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Abstract: The objective of this paper is to prcsent a method for importance analysis in parametric 
probabilistic modeling where the rcsult of interest is the identification of potential engineering 
vulnerabilities associated with postulated anomalics in systcm bchavior. In the contcxt of Accident 
Prccursor Analysis (APA), under which this method has been developed, these vulncrabilitics, 
designated as anomaly vulnerabililies, are conditions that produce high risk in the presence of 
anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability 
Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the 
potential presence of anomaly vulncrabilities, and allows them to be prioritized for further 
investigation. This entails analyzing each uncertain risk-model parameter over its credible range of 
values to determine whcre it produces the maximum risk. A parameter that produces high system risk 
for a particular range of valucs suggests that the system is vulnerable to the modeled anomalous 
conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means 
of identifying and prioritizing anomaly-related engineering issues that at the very least warrant 
improved understanding to reduce uncertainty, such that true vulncrabilities may be identified and 
proper corrective actions taken. 
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1. INTRODUCTION 

The objective of this paper is to present a method for importance analysis in parametric probabilistic 
modeling where the rcsult of interest is the identification of potential engineering vulnerabilities 
associated with postulatcd anomalies in system behavior. In thc context of Accident Precursor 
Analysis (APA) [I], under which this method has been developed, these vulnerabilities, designated as 
anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system 
behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure 
(PVI), which identifies anomaly risk model parameter values that indicate the potential presence of 
anomaly vulncrabilitics, and allows them to be prioritized for further investigation. This entails 
analyzing each uncertain risk-model parameter over its credible range of values to determine whcre it 
produces the maximum risk. A parameter that produces high system risk for a particular range of 
valucs suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true 
parameter value lics in that range. Thus, PVI analysis provides a means of identifying and prioritizing 
anomaly-related engineering issues that at the very least warrant improved understanding to reduce 
uncertainty such that a t n ~ c  vulnerability may be identified and proper corrective action taken. 

2. ANOMALOUS CONDITION RISK 

APA serves as the bridge between existing risk modeling activitics, which are often based on historical 
or generic failure statistics, and system anomalies, which providc crucial information about the failure 
mechanisms that are actually operative in the system. The APA technical approach entails the 
development of a parametric probabilistic anomaly risk model for risk significant anomalies that can 
be exercised in a number of ways to gcneratc the risk results of interest. A primary result is the 
Anomalous Condition Risk (ACR), which is the conditional risk that is directly attributable to a failure 
mechanism occurring outside nominal bounds, thereby creating an anomalous condition. ACR is 
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conditional, i.e. it presumes t l~e  occurrence of an anomaly, hut the particular characteristics of the 
anomaly are indeterminate. This means that ACR is calculated by allowing the anomaly failure 
mechanism to vary (in magnitude, location, etc.) in accordance with the failure mechanism's parent 
distribution, and the cxpected risk over all resulting anomalies is calculated as: 

ACR = (Risk / Anomalous Condition) - (Risk 1 -Anomalous Condition) (1) 

The second term in the Equation 1 is needed to remove any stochastic risk that is represented in the 
model but not attributable to the anomaly, such as that due to random failures of modelled safety 
systems.' This is done not only to isolate the risk that is directly attributable to the anomaly event, but 
also to remove the effects of variability in model scope. For example, a detailcd model that includes 
all the components of a subsystem will typically show more risk than a subsystem model that is 
restricted to the components directly involved in the anomaly. The situation is shown in Figure 1. The 
ACR is used in the APA technical approach to prioritize anomalies in terms of their risk significance, 
and offers a measure that can be used to establish criteria for precursor designation. 

