444 -97.2967 11700 3.0 0 0 0

Waypoint-10 32.71448 -97.2119 11000 1.1 0 0 0

Waypoint-11 32.74948 -97.1695 0 0 0 0 0

Waypoint-12 32.97496 -97.1783 0 0 0 0 0

Waypoint-13 33.10724 -97.1754 5300 2.3 220 0 0.5

Waypoint-14 33.10658 -97.0537 4300 1.8 0 0 0

Waypoint-15 33.03645 -97.0541 0 0 0 0 0

Waypoint-16 33.00561 -97.0542 2400 3.1 170 0 0.5

Waypoint-17 32.95953 -97.0544 1495 3.0 127 0 0.75

Waypoint-18 32.91582 -97.0546 660 3.0 127 0 0.75

54



Input Wind Data

An example wind speed data set is provided in Table A2.

Table A2. Example of wind speed input data.

Wind Wind
Identifier Altitude Speed Direction

Waypoint-01 0 20 180

10000 50 270

20000 60 340

40000 70 350

Waypoint-02 0 20 180

10000 50 270

20000 60 340

40000 70 350

Waypoint-03 0 20 180

10000 50 270

20000 60 340

40000 70 350

Waypoint-04 0 20 180

10000 50 270

20000 60 340

40000 70 350

Waypoint-05 0 20 180

10000 50 270

20000 60 340

40000 70 350

Waypoint-06 0 20 180

10000 50 270

20000 60 340

40000 70 350

Waypoint-07 0 20 160

10000 50 240

20000 60 320

40000 70 330

55



Table A2 (continued). Example of wind speed input data.

Identifier Altitude
Wind
Speed

Wind
Direction

Waypoint-08 0 20 160

10000 50 240

20000 60 330

40000 70 340

Waypoint-09 0 20 160

10000 50 240

20000 60 330

40000 70 340

Waypoint-10 0 20 160

10000 50 240

20000 50 330

40000 60 340

Waypoint-11 0 20 160

10000 50 240

20000 50 330

40000 60 340

Waypoint-12 0 20 160

10000 50 240

20000 50 330

40000 60 340

Waypoint-13 0 20 160

10000 50 240

20000 50 330

40000 60 340

Waypoint-14 0 20 160

10000 40 240

20000 50 330

40000 60 340

56



Table A2 (continued). Example of wind speed input data.

Wind Wind
Identifier Altitude Speed Direction

Waypoint-15 0 20 160

10000 40 240

20000 50 330

40000 60 340

Waypoint-16 0 20 160

10000 40 240

20000 50 330

40000 60 340

Waypoint-17 0 20 160

10000 40 240

20000 50 330

40000 60 340

Waypoint-18 0 20 160

10000 40 240

20000 50 330

40000 60 340

Output Trajectory Data

An example of the data available from this trajectory algorithm is provided in Table A3. Not
shown, but also available, are the latitude and longitude data for each TCP.

Table A3. Example of the trajectory output data.

TCP type Identifier Altitude Mach CAS
Mach

Segment
Ground
Speed Track DTG TTG

Input Waypoint-01 37000 0.78 252.5 true 450.7 77.1 366.06 3214.8

Turn-entry 37000 0.78 252.5 true 450.7 77.1 192.89 1831.4

Input Waypoint-02 37000 0.78 252.5 true 469.9 93.3 190.64 1813.8

Turn-exit 37000 0.78 252.5 true 487.5 109.5 188.39 1796.9

Turn-entry 37000 0.78 252.5 true 487.5 109.5 142.90 1461.0

Input Waypoint-03 37000 0.78 252.5 true 478.6 101 141.68 1451.9

Turn-exit 37000 0.78 252.5 true 469.1 92.6 140.46 1442.6

57



Table A3 (continued). Example of the trajectory output data.

