
169

A Toolset for Supporting Iterative Human - Automation
Interaction in Design

Michael Feary, PhD

NASA Ames Research Center

Michael.S.Feary@nasa.gov

ABSTRACT

The addition of automation has greatly extended humans' capability to accomplish tasks, including
those that are difficult, complex and safety critical. The majority of Human - Automation Interact~on

(HAl) results in more efficient and safe operations, ho,,:,ever ~ertain un~~pected a~tomatlon

behaviors or "automation surprises" can be frustrating and, In certain safety critical operations (e.g.
transport~tion, manufacturing control, medicine), may result in injuries or. the loss of life.. (Mellor,
1994; Leveson, 1995; FAA, 1995; BASI, 1998; Sheridan, 2002). This pap~r describes ~he

development of a design tool that enables on the rapid development and evaluation. of automat~on
prototypes. The ultimate goal of the work is to provide a design platform upon which automation
surprise vulnerability analyses can be integrated.

Introduction
Recent analyses of aircraft accidents (FAA, 1995;
BASI, 1998) have shown that aircraft automation is
increasing as the major contributing factor to aircraft
incidents and accidents. These accidents have shown
a disturbing trend in that the automation was
performing as designed, and was operated by well­
trained operators, but users were surprised with
unexpected automation behavior.

These "automation surprise vulnerabilities" are due to
a failure in the specification of the behavior of the
automation, rather than a failure in the implementation
of the automation. The vulnerabilities could be due to a
number of possible factors, including: inadequate
coverage of the possible situations the automation
needs to be able to respond to, or a weakness in the
presentation of the automation behavior, such that the
human user and the automation do not share a
common understanding of the goals, the situation, or
the proper behavior to accomplish a goal for a given
situation. In either case, the focus needs to be on
presenting human operators with predictable
automation behavior.

The ultimate goal of the research described in this
paper is the development of a viable means of
identifying Human-Automation Interaction (HAl)
vulnerabilities early in the design process. The focus

for these HAl analyses is on the "cognitive" behavioral
aspects of the user and the software or digital
hardware in computers. The analyses aim to identify
vulnerabilities in the communication of behavioral
expectations or intent between the user and the
automation.

The Automation Design and Evaluation Prototyping
Toolset (ADEPT) was developed to respond to this
need and to focus on the iterative specification of
decis'ion logic of the automation being designed. The
tool is intended to produce an accurate and complete
specification. In addition to the focus on specifying
decision logic, the tool was intended to provide a
platform for integrating HAl testing and analysis.

The focus of this paper is an examination of the
suitability of ADEPT to serve as a platform to upon
which to integrate HAl analyses. ADEPT was
developed to be usable by a domain expert designer
without requiring extensive programming language
expertise. This requirement was intended to enable
ADEPT to be used early in the design process, by
many different design team members (e.g. training,
procedure, interface, etc.) The tool should foster
communication between design experts from different
domains, meaning that the tool should provide a
structure that provides specific transition points for
design team members to interact with each other.

170

ADEPT combines a graphical user interface design
capability with an automation behavior specification
capability and an automatic code generator to enable
domain expert designers to create testable software
prototypes.

browser for the User Interface Editor, or can be
dragged into the Logic Editor to allow graphic
properties to be changed dynamically
corresponding to the automation behavior.

• The User Interface Editor enables the designer to
specify the look and feel of the of user interface by
placing graphic objects on a canvas. The graphic
objects include buttons, knobs, displays, and the
ability to import static and dynamic graphical
objects created in other software applications. The

• The Logic Editor enables the designer to specify
the decision logic and automation behavior of the
device, the environment in which the device
operates, as well as the behavior of the user
interface objects on the user-interface
corresponding to the reflect the current state of the
device and environment.

properties (i.e. font, size, color, etc) of the
graphical objects in can be changed in a property

@
..