Figure 1: Anomalous Condition Risk (ACR) for the Same Anomaly 
hut Derived from Models of Varying Scale 
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3. PARAMETER EXTREME RISK 

ACR addresses the expected risk to the system conditional on anomaly occurrence, but it does not 
provide direct insight into potential anomaly-specitic vulnerabilities which should be investigated 
firthcr. To accomplish this, a paramcter-specific risk metric, Parameter Extreme Risk (PER), is 
defined for each uncertain parameter x, in the anomaly risk model, involving the recalculation of ACR 
under the restriction that the x, lies in that region of its probability density function (pdf) that is of 
greatest concern. The precise definition of this region is somewhat arbitraly, hut for the purpose of 
calculating PER the region ofconcern (ROC) for parameter xi is defined as the 59% probability interval 
over x, that produces the largest risk, given an anomalous condition, For example, if parameter xi 
represents a failure threshold whose location is uncertain and thcrefore described by a pdf over xi, the 
ROC would he the left-hand tail of the xi pdf, since that is where the failure threshold is at its lowest 
value, producing the greatest vulnerability to imposed stresses. Thus, in this case it can be determined 
by inspection that the ROC is the region to the left of the 5" percentile value of xi. In the context of 
APA, which involves first-order probabilistic parametric modeling of anomalous-condition-induced 
failure scenarios, it is anticipated that the ROC will usually he dctcrminable by inspection based on 
physical arguments. When this is not the case, the ROC can he determined by finding the 5% 

+ k mathematical justification for taking the difference between these probabilities is given in Appendix A. 



probability interval over xi that produces the highest risk, given an anomalous condition, using the 
model results generated for the purpose of calculating ACR'. This is shown schematically in Figure 2. 
The individual Monte Carlo trials that fall within the anomalous range of the anomaly failure 
mechanism are plotted in terms of xi and risk. For every 5% probability interval over xi, the trials that 
lie within are averaged to produce a risk for that interval. The interval for which the risk is at a 
maximum is the ROC. 

Figure 2: Determination of the Region of Concern Risk Model Monte Carlo Results 
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Once the ROC has been determined, PER for x, is calculated as: 

PER, = (Risk / Anomalous Condition A x, t ROC) - (Risk / -Anomalous Condition) (2) 

The situation is shown schematically in Figure 3. The magnitude of the anomaly failure mechanism is 
shown on the x-axis as a pdf, the right hand tail of which lies in the anomalous range. For a given 
value of the anomaly failure mechanism's fault magnihtde, the risk model produces a risk pdf 
representing the range of possible risk over the distributions of uncertain parameters in the model. The 
solid lines represent the risk range when the parameters are unconstrained, and the dashed lines 
represent the risk range when parameter xi is constrained to the ROC. The three pdfs on the risk axis 
represent the conditional risk distributions that factor into the calculation of ACR and PER,. The lower 
pdf on the left side of the y-axis is the risk conditional on the anomaly failure mechanism being within 
its nominal range (i.e. nominal risk). The upper pdf on the left side of the y-axis is the risk conditional 
on the anomaly failure mechanism being within the anomalous range. The difference between the 
expected values of these two pdfs is the ACR, which measures the risk that is attributable to the 
anomaly failure mechanism occurring within the anomalous range. The pdf on the right side of the y- 
axis is the risk conditional on the anomaly failure mechanism being within the anomalous range and 
on parameter x, lying within the ROC. Its minimum value is demarcated by the hashed horizontal line. 
The difference between its expected value and that of the nominal risk pdf is the PER,. 

Like ACR, PER is calculated as the difference between two risks. However, in this case, subtraction of 
the second term on the right hand side of Equation 2 does not leave just the risk that is attributable to 
the anomalous condition. It also leaves the risk from non-anomalous-condition sources that is 
attributable to xi being in the ROC. This is because the second term is the risk, given non-occurrence 
of the anomalous condition, over the entire xi pdf, not just over the ROC. Therefore, if PER is high, it 
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might be because the system is particularly vulnerable to the anomalous condition in the ROC, or 
because the system is inherently vt~lnerable in the ROC even in the absence of the anomalous 
condition. 

