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Experimental Evaluation of Stagnation Point Collection 
Efficiency of the NACA 0012 Swept Wing Tip 

Jen-Ching Tsao 
Ohio Aerospace Institute 
Brook Park, Ohio 44142 

 
Richard E. Kreeger 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

This paper presents the experimental work of a number of icing tests conducted in the Icing Research 
Tunnel at NASA Glenn Research Center to develop a test method for measuring the local collection 
efficiency of an impinging cloud at the leading edge of a NACA 0012 swept wing and with the data 
obtained to further calibrate a proposed correlation for such impingement efficiency calculation as a 
function of the modified inertia parameter and the sweep angle. The preliminary results showed that there 
could be some limitation of the test method due to the ice erosion problem when encountered, and also 
found that, for conditions free of such problem, the stagnation point collection efficiency measurement for 
sweep angles up to 45 could be well approximated by the proposed correlation. Further evaluation of this 
correlation is recommended in order to assess its applicability for swept-wing icing scaling analysis. 

Introduction 

The results presented here are part of an effort to develop scaling methods for swept wing ice 
accretion. Previously, Anderson (Ref. 1) has completed a NASA report that gives a detailed technical 
review of recommended scaling methods for ice accretion on unprotected, unswept aerodynamic surfaces 
in Appendix C condition. Later, Anderson and Tsao (Ref. 2) have further supplemented the Appendix C 
studies of Reference 1 with recent data from both SLD and Appendix C tests. 

It was concluded from those two references that acceptable scaling results could be achieved by 
matching the Ac, n0 and WeL. With scale model size selected, by matching scale and reference values 
of WeL the scale velocity can be determined. By matching 0 the scale MVD can be found. Reference 1 
also showed that the effects of temperature and LWC are not independent, but interact through the 
freezing fraction. Therefore, with scale LWC chosen, by matching n0 the scale temperature can be 
calculated. Finally, by matching Ac the scale time can be established. For the scale test, then, only 
temperature, velocity, MVD and time have to be calculated from the known (Reference) values of the 
similarity parameters. 

While some of these similarity parameters are based on conditions that apply anywhere on the model, 
0 and n0 are specific to the stagnation line of a clean model. Therefore, strictly speaking, scaling methods 
only apply at the stagnation line of a clean model. These parameters vary with chord-wise location and 
change as ice accretion modifies the geometry. Consequently, two assumptions are implied for scaling to 
be valid. The first is that with similar model geometries and similar flows around both reference and scale 
models, if  and n match at the stagnation point, they will tend to match everywhere on the model. This 
assumption has been verified for collection efficiencies in Figure 1(b) of Reference 2. As for other airflow 
related issues: transition and roughness, for example, may not scale, and Re effects are assumed to have a 
minor influence on the final ice shape. Second, if the scaling is done successfully, the scale ice shape 
normalized by the model size will consistently agree with the reference for any accretion time starting  
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with the clean model. Therefore, scale  and n will continue to match the respective reference values, 
even though those parameters are changing with time. 

For swept wing icing scaling, the observations from recent work (Refs. 3 to 6) on ice accretion 
formations on swept wings have suggested that although there are distinct morphological differences in 
resulting ice accretion formations on unswept and swept wings, the fundamental physics of ice accretion 
appears to be the same. Thus all the similarity parameters recommended for unswept wing icing scaling 
should apply. However, some modifications to the local collection efficiency and the convective heat 
transfer coefficient in the freezing fraction expression at the stagnation line due to model sweep angle 
must be considered.  

An effort was made in this study to develop an analytical expression for 0 calculations on swept 
wings of NACA 0012 airfoil profile. Experimental evaluations of 0 were also needed for the validation 
of such correlation. A new test method based on the icing-blade technique was developed for measuring 
the 0 on a swept NACA 0012 wing section over a wide range of sweep angles as well as flow and icing 
cloud conditions. 

