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Abstract: An accurate real-time operator functional state assessment makes it possible to perform task
management, minimize risks, and improve mission performance. In this paper, we discuss the
development of an individualized operator functional state assessment model that identifies states likely
leading to operational errors. To address large individual variations, we use two different approaches to
build a model for each individual using its data as well as data from subjects with similar responses. If a
subject's response is similar to that of the individual of interest in a specific functional state, all the training
data from this subject will be used to build the individual model. The individualization methods have been
successfully verified and validated with a driving test data set provided by University of Iowa. With the
individualized models, the mean squared error can be significantly decreased (by around 20%).

1. INTRODUCTION

In recent years, researchers have been actively
performing machinery/electronics diagnostics and
prognostics for automated aviation systems. To
ensure mission success, the functional states of
human operators also need to b~ monitored since
mismatched Operator Functional State (OFS) and
workload (either over-load or under-load)
conditions can lead to disastrous consequences
[1].

According to [2], OFS can be defined as the
multidimensional pattern of human psycho
physiological condition that mediates performance
in relation to physiological and psychological
costs. Different contributing factors, including
environmental factors (Altitude, noise, etc.),
individual state (circadian rhythms, sleep loss,
illness, etc.), and task characteristics (physical
load and cognitive load), can affect the OFS and
lead to suboptimal performance in human
operators. It is challenging to consider all those
factors to predict the OFS accurately in real time.
Furthermore, current available OFS modeling
tools have limited applicability as they do not
account for the considerable individual differences
due to individual physical fitness and adaptability
to external/internal conditions.

In this paper, we introduce a closed-loop Adaptive
Task Management System (ATMS) to identify
hazardous states that are likely to lead to
operational errors and dynamically aid operators
to minimize human errors. Key innovations in the
framework include 1) a systematic approach to
perform OFS assessment considering all the
contributing factors, 2) a committee machine­
based regression model with advanced feature
selection method to accurately build the mapping
between input parameters and output functional
state, 3) a two-step model individualization
technique for individual OFS monitoring, and 4)
efficient task management to address both over­
load and under-load situations. An accurate OFS
assessment is the foundation of the ATMS.
Therefore, in this paper, we focus on how to build
the real-time individual OFS assessment model.

This paper is organized as follows. In Section 2
we describe the closed-loop ATMS framework. In
Section 3, we introduce the enhanced committee
machine-based OFS assessment method. The
focus on section 4 is to build the individualized
OFS assessment model. In Section 5, the
individualized OFS assessment model
performance is verified and validated with a
driving test dataset. Section 6 concludes this
paper.
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2. Closed-Loop ATMS Framework
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Figure 1: ATMS framework

The framework of the closed-loop Adaptive Task
Management System (ATMS) is shown in Figure
1. In the ATMS framework, to accurately monitor
the Operator Functional State (OFS) for each
individual, the OFS assessment model is trained
and individualized using different sources of
training inputs (physiological signals, system
dynamics measurements, etc.). An enhanced
committee machine-based OFS assessment
model is employed to map input parameters to
individual OFS, in which the responses of multiple
neural networks (committee members) are
combined into a single response to improve
efficiency and accuracy. To further boost the OFS
assessment performance, we utilize an advanced
feature selection algorithm [3] to select different
features for each committee member.

Due to large individual variations, a generalized
OFS assessment model trained using data from
large number of subjects usually does not yield
satisfactory performance when applied to an
individual operator. We individualize the
generalized OFS assessment model using data
from the individual of interest, as well as selected
subjects whose data has been used in training the
generalized model. The selection is based on a
similarity measure: if a subject's training data is
similar to the individual's data in specific functional
states (for example, they are close to each other
in the sense of Euclidian distance in the feature
space computed from the data), all the training

data from this subject will be used to individualize
the generalized model.

If the OFS of an individual decreases below a
certain threshold, a task performance
augmentation strategy can be applied to even-out
workload and maintain the operator in an optimum
cognitive workload level. As a result, the operator
can be continuously engaged and able to respond
quickly and appropriately to unusual situations.

3. Enhanced Committee Machine-based OFS
Assessment

The basic procedure for real-time OFS
assessment is shown in Figure 2. It includes pre­
processing, feature extraction/selection, and
regression. We have developed an enhanced
committee machine-based regression method for
the OFS assessment.

EEG
ECG
Temperature
Heart Rate
Heart Rate
Variability
Ground Speed

Figure 2: Real-time OFS assessment procedure
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3.1 Committee Machine

A committee machine is a strategy to improve
classification or regression performance by
combining responses from multiple diversified
committee members (trained perceptrons in
neural networks, for example). The performance of
the committee machine is often better than that of
each committee member [4] based on two main
reasons. First, if committee members have the
diversity property, Le. they are unlikely to make
errors in the same feature space, the errors from
individual committee members will be canceled by
each other to some extent. Second, since the
committee machine "averages" its individual
member's estimation, the variance of the
committee machine can be significantly reduced.