.I:

-

o 1 2 3 4

I ,

'

-I- ­
I- -II- --

II---=.,-I ,

'-II-I
'-II-I

II:
I I-
I I-
I I
II---~

I I -

IAnalyses I

--Ii -
I-I

II-
I I

I-I~---,--
I I ­I !

EJ toplogicTable.outputState
alarm_sounding
alarm_snoozing
phoneJocked
application_home
phone_unlocked
alarm_setup

PRIMITIVES
101 snooze_timer.start
101 snooze_timer.stop

ISll snooze_time

INPUTS
topLogicTable.outputState
alarm_sounding
alarm_snoozing
phoneJocked
application_home
phone_unlocked
alarm_setup

ACTIONS
It! r3clHotspotlabel.mouseClicked
It! r3c2Hotspotlabel.mouseClicked
ItI r3c3Hotspotlabel.mouseClicked
It! r3c4Hotspotlabel.mouseClicked
ro rSc1Hotspotlabel.mouseDragged
ItI rSc2Hotspotlabel.mouseDragged
It! rSc3Hotspotlabel.mouseDragged
It! rSc4Hotspotlabel.mouseDragged

ISll snooze_time
<5000
>=5000

(.lIiia·i,

.....

IRows I IColumns II Sort I ICompleteness I

lalarm sounding I
10 I

Value

IPrototypeBeanNoi

I • I

j TEST j

carrier_cover
pda-,mage

101 snooze_timer
!'tllnt snooze_time
!'tl String pda_status

pda status

description

~ Root
toploglcTable
topContalner

~ CI hotspots
alarm_setup

<" System Browser !:I

IAdd» I •

<" Property !:I

IProperty

name

olalarm sounding and user clicks
~snooze

Ilphone locked. sounding or snoozing
i'mn u ..pr .. lItire;. (,lIrlrr

alarm snoozes

phone cancels alarm and opens
.,nnllriltlnn hnmr

Figure 1. ADEPT in Build mode

•

slide to stop a larm)

@

6:04
Monct.J, June 23

o

~ '.

IReset I lOll

..

-
-

--

o 1 2 3 4

I I
1-1 - -

1

/ : :

I ­I I
I I
I I
1:1
I-I
I-I
I ,-
II:
I ,­
I I

II--
I I
I I ­I-I
I I

1'­
I I
I I
I- I
I I -

=~=---~II

alarm snoozes

o . • •

Figure 2. ADEPT in Test mode

INPUTS
topLogicTab le.outputState
alarm_sounding
alarm_s noozing
phoneJocked
app licat ion_ho me
phone_unloc ked
alarm_se tup

ACTIONS
r3c lHots pot Label.mou se Clicked

!Or3c2Hots potLabel.mous eClicked
(Zj r3c3Hot sp otLabel.mous eClicked

r3c4HotspotLabel.mous eClicked
rSclHotspotLabel.mou s eDragged
rSc2 HotspotLabel.mouseD ragged
rSc3Hots potLabel.mouseDragged
rSc4Hots potLabel.mouseDragged

l5ll snooze_time
<5000
>=5000

(.ii'Wn

n I;l/arm so unding and user clicks
~snooze. ,

topLogicTable.ou tpu tState
alarm_sounding
alarm_snoo zing
pho nej ocked
app licat ion_home
phone_unloc ked
alarm_setup

PRI MITIVES
101 s noo ze_t imer.start
ICI sn oo ze_t ime r.stop

l5ll s nooze tim e
111'-:-._- --"

I • I

j TEST j

carrier_cO'Je r
~ pda j mage
~ snooze_timer
~ Int snooze_time
~ String pda_status

s noo ze_time

Property

name
pd a status

des cript ion

7" System Browser ~

IAdd » Ij •

7" Property ss

j • .
l ~ .