Nomenclature 

Ac  Accumulation parameter (Eq. (6)), dimensionless 
b  Relative heat factor (Eq. (11)), dimensionless 
c  Airfoil chord, cm 
cp  Specific heat of air, cal/g K 
cp,ws Specific heat of water at the surface temperature, cal/g K 
d  Cylinder radius or twice the leading-edge radius of airfoil, cm 
hc  Convective heat-transfer coefficient, cal/sm2K 
hf  Water film thickness, cm 
hG  Gas-phase mass-transfer coefficient, g/sm2 
K  Inertia parameter (Eq. (2)), dimensionless 
K0  Modified inertia parameter (Eq. (1)), dimensionless 
LWC Cloud liquid-water content, g/m3 
MVD Water droplet median volume diameter, m 
n  Local freezing fraction, dimensionless 
n0  Stagnation freezing fraction (Eq. (8)), dimensionless 
p  Pressure, Nt/m2 
pw  Vapor pressure of water in atmosphere, Nt/m2 
pww Vapor pressure of water at the icing surface, Nt/m2 
r  Recovery factor, dimensionless 
Re Reynolds number of water drop (Eq. (3)), dimensionless 
s  Distance along airfoil surface measured from stagnation line, cm 
tf  Freezing temperature, °C 
ts  Surface temperature, °C 
t  Air temperature, °C 
T  Absolute air temperature, K 
V  Air velocity, kt 
WeL Weber number based on model size and water properties (Eq. (13)), dimensionless 
0  Collection efficiency at stagnation line (Eq. (5)), dimensionless 
  Droplet energy transfer parameter (Eq.(9)), °C 
  Droplet range, m 
Stokes Droplet range if Stokes Law applies, m 
  Sweep angle, degrees 
f  Latent heat of freezing, cal/g 
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v Latent heat of condensation, cal/g 
 Air viscosity, g/m s 
 Air energy transfer parameter (Eq. (10)), °C 
 Air density, g/m3 
i Ice density, g/m3 
w Liquid water density, g/m3 
 Surface tension of water over air, dyne/cm 
 Accretion time, min 

Subscripts 

R reference 
S scale 
f water film 
st static 
tot total 

Modifications to Similarity Parameters for Swept Wing Icing Scaling 

The similarity parameters used in this study were based on the work originally done by Ruff (Ref. 7). 
The scaling method involved matching scale and reference values of the key similarity parameters, 0, Ac, 
n0, and WeL. The equations for the similarity parameters will be presented here without much discussion. 
Therefore, readers who are interested in the physical descriptions and detailed derivations of these 
parameters are referred to References 1 and 2 and the references given therein. 

To maintain the droplet trajectory similitude, Langmuir and Blodgett (Ref. 8) introduced the modified 
inertia parameter, K0, defined as  
 

 0
Stokes

1 1

8 8
K K

       
 


for K>0.125, to describe the inertia of droplets in an air stream flowing around a cylinder of radius d 
positioned normal to the flow. In Equation (1), K is the inertia parameter,  
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Departing slightly from Langmuir and Blodgett in this study, d represents twice the leading-edge 

radius of curvature for airfoils. For the NACA 0012 airfoil model, a leading-edge radius of 0.0158c was 
used (see Abbott and von Doenhoff (Ref. 9)), where c is the airfoil chord. In Equation (2), /Stokes is the 
droplet range parameter, defined as the ratio of actual droplet range to that if Stokes drag law for solid-
spheres applied. It is a function only of the droplet Reynolds number, Re
 

 Re
V MVD







 (3) 

 
This study used a curve fit to Langmuir and Blodgett’s tabulation of the range parameter as given in 

the following expression: 
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Of more practical interest than K0 is the collection efficiency at the stagnation point, 0, which was 

shown by Langmuir and Blodgett to be a function only of K0, 
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 (5) 

 
Thus the droplet trajectory similarity is satisfied if K0,S = K0,R (so does 0,S = 0,R), and the scale drop 

size, i.e., scale MVD, is determined. For a NACA 0012 wing section at a given sweep angle , it is 
suggested that, based on the observations made by Reshotko and Beckwith (Ref. 10) in their classical 
study of compressible laminar boundary layer over a swept infinite cylinder, the collection efficiency 
along the stagnation line, 0, , could be written in the following functional form  
 

  0,

0, 0
cos m




 


 (6) 

 
where 0,  = 0 is calculated from Equation (5) and the exponent m will be calibrated with the experimental 
data obtained in this study. 

To ensure water-catch similarity, the accumulation parameter is introduced:  
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 (7) 

 
If all the water impinging on the leading edge freezes at that location and the leading-edge collection 

efficiency is 100 percent, Ac directly becomes a measure of the normalized thickness of ice that will 
accrete. The scale accretion time can be found from Ac,S = Ac,R. However if it is not possible to find scaled 
conditions that permit a match of K0 (and therefore 0) and Ac separately, it is recommended that the 
product of 0Ac be matched provided the two collection efficiencies, 0,S and 0,R, be within 10 percent, 
see Reference (1) for details. 