Two types of committee machines, as shown in
Figure 3, are implemented using a multilayer
perceptron trained by the standard Back
Propagation (BP) algorithm as the base
regression model for OFS assessment. The base
regression model is combined with an adaptive
learning factor to make training algorithms
converge much faster than the traditional BP [5].
Also, both committee machines are combined with
an advanced feature selection algorithm,
Piecewise Linear Orthogonal Floating Search
(PLOFS) [3].

Figure 3: Two types of committee machines

The first type of committee machine was built by
training each committee member using different
initial weights. It is trained based on an
assumption that each member will converge to a
different location in the solution space. Given the
fact that the error surface of a neural network has
multiple local minima, the local minimum that a
training algorithm converges to will differ
depending on its initial condition. Therefore, we
combine the predictions from different committee
members as the final solution. Each member with
the diversity property covers partially the solution

space, and the final committee can then cover
larger solution space.

Type 2 committee machine contains a set of
multilayer perceptrons trained by different
bootstrapped datasets after feature selection. To
make each of the committee member diversified,
each member further uses a different set of
features, which is different from the traditional
"bagging" training technique that simply
aggregates bootstrapped individuals and selects
the same features for all the committee members.

3.2 Feature Extraction and Selection

Many features can be extracted for OFS
assessment. For EEG, total spectral power can be
calculated in the alpha, theta, beta, and gamma
bands as these bands reflect cognitive states. In
addition, we can examine signal coherence
between inter-hemispheric electrodes such as F1
and F2 (from the 10-20 electrode placement
system). Measures of signal coherence focus on
the high-alpha bands (9-12 Hz), as increased
coherence among these signals is thought to
distinguish higher levels of cognitive activity. With
the eye tracking data, we can examine blink
frequency, percent eye closure (PERCLOS),
average eye closure speed (AECS),
mean/variation change of pupil size over time and
the percentiles of pupil size. We can also extract
features related to eye movements. The
increased frequency of saccades may indicate an
increase in multi-tasking demands, requiring
operators to split attention. It may also indicate
increased demands on spatial working memory,
as operators may need to maintain visual data to
integrate it across multiple displays.

With the large amounts of features, we need to
carefully evaluate the features and select a subset
of features that can best estimate the OFS. A
feature selection algorithm usually evaluates the
fitness of features first, and then searches for
different combinations of features with the goal of
maximizing the fitness value [6-11]. Two common
types of features selection algorithms are filter
approaches and wrapper approaches. A filter type
method ranks features according to some
predefined criteria such as mutual information,
class separability measure without any actual
model assumed between outputs and inputs of
the data, a feature is then selected or discarded
based upon the ranking. A wrapper approach
utilizes a model to evaluate the fitness values of
features and features are selected using the
fitness as a guide. Usually, wrapper approaches
give better results than filter approaches but have
higher computational complexities [7]. In the OFS
assessment model, we utilize a wrapper type
algorithm, Piecewise Linear Orthogonal Floating
Search (PLOFS), to select features for the
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committee members [8]. What is unique of PLOFS
is that its computational speed is similar to a filter
approach.

The PLOFS algorithm accumulates all necessary
information in the auto- and cross- correlation
matrices that are needed for feature selection in
just one data pass. The feature searching
procedure is then performed by evaluating
goodness of a piecewise linear network through
the auto- and cross- correlation matrices without
passing through the original dataset. This is
possible because of the orthogonal least square
procedure, which makes the algorithm extremely
efficient compared with other wrapper type
algorithms. Other advantages of the PLOFS
algorithm are as follows: 1) it selects features
rather than a combination of all the available
features such as those selected by transformation
based methods (e.g., PCA, Wavelet); 2) it
considers interactions among features and
measures the correlations via the amount of
explained variance by features; and 3) the
algorithm produces a list of best combinations that
contain different numbers of features, users then
have the flexibility to choose any set based on
their preferred criterion.

4. Model Individualization

Current available OFS modeling tools have limited
applicability due to the fact that they do not
account for the considerable individual differences
in response to task schedule, individual fitness
(sleep loss, anxious), and environmental changes.
To improve the OFS estimation performance,
these individual differences should be considered
while building the OFS model.

A straightforward approach to building an
individual model is to utilize all the available data
from the individual. This approach can achieve the
best performance if the training information is
sufficient to cover all the individual's functional
states. However, in many cases, training data for
an individual is limited and is expensive to collect.
Therefore, it may be infeasible to train such an
individual OFS model. In this paper, we introduce
two different approaches to address the limitation.