1't5I Root
toploglcTable
topContainer

~ Cl hotspots
alarm_setup

Iterative Build and Test

ADEPT works in two modes, Build and Test. In Build
mode the designer creates graphic objects to the User
Interface editor, and adds these as well as system
objects (e.g. sensor inputs) to the Logic Editor. The
designer then uses these objects to construct the logic
table. By testing each column as it is added, the
designer can start with very simple behavior and
iteratively add complexity.

look even more realistic by importing higher quality
images built in other graphical applications.

The Logic Editor

The Logic Editor is what differentiates ADEPT from a
graphics design application. The Logic Editor, derived
from the Operational Procedure Table (OPT) method
(Sherry, 1996) allows the designer to specify the
behavior of the device, and/or the device interface built
in the UI Editor.

The User Interface Editor

The User Interface (UI) Editor provides the tools to allow
the designer to construct the interface. The User
Interface Editor Design Mode Menu is shown at the top
right of figure 1. The menu allows UI objects to be
added, deleted and arranged.

Figure 1 also shows an example interface constructed in
the User Interface Editor with transparent objects on top
of the image (shown with blue outlines in figure 1) to
create the functionality. The interface could be made to

171

ADEPT uses a tabular representation of a finite state
machine. In contrast to typical state transition tables, the
representation used by ADEPT focuses more on
presenting information about the situation (input
combination) automation behavior (output
combination), and less on presenting information about
state transition in a summarized form information. This
focus allows a more compact notation, which enables
the designer to see more behaviors, making it easier to
make a complete specification.

172

The primary method for building a Logic Table is to
select an object in the Object Browser and Drag and
Drop it into the table as an input or output. This works for
adding inputs and outputs, but it also works for adding
variables and other objects as input conditions and
output functions.

The table consists of a listing of Inputs and Outputs on
the Y-axis, and columns of situation-automation behavior
pairs along the X-axis, as shown in figure 2. Figure 2
shows that a black separator bar denotes the Inputs and
Output Fields. The Input bar can be translated as an "IF"
statement, while the Output bar is read as a "THEN"
statement. Between the Inputs and Outputs bars, the
thick gray lines between represent "AND" statements,
and thin gray lines represent "OR" statements. Note that
the outputs only contain "AN Os". The thin gray lines are
only used to make the table easier to read.

The pda example shown in figures 1 and 2 can illustrate
how the tables are used. In this example, there are two
ways to silence the alarm. First, the user can press the
snooze button (shown in column 0), or the user can
unlock the pda (and go to the alarm page to stop the
alarm, which isn't shown in this example).

Examining through the table, column 0 says:
IF
The alarm is sounding

AND
Any of the row three interface areas (Le. the
snooze button for this page) is clicked
THEN
The pda status will change to
alarm_snoozing

Similarly, column 1 is read as:
IF
The alarm is sounding

OR
Snoozing

OR
Locked

AND
The row five interface areas (Le. the lock slider
button for this page) is clicked and dragged

AND
The snooze time is less than 300000
milliseconds (Le. 5 minutes)
THEN
Go to the application page

Figure 2 also illustrates how ADEPT can be used to
design iteratively. Once the inputs and outputs have
been defined, the tabular representation enables the
designer to add and test situation-behavior pairs
individually using the automatic code generator
described in the next section.

Evaluating Prototypes built in ADEPT

A number of features have been incorporated into
ADEPT to aid the designer in evaluating a device and its
interface behavior. The automatic code generator
creates an executable specification enabling rapid build
and test cycles. Figure 2 shows the different functions
available in the Test mode of the UI Editor, in contrast to
the menu available in design mode, shown in figure 1.
The menu shows the buttons for the Reset function the
Log function, and the Scenario Management fun~tion,
which includes the Record, Reset - Play, Play, and
Delete buttons and the Configuration menu.

The Log function is used to begin to record all user
actions and all automation behaviors of the device
prototype. The Log function generates two files at the
moment, one of which is used for traditional usability
evaluation and the other is used as a data source for
computational human performance models.