Figure 3: Schematic Representation of ACR and PER,. 
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To distinguish these two sources of ROC-related risk, PERi can be decomposed into two parts: 
PER?', which addresses that part of PERi that is attributable to the anomalous condition, and PER,"", 
which addresses that part of PER, that is attributable to other sources. 

PER:' = (Risk 1 Anomalous Condition A x, t ROC) - (Risk / -Anomalous Condition A x, E ROC) (3) 

 PER^"" = (Risk / -Anomalous Condition A x, c ROC) -(Risk / -Anomalous Condition) (4) 

PER,"' and PER?" sum to PER,, and together provide a means of assessing the significance of the 
anomalous condition in contributing to an increase in risk, over and above the nominal risk, for the 
situation where a parameter is within its ROC$. 

PER has dimensions of risk, and in fact is an explicit representation of risk, conditional on the 
parameter-specific constraints. Its calculation can be thought of as a form of risk-based "what i f '  
analysis -for each parameter it answers questions of the type: "What is the risk, ifthe parameter is in 
a range that produces a vulnerable system?" A high value of PER indicates a potential vulnerability, 
associated with paramctcr xi, due to either the anomalous condition or to inherent system risk, which 
might merit additional investigation to determine whether or not the actual value of the parameter lies 
in the vulnerable range. Thus, PER raises specific engineering concerns within a risk-based 
assessment framework that prioritizes them in terms of their overall risk-significance. 

' If the parameter is the one whose anonlalous occurrence is under investigation, it is possible, and indeed not 
improbable. for the ROC to be found wholly within the anomalous region of the parameter's pdf. In this case, 
(Risk 1 -Anomalous Condition h x, c ROC) is indeterminate because (-Anomalous Condition A x, r ROC) is the 
null set. To handle this special case, the following definitions are used: 

PER," = PER,; and 
 PER,'^ = o 



It is worth noting that although PER indicates the possible magnitude of the anomalous condition risk, 
if xi is indeed in the ROC, it does not indicate the range of x, values for which the risk is at or near its 
PER value. It is possible that this range is larger than the ROC, or even that there is more than one 
region of the pdf where risk is high. Thus, the method is exhaustive in terms of identifying all 
parameters associated with potential anomalous condition vulnerabilities, but it is not exhaustive in 
terms of identifying all values of a given parameter for which a potential vulnerability may exist. 

4. IMPORTANCE MEASURES 

Both ACR and PER represent explicit conditional risk contributions to an overall system risk, and as 
such they are most meaningful in the context of that risk. If the risk at the overall system level is &, 
then the ratio of ACR can be taken with respect to & to define the following importance measure: 

A C R  
Anomalous Condition Risk Importance (ACRI): ACRl = --- ( 5 )  

R, 

Once an anomaly has been designated as important, based on ACRI, the following parameter-specific 
importance measure is defined in order to indicate the potential presence of a parameter-related 
vulnerability: 

PER, 
Parameter Vulnerability Importance (PVI,): PVI, = - 

ACR 
(6 )  

PVI can he further decomposed, using PER"' and PER"", into PVI~' and PVI"*, where PvI"' 
measures the parameter vulnerability due to the anomalous condition, and PVI"" measures the 
vulnerability due to the intrinsic behavior of the system. 

In the case of ACRI, normalization with respect to the overall system risk allows the significance of 
anomalous conditions to be assessed relative to other risks in the system, which supports prioritization 
of risk management attention among competing issues. It also provides a system-independent means 
for designating an anomaly as a precursor, in cases where precursor criteria are established. For 
example, an ACRI value of 1% or greater could be considered a reasonable basis for precursor 
designation. In the case of PVI, normalization with respect to ACR supports prioritization of potential 
vulnerabilities across different parameters, for anomalous conditions whose ACRI values warrant a 
parameter-specific level of investigation. By definition, PVI must he greater than or equal to one. A 
PVI value at or near one indicates that changes in the corresponding parameter do not produce 
significant changes in anomalous condition risk. Larger values of PVI indicate the presence of 
parameter ranges that may he risk drivers. These risk drivers may be related to anomalous conditions 
or they may be intrinsic to the system, regardless of the anomalous condition. In general: the absolute 
value of a parameter's PVI is less important than its value relative to other parameters, since its 
purpose it to help prioritize potential engineering issues for investigation, rather than to give an 
absolute indication of risk. 

