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Abstract. This paper presents a new Route Generation Algorithm that accurately and realistically
represents human route planning and navigation for Military Operations in Urban Terrain (MOUT). The
accuracy of this algorithm in representing human behavior is measured using the Unreal TournamenFM
2004 (UT2004) Game Engine to provide the simulation environment in which the differences between the
routes taken by the human player and those of a Synthetic Agent (BOT) executing the A-star algorithm
and the new Route Generation Algorithm can be compared. The new Route Generation Algorithm
computes the BOT route based on partial or incomplete knowledge received from the UT2004 game
engine during game play. To allow BOT navigation to occur continuously throughout the game play with
incomplete knowledge of the terrain, a spatial network model of the UT2004 MOUT terrain is captured
and stored in an Oracle 11 9 Spatial Data Object (SOO). The SOO allows a partial data query to be
executed to generate continuous route updates based on the terrain knowledge, and stored dynamic
BOT, Player and environmental parameters returned by the query. The partial data query permits the
dynamic adjustment of the planned routes by the Route Generation Algorithm based on the current state
of the environment during a simulation. The dynamic nature of this algorithm more accurately allows the
BOT to mimic the routes taken by the human executing under the same conditions thereby improving the
realism of the BOT in a MOUT simulation environment.

1. INTRODUCTION

Research on Human Behavior Representation
(HBR) in synthetic agents (BOTS) has focused
predominantly on Cognitive Modeling. A Cognitive
Model attempts to represent human thinking or
decision making and translate that to human
action. The corollary to Cognitive Modeling is
Behavior Generation, which we have defined as
the representation of human behavior that mimics
or emulates the human. We have found very little
research which examines Human Behavior
Modeling (HBM) in this context [2], [3].

The research indicates that a system today can
be smart enough to give the illusion of life by
concentrating on creating consistent believable
high level behavior instead of natural looking
human actions [1], [5]. The UnrealTournamenFM
2004 (UT2004) game engine selected for this
research, for example, provides an interface to the
physics and AI components that generate the
BOT behavior and actions that are used to
implement the new route planning and navigation
algorithm. The high level behavior elements
received from the game engine form the inputs to
the algorithm that plans and generates the routes
that the BOT executes. BOT execution of the
routes includes dynamic behavioral actions based
on sensory information to better mimic the human
thereby giving this illusion of life or realism as we

have defined it. To further improve the realism of
BOT route planning and navigation we introduce
the concept of using partial or incomplete
knowledge of the environment. This concept
results in the dynamic calculation of routes based
on sensory information and behavioral actions
that more closely mimic those available to
humans executing similar actions. To be realistic
the behavior must mimic that of the human.

The simulation of Human Behavior for the
purpose of measuring realism requires a virtual
environment that can closely resemble that of the
real world. The game industry has successfully
achieved this goal with the Massively Multiplayer
Online (MMO) games and First Person Shooter
(FPS) Games such as Quake III Arena™, Half­
Life2™, and Unreal Tournament's Americas
ArmyTM Mod. As previously indicated, in this
paper we develop a new route generation
algorithm that is executed using Unreal
Tournament 2004 (UT2004). The simulation of
this new algorithm is accomplished using the
Gamebots 2004 (GB2004) UnrealScript package,
the Pogamut BOT (agent) and Java Libraries and
its Netbeans plug-in, and an Oracle 11 g spatially
enabled database.
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2. Background

Generating realistic human behavior in a virtual
environment continues to challenge the simulation
community. In recent years the explosion in game
technology and advances in multi-agent systems
and behavior representation in BOTs, make
possible the ability to mimic human actions such
as route planning and navigation. A key issue in
the virtual environment that remains is how to
generate human-like behaviors for BOTS. In
recent years, game developers are contributing
more and more effort on game artificial
intelligence (AI), further supporting the importance
of the need for simulating realistic human
behaviors.(6) Real world events and the rising
training costs in response to them has further
shifted emphasis in the simulation community
toward realism. This increased emphasis on
realism suggests that AI-driven BOTs should be
able to act as opponents against human players
or as team members to cooperate with human
players in the virtual environment. One well
studied BOT action in this context is route
planning.