When super-cooled water drops strike an aircraft surface, they may not freeze immediately on impact. 
The freezing fraction is the ratio of the amount of water that freezes in a specified region on the surface to 
the total amount of liquid water that reaches that region. Thus, local ice thickness depends on both 0Ac 
and freezing fraction. Because each local ice thickness around the model defines the overall shape of the 
ice, the freezing fraction obviously has a major influence on ice shape. 

The rate at which the water freezes on a surface depends on the magnitude of local heat transfer 
imbalance. For glaze ice, it is known that the fraction of water that freezes is less than unity, and the 
motion of unfrozen surface water can have an effect on the resulting ice shape. Therefore, it is important 
to maintain surface energy and surface-water dynamics similarities for glaze ice accretions. The freezing 
fraction is formally defined as the ratio of the amount of water that freezes at a given surface location to 
the total amount of water that impinges at that location. From Messinger’s (Ref. 11) steady-state surface 
energy balance analysis, the stagnation point freezing fraction can be written as 
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The key terms in this formulation include  and which have dimensions of temperature and relate 

to the water drop energy transfer and air energy transfer, and b, the relative heat factor, which was first 
introduced by Tribus, et al. (Ref. 12) 
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Equation (10) from Ruff (Ref. 7) has included compressibility effects. Various incompressible forms 

of  have also been used by Charpin and Fasso (Ref. 13) and others; however, the differences are not 
significant mainly due to the fact that, for most icing conditions, the Mach number is relatively low. Since 
only limited combinations of MVDs and LWCs in the SLD regime are currently available in the IRT, the 
stagnation point freezing fraction is matched to find the scale static temperature instead of the scale LWC 
value. 

As for the effect of sweep angle on the convective heat transfer along the stagnation line of a NACA 
0012 wing section, it was shown in Reference (10) that for incompressible flows the ratio of swept to 
normal convective heat transfer coefficient became 
 

  
1

,
2cosc

c

h

h
    (12) 

 
As stated in the preceding paragraph Equation (12) is used mainly due to the fact that for most icing 

conditions, the Mach number is relatively low. Some experimental evaluations of this analytical 
expression for calculating the stagnation freezing fraction on a swept wing are needed. However, this is 
not the scope of the present study. 

In 1988 Bilanin (Ref. 14) presented a Buckingham- analysis in which he concluded that surface-
water phenomena had to be included in icing scaling methods. Olsen and Walker (Ref. 15) and Hansman, 
et al. (Refs. 16 to 18) studied surface effects and surface water during ice accretion, presenting additional 
evidence that these were important phenomena to consider in ice accretion. From the close-up 
photographs of these research studies, it was observed that for glaze ice accretion unfrozen water on the 
ice surface tended to coalesce to form beads. These beads sometimes were swept downstream and 
sometimes froze in place. Bilanin (Refs. 14 and 19) also argued that drop splashing on impact might 
affect the shape of the ice accreted. 

Hansman and Turnock (Ref. 16) found that when a surfactant was added to the icing spray water, the 
ice shape appearance and shape changed significantly, with the glaze horns moving toward the leading 
edge. Clearly, then, surface tension, and by implication, surface phenomena, have a significant role in the 
physics of ice accretion. 
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In 2003 Anderson and Tsao (Ref. 20) had provided experimental evidence from past studies to show 
that a similarity parameter dependent on the ratio V xcy/z must be included in scaling methodology to 
account for surface-water dynamics effect in glaze ice accretions, although the powers x, y, and z are not 
yet determined. The length may not be chord itself but rather some physical characteristic L related to 
chord; for example, the water-film thickness. Likewise, the velocity could also be of the water-film that is 
related to V. Thus a Weber number based on L and V  
 

 
2

We w
L

V L



 (13) 

 
has been suggested as a potential additional similarity parameter to supplement Ruff’s basic scaling 
method. Studies by Bartlett (Refs. 21 and 22) and Oleskiw, et al. (Ref. 23) found no measurable effect of 
pressure on ice shape. These observations suggest that water density is a better choice than air density for 
Equation (13). In this study the WeL is based on the twice the nose radius of the airfoil: 
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with the understanding that L  d The scale velocity found from matching WeL,S = WeL,R is 
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Test Description 

Facility, Model, and Procedures 

The icing tests were performed in the NASA Glenn Icing Research Tunnel (IRT). The IRT is a 
closed-loop, refrigerated, sea level tunnel with a 1.8 by 2.7 m rectangular test section. The icing cloud is 
generated by operating 10 spray bars, a configuration in use since 1998. 