The Scenario Management utility consists of the ability
to record, playback and delete various configurations
that is useful for evaluating the device against different
tasks. Pressing the Record button once records all of the
user actions and device information. Pressing the Reset­
Play button first resets then plays the configuration
selected on the configuration menu, while pressing play
configures the prototype starting from the existing
configuration.

Method

Three case studies were conducted to test the usability
of the ADEPT software. The case studies examined
three participants using the ADEPT to design actual
prototypes. As the case studies examined the use of the
tool across different applications with varying complexity
of design, traditional performance metrics (e.g. time,
errors, etc.) were not applicable. Therefore descriptive
and qualitative measures were used, consisting of
complexity metrics and questions about the usability and
usefulness of ADEPT.

The four questions consisted of:

1: Can designers build testable prototypes in ADEPT?
2: Does ADEPT support rapid iteration and modification?
3: Does ADEPT focus the design activity on precise and
complete specification of the automation behavior?
4: Does ADEPT support communication with other
design team members?

The three case studies involved the use of ADEPT over
a period of between one and six months, and the
information gained during these time periods would not
have been adequately captured through the use of
interview or questionnaire techniques.

173

Results

Table 1 provides an illustration of the size and scale of
the different projects shown in columns corresponding to
each participant (P1, P2, and P3).

T bl 1 C a e omp exitv Metrics for the 3 case studies
Metrics/Question P1 P2 P3

s
Source Lines of

1500 20000 4300
Code
Automation 13 560 13 behaviors
GUlobjects 18 160 100

Table 2 shows the responses to the four questions of the
3 case studies.

T bl 2 Q f f a e ues Ion responses or each case study
Questions

1: Construction? Yes Yes Yes
2: Rapid

Yes Yes Yes Iteration?
3:

Yes Yes Yes Completeness?
4: Yes, Yes,
Communication?

N/A
needs Needs

improvem improvem
ent ent

The results show that tool did enable all of the designers
to build prototypes that suited their purposes. This by
itself is a notable success for the designers without
programming expertise. The designers reported that
they felt the tool supported rapid iteration in the design
process, a key component of good design. The
participants also reported that they felt ADEPT helped
them to build more precise and complete specifications
of automation behavior, however they felt that some
work was needed to make the prototypes they designed
understandable to others in their design group.

All of the participants expressed some displeasure with
the organization of the hierarchy, and the means of
using variables to transfer behavior information in design
projects with multiple tables. One of the primary
objectives of the tool is the facilitation of communication
between design team members.

The evaluation was only intended to validate that domain
expert designers can use the proof of concept version of
ADEPT to construct testable prototypes, however the
case studies served an additional purpose beyond
simple validation. Valuable lessons were learned from
the length of the case studies and the wide range of
expertise of the three participants.

Discussion

Given the constraints with evaluating new design tools
the case studies provide an example of the strengths
and weaknesses of ADEPT. Although none of the case
studies involved the use of a complete version of ADEPT
in a real-world design process, the case studies did test
different portions of the tool in real-word design
problems. The results of the design exercises and the
impressions of the users were positive enough to
validate the initial proof-of-concept version of the tool.

This resolves the first development challenge, as domain
expert designers can use ADEPT to design testable
prototypes without extensive programming expertise or
training. The responses from the case study participants
indicated that they were able to focus on domain goals
and objectives for the devices they were constructing,
which was defined as the primary obstacle in software
design Curtis et al. (1988).

The case studies have shown that while interpretation of
individual tables by novice designers is achievable with
the tabular representation, the current organization of
multiple tables or representation of multiple tables in a
project may obscure the understanding of complete
behavior specification of a device.

This has been modified in subsequent versions of
ADEPT with the creation of a "Logic Table" object, and
the replacement of the action - behavior - feedback
table hierarchy with only one "Top Logic Table". In this
way individual designers can tailor the organization of
multiple tables to suit their needs by connecting the
different tables with the Logic Table objects. Additionally,
new visualization techniques are being explored.