Route planning, in general, is a well studied
problem with a wide range of application areas,
including artificial intelligence in games, robotics,
and military simulation. While many algorithms
exist for discovering and producing routes or
paths, when the terrain can be represented as a
graph, A* is arguably the most frequently used
graph search technique. First described in 1968
(7), A* has been intensely studied and developed
and now has several specialized forms. A* or one
of its specialized forms is the basis of route
planning in many computer games [8]. The route
planning algorithm presented in this paper
expands on the principles of A*.

3. SIMULATION ENVIRONMENT

The simulation environment used to develop and
implement a new route generation algorithm
satisfied several unique factors. First, the
application program interface (API) should not
introduce bias or confounding variables into the
experimental design resulting from the virtual
environment. Second, the API must allow for the
collection, measurement and storage of game and
environmental parameters without impacting
game engine performance. Third, the API must
support integration of the client application with
the game engine physics and artificial intelligence
(AI) engines. Finally, the virtual environment (map
or level) must have an interface to allow physical
parameters collected from humans executing
defined scenarios in the physical environment to
be input for statistical comparison. The Unreal
Tournament 2004™ game engine with the
Gamebots 2004 (GB2004) UnrealScript package

and Pogamut BOT (agent) and Java Libraries and
its Netbeans plug-in addressed these factors.

3.1 Unreal Tournament 2004 ™ (UT2004)

UnrealTournament (UT) was the first game to ship
with synthetic agents or BOTS. UT provides a
custom scripting language, UnrealScript, through
which game developers can modify (MOD) the
host game. UnrealScript provides a rich Object
Oriented (00) interface to the UT game engine
producing MODS such as Ravenshield™ and
Infiltration TM. Other UT based games, such as
America's ArmyTM and Vegas, extend the UT2004
game engine and lock or limit the ability to MOD
through UnrealScript. With the rich 00 interface
and the availability of Pogamut Integrated
Development Environment (IDE) with its Netbeans
plug-in and BOT and Java Libraries, UT2004 was
selected as the base game engine.

3.2 Gamebots 2004(GB2004)

Gamebots, an UnrealScript package, was jointly
developed by USC and Carnegie Mellon
University (CMU) as an interface between the
server and client. The interface provides access
to sensory information such as the location and
direction of a player in the game world or a
message received from a teammate through
synchronous and asynchronous messages
communicated between server and client. BOT
action commands from client to server are also
accessed through this interface. Andrew Marshall
at USC-lSI created a higher-level interface based
on the Gamebots protocol, called JavaBot API
[Marshall, 2002] to handle the specific Gamebots
protocol, network socket programming, message
passing, and other related issues, which makes
the development of BOT AI neater and simpler.

3.3 Pogamut

Expanding on the JavaBot API and extending the
Gamebots' UnrealScript, Jakub Gemrot and
Rudolf Kadlec developed the Pogamut plug-in to
the Netbeans™ IDE
(http://artemis.ms.mff.cuni.cz). The base Pogamut
Architecture, shown in Figure 1, integrates the
UT2004 Server through the GameBots 2004
(GB2004) API with the Client and Netbeans IDE.

Figure 1 - Pogamut Architecture (4)
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3.4 Oracle 11g Database with Spatial Data
Objects

The basic Pogamut architecture integrated with
UT2004 was extended with database functionality
to permit advanced analytical processing of the
environmental information available through the
GB2004 and Pogamut interface. The Oracle 11g
database provides two important functions. First, it
provides for the parameter storage and
subsequent analysis and retrieval based on BOT
and Player sensory and action logic. Second,
with the Spatial Oata Objects (SOO), network and
spatial analytics could be applied to the UT2004
map environment and collected during BOT
initiation. Player/BOT monitoring functions added
to the base GB2004 and Pogamut Core library
provide near real time sensory and game
parameters and spatially aware updates to the
database. Figure 2 represents the simulation
environment implemented.
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Figure 2 - Simulation Environment Architecture

4. ROUTE PLANNING ALGORITHM

Executing realistic route planning and navigation
in the UT2004 game environment introduced
several challenges. First, most game virtual
environments (maps or levels) model the terrain
as a graph by inserting pathnodes along
navigable features such as urban streets
intersecting at distinct intersections, hall ways and
stairs within buildings, and paths or trails in rural
environments. A typical pattern is shown in
Figure 3 for the McKenna MOUT virtual terrain
used in this research. The UT2004 function to
build AI Paths then computes the navigable edges
between the nodes taking into account non­
trafficable buildings, barriers and terrain. BOT
logic programmed in the Pogamut Client instructs
the BOT navigation AI to either execute a
computed A* route to destination or to proceed to
a specified pathnode. Because these pathnodes
are predetermined during map design, do not
change (i.e. are always reachable) and do not
represent all paths the human can travel within
the map, realism is not achieved. Second,
UT2004 stores the pathnodes and the calculated