The first individualization approach, Individual
Model 1, is shown in Figure 4.

In a specific functional state, one or more subjects
may have similar responses. Therefore, to train an
OFS model for an individual, we use the data from
the individual, together with data from some
similar subject(s), whose responses are similar to
the individual. The similarity is measured by a
metric computed based on the input features.
Candidate methods to derive such a similarity
measure include Euclidian distance, Principal

Component Analysis and Mahalanobis distances
[8].

Figure 4: Individual Modell

We can find similar subjects in each functional
state that the individual has experienced. After
scanning all the functional states of the individual,
we can select a set of subjects based on the
similarity metrics. All the data from these subjects
are then extracted as the training data for the OFS
modeling of the individual.

Another approach to address the limited training
data issue, Individual Model 2, is based on the
tuning of a generalized model. Using the extended
data set as described above, the basic idea of
Individual Model 2 is to select committee
members that are sensitive to the individual's
OFS, and then tune the fusion weights for each of
these committee members, i.e., perceptrons
trained by the standard BP algorithm. This method
is shown in Figure 5.

Figure 5: Individual model 2

More specifically, in the generalized model, we
assume that all committee members are sensitive
to the OFS of each individual and use a simple
average to combine the output from each
committee member. To individualize this
generalized model, we will follow two steps: use
the PLOFS algorithm to select a subset of
committee members that are sensitive to the
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It is clear that the two model individualization
methods (Method 2 and Method 3) significantly
reduce the MSE given by generalized models
(Method 1). Compared with a generalized OFS
assessment model, the mean squared prediction
error is about 20% lower. The performance using
the two model individualization techniques are
comparable to that of the individual model trained
with SUfficient data from the individual, but only
require very limited data for training or
individualization (5-minute in our experiment).
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information (such as ground speed), performance
measures, physiological signals (128-channel
EEG, ECG, respiration, etc.), and eye tracking
data. And the workload was analyzed every
second based on the driving scenario (city-driving,
stopped, highway passing, etc.).

Five subjects' data were used to verify and
validate the individualized OFS assessment
methods. We first trained a generalized model for
each subject using a leave-one-out method, which
trains the model using the other four subjects'
data and leaves the data from the subject being
modeled for testing (Method 1 in Figure 8). We
then implemented the previously described model
individualization methods for each subject
(Method 2: Individual Model 1; and Method 3:
Individual Model 2). For a comparison purpose,
we also trained an individual model for each
subject by randomly selecting half of the data from
that subject, and tested the model with the rest
half (Method 4). The performance, Mean Squared
Error (MSE), is compared in Figure 8 and Table 1.

1.1

Figure 7 CATS GUI

individual's OFS, and then adjust the weights of
each of the selected committee members using a
linear regression approach to form a final
estimation of the OFS. Figure 6 compares the
individualization process (right) to a generalized
OFS assessment model (left).

Figure 6: Model individualization

5. Experimental Study

We utilized the driving test dataset collected using
the Cognitive Avionics Tool Set (CATS) software
developed by Operator Performance Laboratory
(OPL) [12] in the University of Iowa to verify and
validate the individualized OFS assessment
approach. The enhanced committee machine and
individualization strategies were implemented on
the driving test dataset.

CATS [12] is a powerful, database driven data
visualization and analysis package. The toolset
synchronizes a large number of incoming data
streams operating at different update rates into a
single, unified file. CATS provides a rich set of
visualization tools to inspect physiological data.
Figure 7 shows a snapshot of the CATS software.

In the driving test dataset, subjects performed a
driving test in two hours. During the test, different
types of information were collected, including
description of the task, system dynamics related
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Table 1: Performance comparison

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
MSE± STD MSE ± STD MSE±STD MSE±STD MSE±STD

1 1.25 + 0.029 1.18+0.024 1.22 ± 0.023 1.01 ± 0.021 0.98 ± 0.02
2 0.82 ± 0.018 0.76 ± 0.018 1.03 ± 0.021 0.79 ± 0.017 0.72 ±0.018
3 1.12±0.02 0.67 + 0.02 1.16±0.026 0.85 ± 0.016 0.87 ±0.022
4 1.01 + 0.009 0.81 ± 0.016 0.67 + 0.017 0.56 ± 0.017 0.75 ± 0.015

6. Conclusions

The research effort results in a successful
development of an individual OFS assessment
model for closed-loop task management. The
model incorporates novel committee machine­
based OFS assessment with an advanced feature
selection method, Piecewise Linear Orthogonal
Floating Search (PLOFS), and two different
individualization techniques have been developed
to improve the OFS assessment performance for
each individual. The experimental results show
significant improvements of the individualization
techniques.
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