The IRT cloud calibrations for both Appendix C and SLD conditions used for these tests were 
performed in the summer of 2006. The LWC and MVD measurements were made using methods reported 
previously (Ref. 24). However, the LWC measurements from the Mod-1 nozzles have been updated in 
August-September 2008. Thus, the definition of LWC for a particular cloud may differ from values 
previously reported, particularly for the low LWC value range of Appendix C regime. For example, for 
given spray-bar pressures, the latest calibration gives LWCs of 85 to 100 percent of those obtained in a 
2006 calibration. The LWCs reported in this paper are based on an analysis of the LWC calibration data 
completed in 2006 for Standard nozzles and in 2008 for Mod-1 nozzles. In addition, because only a 
limited range of MVD-LWC combinations for speeds of 51, 77, 103, and 129 m/s (100, 150, 200, and 
250 kt) have been calibrated to date in the SLD regime, additional LWC measurements for selected SLD 
conditions were made in the IRT on September 22, 2008, with an icing blade. Therefore SLD tests are 
constrained to these particular conditions. 

The model used in this study was a NACA 0012 Swept Wing Tip. The airfoil has a 38.1 cm (15 in.) 
chord and a 88.9 cm (35 in.) span. It is mounted on a stand in the tunnel that allows pivoting of the airfoil 
to sweep angles from 0 to 60 by 5 increments. Multiple chord-wise gridlines were marked around the 
airfoil leading edge at the tunnel vertical center and 2.54 cm  (1, 2, 3, 4) from the center to help locate 
ice-tracing templates and to serve as a distance scale in some close-up photographs. Because of the quick-
start capability of the IRT spray system, no shielding of the model was required during the initiation of 
the spray. 
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Two different configurations of the model in the test section were used in the experiment. One of the 
configurations was required to further elevate the gridline portion of the model close to the vertical center 
of the tunnel when sweep angle is larger than 30. This will ensure the measurements of leading edge ice 
thickness from the swept wing model are always made at the vertical center of the tunnel and 2.5 cm 
from the center. 

The first configuration (Configuration A, Fig. 1) was the standard position of the model in the test 
section. In this position the model is sitting on a table bolted to the floor of the tunnel and the middle 
gridline on the airfoil is about 91 cm from the floor of the tunnel. In the second configuration 
(Configuration B, Fig. 2) the model was raised additional 7.6 cm (i.e., 3 in.) from the floor to allows new 
gridlines be drawn on the model about 91 cm from the floor of the tunnel when the model was set at 45 
sweep angle. 

In preparing for a test, the temperature and airspeed in the test section and the air and water pressures 
on the spray manifolds were set. When these conditions had stabilized, the spray nozzle valves were 
opened to initiate the spray. The spray was timed for the required duration, and then turned off. The fan 
was brought to a full stop and the researchers entered the test section to document the ice shape with hand 
tracings. Close-up photographs were also taken with a hand-held digital camera. 

To record the ice shapes, a thin slice was first melted through the ice normal to the model surface. A 
cardboard template was then placed into this slit and an outline of the ice shape traced by pencil, giving a 
two-dimensional cross section of the ice. Tracings were taken at the vertical center of the tunnel (i.e., 
91 cm from the floor) and at 2.5 cm from the center. The ice shapes so recorded were digitized using an 
automated line-following feature in the image-analysis software, SigmaScan Pro (Ref. 25). 

In 1988 Bilanin (Ref. 14) noted that the leading-edge ice thickness, , is related to the stagnation 
point freezing fraction, n0, accumulation parameter, Ac, stagnation point collection efficiency, 0, and 
cylinder diameter, d as follows: 
 

Figure 1.—Configuration A for sweep angle30. 

 

Figure 2.—Configuration B for sweep angle30. 
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 0 0cn A
d


   (16) 

 
In 2003 Anderson and Tsao (Ref. 26) have measured the leading-edge thickness of a number of ice 

shapes recorded on NACA 0012 airfoil models for a variety of test conditions in the IRT and then used 
Equation (16) to experimentally determine the stagnation point freezing fraction provided 0 and Ac were 
calculated from Equations (5) and (7), respectively, using the conditions at which the ice was accreted.  