edges in the map. BOT logic then retrieves this
data during initialization and builds the navigation
paths using A*, nearest neighbor or pathnode
lookup. Because all the information is available
the routes a BOT plans are always perfect (i.e:
shortest distance, shortest time, or least cost).
Leveraging the graph available through the
Pogamut interface to UT2004 and GB2004 and
the Oracle 11g database with SOO, we developed
a route planning algorithm which has at its core
A*, but uses incomplete or imperfect knowledge in
its execution. In addition to the SOO, the
database makes available near real time dynamic
information about the environment upon which the
BOT logic can react. Thereby creating a more
realistic BOT and addressing the challenges of
the UT2004 environment.

Figure 3 - Pathnodes with UT2004 edges

4.1 A* (A-star) Algorithm

A* is a best-first search algorithm that finds the
least cost path from a given start pathnode to an
end pathnode. Cost in A* is an attribute of the
graph edges and pathnodes included in the path.
The cost values are defined to correspond to a
desired property of the real-world terrain the graph
represents. In UT2004, the value of the cost is
determined by the map designer. Later, in our
realistic design we will show how to change this to
allow dynamic calculation of this cost based on
the environment.

As previously noted A*, is a well researched and
documented algorithm. A good description and
representation of the algorithm is found at:
http://en.wikipedia.org/wiki/A* algorithm. The
pseudo-code is shown in Figure 4. Execution of
A* begins with the identification of the start and
the goal pathnode. Working partial paths are
assembled from the start pathnode along the
edges connecting surrounding pathnodes towards
the goal pathnode. This process of following the
edges from pathnode to pathnode is repeated,
adding pathnodes to the partial paths until one
reaches the goal pathnode. A heuristic function,
denoted f(x) , where x is the end pathnode of a
partial path currently being considered, is used to
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calculate the next pathnode of the graph to extend
the path to.

f(x) =g(x) + h(x) (4.1)

where: g(x) is the total cost of the partial path

h(x) is the distance from x to the goal

For A* to be optimal, the distance function h(x)
must underestimate the distance to the goal. The
Pogamut implementation of A* used in this
research computes h(x) as the straight-line
(Euclidean) distance to the goal pathnode,
guaranteeing the underestimate (admissibility)
criteria is met.

function A'"'(start,goal)
dosedset := the empty set % The set of nodes already evaluated.
openset := set containing the initial node % The set of tentative nodes to be

evaluated.
9_SCOre[start]:= 0 % Distance from start alon9 optimal path.
h_score[start]:= heuristic_estimate_oCdistance(start, goa~
Cscore[start] := h_score[start] % Estimated total distance from start to goal

through y.
while openset is not empty

x := the node in openset having the lowest '-scoreD value
ifx=goal

retum reconstructj>ath(came_from,goal}
remove x from openset
add x to closedset
(oreach y in neighbor_"odes(x)

if y in dosedset
continue

tentative_9_score := 9_score[x] + disLbetween(x,y)
tentative is better:= false
if y not in-openset

add y to openset
h_score[y] := heuristic_estimate_oCdistance(y, 90al)
tentative is better:= true

elseif tentaiive:9_score < 9_score[y]
tentative is better;= true

if tentative is better = true
came_from[y] := x
9_score[y];= tentativeJLscore
Cscore[y] := lLscore[y] + h_score[y]

retum failure

function reconstruct,J>ath(came_from,currenCnode)
if came_from[currenCnode] is set

p = reconstructJlath(came_from.came_from[current_nodeJ)
retum (p + currenCnode)

else
return the empty path

Figure 4 - Wikipedia's or the A* algorithm.
The Pogamut A* multiplies an edge cost value
determined by the level or map designer with the
edge length to calculate cost variable (g(x». The
value of the edge cost is always greater than or
equal to 1, to ensure admissibility or the heuristic
function, h(x).