It is worth noting that both ACRI and PVI are calculated using risks that are conditional on the 
occurrence of the anomalous condition. Therefore, when comparing measures across anomalous 
conditions, the probabilities of occurrence of the conditions are not taken into account. The measures 
have been defined in this way because anomaly investigation and precursor analysis are intrinsically 
pre-emptive, i.e. the intcnt is ideally to find and eliminate vulnerabilities upon their first manifestation. 
While this isn't necessarily achievable in all cases, it means that the measures will maintain their 
effectiveness in a data-lean environment, i.e. before many anomalies have occurred. 

When a system risk model cxists, the system risk R, can he taken from the model. In cascs where a 
system risk model does not exist, R, must he obtained by other means in order to provide a 



normalization factor against which risk significance can be established. One possible basis for 
normalization, in the absence of a calculated risk, is the system risk requirement, which establishes a 
de facto acceptable risk. Note that assuming an R, of 0 (meaning the system has absolutely no risk) 
leads to an ACRI of infinity -this makes sense since a system with no risk should not be experiencing 
anomalies in the first place. It is imperative that the same benchmark value of R, be used in calculating 
ACRl for all anomalous conditions in a particular system, since this is a comparative measure that is 
intended for use in prioritizing the expenditure of resources to decrease system risk. Therefore, if the 
benchmark is updated, it should be applied retroactively to all previous ACRl estimates to ensure a 
common basis. 

5. RELATION TO STANDARD RISK AND UNCERTAINTY MEASURES 

As part of the developmeilt of ACRI and PVI, a number of standard risk and uncertainty measures 
were reviewed for applicability to anomaly vulnerability identification [ 2 ] .  Many standard measures 
are specific to probabilistic risk assessment (PRA) basic events, which presents two distinct 
difficulties when applying them to model parameters. First, measures that are based on turning events 
"on" or "off' (i.e. Pfevent) = 1 or Pfevent) = 0) cannot be directly applied to parameters, since model 
parameters do not necessarily have absolute maxima or minima. The Fussel-Vesely (F-V), Risk 
Reduction Worth (RRW), and Risk Achievement Worth (RAW) are examples of this kind of measure. 
Secondly measures that are differcntial cannot be directly applied because there is not necessarily a 
common basis among parameters with respect to which the differcntial can be defined. This is not a 
problem for basic events, which are all probabilities by definition. Examples of this kind of measure 
include the Birnhaum Measure and the Differential Importance Measure (DIM) under criterion HI **. 

The DIM under criterion ~ 2 ' '  is mathematically conlpatihle with parametric probabilistic modcling 
but is not designed to address the specific concerns of anomaly vulnerability identification. It is a local 
measure, so it does not explicitly explore parameters at their hounding values, where threshold effects 
are most likely to represent vulnerabilities. Also, its differentials are scaled in terms of the value of the 
parameter, which has no intrinsic relevance to precursor analysis and its intimate relationship to 
uncertainty. Entropy-based approaches were also considered, but were determined to be too indirect 
and potentially very sensitive to assumptions concerning tbe hnctional forms of uncertainty 
characterization. 

Although no reviewed measure was entirely adequate to the task of identifying potential anomaly- 
related engineering vulnerabilities, PVI can be viewed as an adaptation of the RAW measure. RAW is 
calculated using the following expression: 

It represents the increase in cxpectcd risk conditional on basic event x, being at its bounding value of 
unity. Similarly, PVI is conditional on parameter xi being within its bounding range of values (in terms 
of resultant risk). 