In this study, a new test method was developed to evaluate the stagnation point collection efficiency 
0 of the NACA 0012 swept wing tip. It requires that, for a spray of known MVD at a given airspeed V, a 
rime condition (i.e., n0 = 1) be run over the swept wing tip at a selected sweep angle for some period of 
spray time . Mathmatically, the 0 is related to the leading-edge ice thickness , the spray LWC and the 
spray time  from Equation (16) as follows: 
 

  0, exp
i

cdA LWCV
 

  


 (17) 

 
Two quick entries in the IRT were made in February 2007 and May 2008 to determine the optimal 

settings for LWC, spray time , and total air temperature ttot to produce a good amount of rime ice 
thickness at the leading edge of the swept wing tip for better measurement uncertainty control. In the 
September 2008 test, the actual values of LWC,  and ttot were chosen by satisfying the following two 
constraints: (1) n0 = 1 provided ttot = 0 F or lower if needed, and (2) Ac = 1. For most of the SLD 
conditions tested in this study, a moderate LWC value about 0.5 g/m3 was found to satisfy both constraints 
and the spray could produce a reasonable rime ice thickness in the order of 8 to 11 mm at the leading edge 
for 3 to 7 min of spray time. The only exception is for the MVD of 102 m at 150 kt case, the spray has a 
LWC value of 0.79 g/m3, the ttot is reduced to –5  F to insure rime.  

To calibrate the proposed correlation of Equation (6), six SLD conditions were used in the September 
2008 test, see Table 1 for the spray-bar settings defined by nozzle atomizing air pressure, pair, and air-
water pressure difference, pw, to experimentally evaluate the collection efficiency at the stagnation line 
of the NACA 0012 swept wing tip over a range of modified inertia parameter K0 and sweep angle. 
 

TABLE 1.—TEST CONDITIONS 
[All tests with 38.1-cm-chord NACA 0012 swept wing tip.] 

, 
0 

tst, 
°F 

ttot, 
°F 

V, 
kt 

MVD, 
m 

LWC, 
g/m3 

, 
min 

pair, 
psig 

pw, 
psid 

K0 Ac 

15 –2.4 0 100 36 0.56 6.39 6 20 5.75 1 
15 –5.3 0 150 42 0.43 5.54 5 20 9.28 1 
15 –10.3 –5 150 102 0.79 3.02 6 50 35.47 1 
15 –9.5 0 200 36 0.30 5.96 6 20 8.68 1 
15 –9.5 0 200 82 0.45 3.97 5 35 29.98 1 
15 –14.8 0 250 97 0.23 6.22 3 20 43.44 1 
30 –2.4 0 100 36 0.56 6.39 6 20 5.75 1 
30 –5.3 0 150 42 0.43 5.54 5 20 9.28 1 
30 –10.3 –5 150 102 0.79 3.02 6 50 35.47 1 
30 –9.5 0 200 36 0.30 5.96 6 20 8.68 1 
30 –9.5 0 200 82 0.45 3.97 5 35 29.98 1 
30 –14.8 0 250 97 0.23 6.22 3 20 43.44 1 
45 –2.4 0 100 36 0.56 6.39 6 20 5.75 1 
45 –5.3 0 150 42 0.43 5.54 5 20 9.28 1 
45 –10.3 –5 150 102 0.79 3.02 6 50 35.47 1 
45 –9.5 0 200 36 0.30 5.96 6 20 8.68 1 
45 –9.5 0 200 82 0.45 3.97 5 35 29.98 1 
45 –14.8 0 250 97 0.23 6.22 3 20 43.44 1 
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The leading-edge ice thickness for each rime ice shape was measured using a chilled micrometer. 
Three measurements were taken at the vertical center of the tunnel and at 2.5 cm from the center. The 
medium value of ice thickness measurements was used in Equation (17) to calculate the (0,)exp. The 
results presented in this study are from IRT test entry in September 2008. 