4.2 Imperfect Knowledge Algorithm (IKA)

From the preceding discussion of A* two
limitations to the generation of realistic routes
stand out. First, A* guarantees an optimal path
based on the heuristic, which in this case is
distance. To mimic the route planning and
subsequent navigation of humans, A* must be
modified to account for additional variables, such
as cover, terrain type, slope, doors, and windows.
Second, A* calculations compute a-priori, a single
optimal (based on the heuristic) path to the goal
during BOT initialization. Updates to this path are
computationally impractical during game play
unless the number of pathnodes is minimized.

Minimizing the number of pathnodes would
unrealistically limit the possible BOT paths.

To solve these limitations, we first modify the A*
heuristic function's cost variable g(x) to permit
dynamic calculation of cost based on current
game environment.

g'(x) = w, • g(x) + W2 + W3 + ... wn 4.2

where: w, is the length cost factor
W2 - Wn are cost factors determined
from BOT, Player and environment

The modified heuristic function:
f(x) =g'(x) + h(x) 4.3

where g'(x) > g(x)

Second, we develop a mechanism for dynamic
collection environmental parameters and limiting
the available pathnodes for planning [9]. The
dynamic collection of environmental parameters
that include BOT, Player, and game parameters
use the modified Pogamut architecture, which
includes the database component and extension
to the GB2004 UnrealScript Library and Pogamut
Core Java Library for Player monitoring. The
initial parameters (W2 - wn) used include Player
Visibility, Ooor, Window, terrain type and the
standard edge length. To limit the available
pathnodes, a network model of the UT2004
pathnodes and calculated edges is constructed at
BOT initialization using the Oracle 11 g database
with Spatial Oata Objects. The network model
and SOO permit expanding the pathnode and
edge density to more closely approximate the
possible paths a human might execute. To
ensure timely IKA route calculation, retrieval of
pathnodes and edges is accomplished using the
SOO geometry function:

SOOJILTER( p.geom, boundingbox) 4.4
where p.geom is the SOO geometry column

of the NavPoints Table, and
boundingbox is the SOO geometry of the area

visible to the BOT

The listing in figure 5 returns the navigable nodes
and edges contained within the boundingbox
(SOO_BB(player» modified pathnode pattern,
shown in figure 6, for application in the IKA. The
modified pathnode pattern ensures the possible
paths available to the BOT are consistent with
those available to the human player.

SELECT n.unrealid IIreturns unrealid of navigable points
FROM navpoints n IInavpoints table constructed at BOT init
WHERE SDOJILTER(n.geom.

SDO_BB(player» = 'TRUE': IISDO_BB(player retums Geometry of player
II location

Figure 5 - SQL listing for bounded pathnodes.
In addition to the SOO_Geometry objects stored
in the NavPoints table, we added the tables
tbLPParams and tbLBParams to provide the
structure for storing the BOT, Player and game
parameters that are used in computing the
dynamic cost function of the Imperfect Knowledge
Algorithm (IKA). This data structure also permits
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dynamic near real time updates to the BOT,
Player, and game parameters used in the
heuristic, through the monitored player class
added to the Pogamut Core library. The
monitored player class performs sense functions
on human players and BOTS running in the game
and updates tbLPParams and tbl_BParams with
the sense results.

Figure 6 - UT2004 Network Model

The IKA requires additional modifications to the
map or level design to identify specific terrain
features such as doors, windows, and terrain type.
UnrealScript is used to create additional pathnode
actors that can be placed in the map or level to
identify these features as well' as the general
planning pathnode that provides intermediate
pathnodes from which the IKA will calculate the
overview routes used to produce the IKA goal
pathnodes. The concept of two pass route
planning using UnrealTournament was introduced
by Zhuoqian Shen to provide navigation through a
multi-level (room) map [6].

" BotGPPathNode. General Purpose Node
class BotGPPathNode extends PathNode

placeable;
/I BotDestinationPathNode. Goal Node
class BotDestinationPathNode extends PathNode

placeable;
/I BotDoorPathNode. Door Node
class BotDoorPathNode extends PathNode

placeable;
/I BotWindowPathNode. Window Node
class BotWindowPathNode extends PathNode

placeable:

Figure 7 - UnrealScript Listing for Pathnode
extensions

As noted above, the IKA is implemented in two
passes. The first pass is executed at BOT
initialization to generate and store all goal

pathnodes that will be used by the IKA. During
initialization, all pathnodes and their neighbors, as
computed by the UT2004, are stored in a SDO
within the NavPoints table. The IKA then uses A*
to compute the optimum path from the UT2004
pathnode, PlayerStartNode, to the pathnode,
BOTDestinationPathNode, using only the
BotGPPathNodes (Figure 8). Once the initial path
has been generated as part of initialization, these
points are used to determine the goal pathnodes
for subsequent IKA path calculations.