TCP type Identifier Altitude Mach CAS
Mach

Segment
Ground
Speed Track DTG TTG

Input Waypoint-04 37000 0.78 252.5 true 469.1 92.8 126.90 1338.6

VTCP 37000 0.78 252.5 true 469.3 93 125.46 1327.5

VTCP 36306 0.82 271.2 true 494.5 93 123.28 1311.2

VTCP 30337 0.82 310 false 509.6 93 104.53 1176.8

Input Waypoint-05 28569 0.793 310 false 497.2 93 98.98 1137.1

Turn-entry 25777 0.751 310 false 478.5 93 90.21 1072.4

Input Waypoint-06 24818 0.737 310 false 446.6 69.1 87.20 1048.9

Turn-exit 23858 0.723 310 false 415.4 45.2 84.19 1023.8

Input Waypoint-07 19976 0.672 310 false 393.4 45.3 72.00 915.2

Input Waypoint-08 16474 0.629 310 false 404.6 45.4 61.00 816.0

Input Waypoint-09 11700 0.576 310 false 409.4 45.5 46.01 683.4

VTCP 11432 0.574 310 false 408.5 45.5 43.71 663.1

Input Waypoint-10 11000 0.524 284.6 false 378.1 45.5 40.01 629.3

VTCP 11000 0.519 282 false 375.1 45.5 39.65 625.8

Turn-entry 10811 0.507 276.4 false 368.4 45.5 38.87 618.3

Input Waypoint-11 10382 0.479 262.9 false 340.6 21.8 37.12 600.5

VTCP 10000 0.453 250 false 324.7 19.3 35.55 583.5

Turn-exit 9954 0.452 250 false 308.9 358.1 35.36 581.4

Input Waypoint-12 7105 0.429 250 false 307.7 1.1 23.69 445.1

VTCP 6474 0.424 250 false 307.3 1.1 21.10 414.8

Turn-entry 5793 0.391 233.1 false 286.5 1.1 18.31 381.0

Input Waypoint-13 5300 0.366 220 false 270 45.7 16.29 354.9

Turn-exit 4909 0.363 220 false 245 90.3 14.27 326.6

Turn-entry 4556 0.361 220 false 242 90.3 12.42 299.3

Input Waypoint-14 4300 0.359 220 false 215.4 135.3 11.08 278.2

VTCP 3987 0.357 220 false 204.1 164.4 10.21 263.2

Turn-exit 3831 0.35 215.9 false 197 180.3 9.74 254.7

Input Waypoint-15 3009 0.305 191.2 false 170.7 180.2 7.24 205.8

Input Waypoint-16 2400 0.268 170 false 148.8 180.2 5.39 164.1

VTCP 2140 0.267 170 false 148.9 180.2 4.65 146.2

58



Table A3 (continued). Example of the trajectory output data.

Mach Ground
TCP type Identifier Altitude Mach CAS Segment Speed Track DTG TTG

Input Waypoint-17 1495 0.197 127 false 105.5 180.2 2.62 88.9

Input Waypoint-18 660 0.194 127 false 106.9 180.2 0.00 0.0

59



REPORT DOCUMENTATION PAGE
OForm Approved

MB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

01-02 - 2010 Contractor Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Revised Trajectory Algorithm to Support En Route and Terminal Area
Self-Spacing Concepts 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Abbott, Terence S. L-70750D
5e. TASK NUMBER

5f. WORK UNIT NUMBER

411931.02.61.07.01.03
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/CR-2010-216204
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 03
Availability: NASA CASI (443) 757-5802
13. SUPPLEMENTARY NOTES
This document is an update to NASA/CR-2007-214899, September 2007.
Langley Technical Monitor: Anthony M. Busquets

14. ABSTRACT

This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are
similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing
restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from
the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude,
speed, along path distance, and along path time for each waypoint.

15. SUBJECT TERMS

Aircraft operations; Approach spacing; Aircraft systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT

PA
OF
PAGESGES Help Desk email: hel 	 sti.nasa. ovp	 (	 p@	 g	 )a. REPORT b. ABSTRACT c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

U U U UU 68 (443) 757-5802
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18