The case study evaluations also revealed a need for the
creation of a library of objects to ease the construction of
devices. This is especially true of complex projects
where an architecture template can speed the initial
construction of the device. This need will be addressed
over time as ADEPT gains exposure.

Conclusions and Future Work

The initial results from the case studies have shown that
ADEPT is usable by domain expert designers without
requiring extensive programming expertise. While further
development work is needed, these results show that
ADEPT is suitable as a platform upon which to integrate
HAl analyses.

In addition, the case studies showed that an ADEPT-like
tool could help fill a niche. By creating a lower fidelity,
but still testable prototype in less time with fewer
resources, more iteration is possible, which can improve
the design process (Gould and Lewis, 1985; Poltrock
and Grudin, 1996).

174

A challenge for the future is the integration of task
information. A decision was made to focus on the
specification of automation behavior, and leave task
information specification for future versions. Rasmussen
(1994) Hoffman et al. (2002), and Feltovich et al. (2004)
have expressed the need for greater involvement of
domain experts in the design process, and the case
studies have shown how ADEPT can facilitate greater
involvement. A plan to add integrated Human­
Automation interaction analyses, should begin to
address this need, however the addition of a usable
means for integrating or importing the results of other
task decomposition or task analysis tools is an idea that
deserves future research.

Acknowledgements

Thank you for technical assistance from Lance Sherry,
(George Mason University), Arash Aghevli, and Eugene
Turkov, (Singer - Gaffarian Technologies) and Rohit
Deshmukh, (San Jose State University).

REFERENCES

BASI (1999) Advanced Technology Aircraft Safety
Survey Report. Flight Safety Digest Special Issue. Flight
Safety Foundation June - August, 1999 pages 137 -
216. Available at
http://www.basi.gov.au/sprog/advtek.htm (9/00)

Curtis, B., Krasner, H., and Iscoe, N. (1988). A Field
Study of the Software Design Process for Large
Systems, Communications of the ACM, 31(11), ACM, p.
1268-1287.

Federal Aviation Administration (1996) The interface
between flightcrews and modern flight deck system. FAA
human factors team. Federal Aviation Administration.,
Washington, DC, Available at
http://www.faa.gov/education_research/training/aqp/libra
ry/media/interfac.pdf

Feltovich, P. J., Hoffman, R. R., Woods, D., and Roesler,
A. (2004). Keeping It Simple: How the Reductive
Tendency Affects Cognitive Engineering, IEEE Intelligent
Systems, May-June, IEEE Computer Society
Publications Office, Los Alamitos, CA, p.90-95.

Gould, J. D. and Lewis, C. (1985) Designing for
Usability: Key Principles and What Designers Think,
Communications of the ACM, 28, (3), ACM Press, New
York, NY, p. 300-311.

Hoffman, R. R., Klein, G., and Laughery, K. R. (2002)
The State of Cognitive Systems Engineering. IEEE
Intelligent Systems, January-February, IEEE Computer
Society Publications Office, Los Alamitos, CA, p.73-75.

Leveson, N. (1995) Safeware: System Safety and
Computers. Addison-Wesley, New York, NY, USA.

Mellor, P. (1994) CAD: Computer-Aided Disaster, High
Integrity Systems, 1(2), p.101-156.

Poltrock, S. E. and Grudin, J. (1996). Organizational
Obstacles to Interface Design and Development: Two
Participant Observer Studies, In Human Computer
Interface Design Rudisill, M., Lewis, C., Polson, P. G.,
and McKay, T. D. (Eds.), Morgan Kaufmann Publishers
Inc., San Mateo, CA. P. 303-337.

Rasmussen, J. (1994) Cognitive Systems Engineering.
John Wiley and Sons, New York, NY.

Sheridan, T. (2002) Humans and Automation: System
Design and Research Issues, John Wiley & Sons, Inc.,
Santa Monica, CA.

Sherry, L. (1996) Personal communication regarding the
use of the Operational Procedure methodology in the
design of Honeywell product development.