Figure 8 - BOTGPPathNodes Pathnodes

Subsequent passes execute the IKA using the
dynamically generated cost variable g'(x) (4.2)
and the modified heuristic function f(x) (4.3). The
IKA has built into the BOT's doLogicO function the
sensory function that triggers route calculation,
and when appropriate re-calculation of the IKA
goal nodes. The pseudo-code for the IKA is
shown in Figure 9.

5. MEASURING REALISM

The last section demonstrated the use of the
UT2004 based simulation environment in the
development of the Improved Knowledge
Algorithm (IKA). The next step is to provide a
quantitative approach to measuring its realism.
Recall that in this paper we have defined realism
to be a representation of human behavior that
mimics or emulates the human. The UT2004
based simulation environment and the added
monitor player class to the Pogamut Core Library
and modifications to GB2004 provide the
capability to record human player and BOT
actions during a simulation run and store them in
a data structure for subsequent numerical and
statistical analysis. This feature will enable the
development of a realism metric that measures
the deviation of BOT actions from the human
player. Combining the realism metric with the
classic Turing test an objective and subjective
assessment of the realism of the specific action
being tested is possible.
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function IKA (start, goal, pf) % pf = pass nag (0 or 1)
bpclosedsel := the empty BolGPPalhNode set
bpopenset := set containing the initial BotGPPathNode
dosedset := the empty set % The set of all pathnodes already evaluated.
openset := set containing the initial node % The set of all tentative

pathnodes nodes to be evaluated.
g'_score[start] := 0 % Distance from start along optimal path.
h_score[start] := heuristic_estimate_oCdistance(start, goaO
r_score[start] := h_score[start] % Estimated total cost from start to goal

through y.
if ps = 1 % Compute intermediate route using BotGPPathNodes

dosedset := bpclosedset
openset := bpopenset
w2[] := w3[]:= w4[] := 0 % traditional A·

else
c10sedsel := the empty sel
openset := set containing the initial node

while openset is not empty
x:= the node in openset having the lowest r_scoreD value
if x = goal

return reconstructyath(came_from,goal)
remove x from openset
add x to c10sedset
foreach y in neighbor_nodes(x)

if y in dosedset
continue

tentative_g'_score := w1 • 9_score[x] + w2[x] + w3[x] + w4[x] +
dist_between(x,y)

tentative_is_better ;= false
if y not in openset

add y to open set
h_score[y] := heuristic_estimate_oCdistance(y, goal)
tentative is better:= true

elseif lentaiive-=,g'_score < w1 • 9-score[y) + w2[y] + w3[y) + w4[y]
tentative_is_better ;= true

if tentative_is_better = true
came_from[y) := x
g'_score[y] := tentative_g'_score
f _score[y] := g'_score[y] + h_score[y]

return failure

function reconstructyath(came_from,current_node)
if came_from[current_node] is set

p = reconstructyath(came_from,came_from[current_node])
return (p + currenLnode)

else
return the empty path

Figure 9 -IKA Psuedo-Code

6. CONCLUSIONS AND FUTURE WORK

The simulation architecture presented in this
paper demonstrates an improved simulation
architecture for development and testing of BOT
actions. This simulation architecture was used to
develop the Imperfect Knowledge Algorithm (IKA)
which provides a more realistic representation of
the BOT route planning action.

Continuation of this research will develop the
realism metric, using the methodology described
in this paper to provide a quantitative validation of
the realism of the IKA.

The design and implementation of the virtual
environment that supports the UT2004 based
simulation architecture is very labor intensive.
Functionality that can be implemented within the
UnRealED to automate the terrain analysis for the
placement of pathnodes and generation of the
path edges should be studied and implemented.

In the current implementation of the IKA, the
parameters that affect the route cost are manually
set. A method for tuning the IKA parameters to
optimize for realism as measured by the realism
metric should be studied.
Finally, validation of the realism metric requires
human data collected in a real world environment

that has been modeled in UT2004. The Fort
Benning, McKenna MOUT site was selected for
this research to allow for this validation. Future
research should be undertaken to collect human
data executing a defined scenario that can be
compared using the realism metric with human
player and BOT data executing the same scenario
in the virtual world.
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