It is of critical importance for the risk model to identify parameter uncertainty where it exists, using a 
conservative, evidence-based approach. This is because of the concern that vulnerabilities may exist 
due to overconfidence in the capability of the system to function under stress, particularly when that 
stress is outside the bounds of operational and/or test experience. Since this is precisely the realm of 
APA, it is imperative to minimize the reproduction of any overconfidence that might be present in 
existing system models, erring on the side of conservatism when system behavior is not supported by 
evidence. Given this approach, the analysis does not positively indicate the presence of a vulnerability; 

**  
Criterion HI assumes a uniform change for all parameters (i.e., Fx, = 6x, ). 

++ Criterion H2 assumes a uniform percentage change for all parameters (i.e.; FxJx, = Sxix, = w). 



instead, it identifies areas where the available evidence doesn't rule out the vulnerability. The onus is 
then on the system operator to either show that the potential vulnerability is not involve credible 
conditions, or to address it if it does. This is in keeping with the safety philosophy that puts the burden 
of proof on the operator to show that the system is safe, rather than on the safety organization to show 
that it is unsafe. In any case, the issue of whether or not the vulnerable range of a parameter is credible 
should not be left to chance. 

In summary, this paper presents an approach to anomaly vulnerability identification and defines the 
ACRI and PVI importance measures, which support the identification of potential engineering 
vulnerabilities that could lead to system failure under anomalous conditions. ACRI addresses the risk- 
significance of the anomaly's underlying failure mechanism, and supports prioritization of further 
anomaly investigation and the establishment of criteria for precursor designation. PVI decomposes 
into PVI-~', which measures the potential vulnerability of the system to the parameter under the 
anomalous condition of interest, and PVI'*, which measures the potential vulnerability under non- 
anomalous conditions. 

APPENDIX A: ANALYTICAL BASIS OF ANOMALOUS CONDITION RISK 

Let the total probability of failure of a system be P(fai1); let the condition where a specific anomalous 
condition exists be AC; and let the situation where a non-anomalous-condition-related failure-causing 
condition exists in the system be Q. Note that although Q implies that failure is inevitable, it does not 
imply that the failure will necessarily be due to Q, since a system with both Q and AC might fail due 
to one or the other condition. 

By the law of total probability: 

In principle, the risk attributable to the anomalous condition, conditional on its occurrence, is P(fail / 
AC A -Q). However, whereas it is practical to construct a risk model that allows the results to be 
conditioned on AC vs. -AC, it is not practical to construct a risk model that allows results to be 
conditioned on Q vs. -Q. Thus, the quantities that are amenable to calculation are: 

P(fa11 / AC) = P(fall/ AC A Q) x P(Q) + 
P(fal1 i AC A -Q) x P(-Q) 

and 

Now, since Q implies failure, and -AC A -Q implies success, 

Substituting Equations 11 and 12 into Equations 9 and 10 yields: 



P(fai1 / AC) = P(Q) + P(fai1 / AC A -Q) x P(-Q) 113) 

Taking the difference yields: 

P(fail1 AC) - P(fai1 / -AC) = P(fai1 / AC A -Q) x P(-Q). (15) 

Since the left hand side of Equation 15 is the definition of anomalous condition risk (ACR), we have: 

ACR = Pffail / AC A -Q) x P(-Q). (16) 

The method for calculating ACR accepts an error of P(-Q) relative to P(fai1 / AC A -Q), which does 
not make a practical difference as long as P(-Q) is close to 1, i.e. as long as P(Q) << 1. This makes 
intuitive sense, because subtracting out the fraction of cases with condition Q also subtracts out those 
cases with condition Q A AC, some of which might fail due to AC. Thus the method undercounts 
failures due to AC in proportion to the fraction of total cases that have condition Q. 
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