Uncertainty Analysis 

Estimates of the uncertainty in the reported average conditions were made by considering inherent 
errors of instruments, temporal fluctuation and spatial variation of the instrument readings in the test 
section, and uncertainty in tunnel calibration of MVD and LWC. Recorded air temperature was believed to 
be accurate to 0.5 C, and the uncertainty in air velocity were estimated to be 1 m/s. For Appendix C 
conditions the net uncertainty in MVD was estimated at 12 percent. For SLD conditions it may have 
been as much as 20 percent. These uncertainties are not referenced to an absolute value of MVD, which 
is unknown. Repeatability and scatter in the LWC calibration data suggests the uncertainty is about 
12 percent for both Appendix C and SLD conditions. The test-parameter uncertainties were used to 
estimate the following uncertainties in the similarity parameters for the SLD tests: 12 percent in Ac, 
10 percent in n0, and 3 percent in WeL. 

As for the uncertainty of calculating (0,)exp from Equation (17), a leading-order-term estimate was 
made and showed that it depends primarily on the uncertainties of LWC and the leading-edge ice 
thickness: 
 


 
 

0, exp

0, exp

2 2d
d dLWC

LWC







   
   
   


   (18) 

 
With an approximate uncertainty of 5 percent in measurement and 12 percent in LWC the uncertainty 
of (0,)exp is about 13 percent. It is apparent that accurate LWC measurements in the IRT are critical in 
obtaining accurate stagnation point collection efficiency results. 

Results 

The experimental measurement data of leading-edge rime ice thickness  and the calculated (0,)exp 
on NACA 0012 swept wing tip were presented in Table 2. From the measurement data, two important 
observations were immediately noticed: 

 
1. For sweep angles up to 45 and the modified inertia parameter K0 with values ranging from 6 to 

35, the best correlation, based on the form proposed in Equation (6), for calculating 0, of the 
NACA 0012 swept wing tip is  

 

    0, 0, 0theory
cos      (19) 

 
For each test condition listed in Table 1, the predicted 0,  value from Equation (19) and the 
corresponding ratio of experimental to analytical value of 0, were provided in Table 2 for numerical 
comparison. With the estimated 13 percent uncertainty in determining (0,)exp as discussed in the 
previous section, the proposed correlation was considered to perform reasonably well over the range 
of test conditions. In addition, Figure 3 compares the experimental and theoretical trends of 0,/cos 
varying with K0, and again it shows that the correlation simulates well the experimental data. 
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2. There was evidence which seemed to indicate that some ice erosion occurred for the rime ice 
shapes obtained at 250 knots in the IRT. Figure 4 showed an eroded rime ice tracing and in 
Figure 5, the corresponding close-up photo, the resulting ice shape looked very smooth and 
lacked the expected small-scale rime ice feathers. Furthermore, the stagnation point ice thickness 
measurements at higher speeds were usually much smaller than would have been expected 
without any ice erosion. Consequently, those 250 knot measurement data have been excluded 
from the current post-test analysis for determining the correlation and will be examined further. 

 
TABLE 2.—MEASUREMENT RESULTS FOR (0,)exp 

[All tests with 38.1-cm-chord NACA 0012 swept wing tip.] 
, 
0 

ttot, 
°F 

V, 
kt 

MVD, 
m 

LWC, 
g/m3 

, 
min 

K0 , 
mm 

(0, )exp (0,)theory ()e/()t, 
percent

15 0 100 36 0.56 6.39 5.75 9.11 0.757 0.827 91.5 
15 0 150 42 0.43 5.54 9.28 10.05 0.835 0.869 96.1 
15 –5 150 102 0.79 3.02 35.47 10.33 0.858 0.933 92.0 
15 0 200 36 0.30 5.96 8.68 9.26 0.770 0.864 89.1 
15 0 200 82 0.45 3.97 29.98 11.26 0.937 0.928 100.9 
15 0 250 97 0.23 6.22 43.44 7.85 0.653 0.938 a69.6 
30 0 100 36 0.56 6.39 5.75 9.77 0.812 0.742 109.4 
30 0 150 42 0.43 5.54 9.28 8.85 0.736 0.779 94.4 
30 –5 150 102 0.79 3.02 35.47 9.02 0.750 0.836 89.7 
30 0 200 36 0.30 5.96 8.68 8.98 0.746 0.775 96.3 
30 0 200 82 0.45 3.97 29.98 8.92 0.741 0.832 89.1 
30 0 250 97 0.23 6.22 43.44 8.37 0.696 0.841 a82.8 
45 0 100 36 0.56 6.39 5.75 7.33 0.609 0.606 100.6 
45 0 150 42 0.43 5.54 9.28 7.35 0.611 0.636 96.1 
45 –5 150 102 0.79 3.02 35.47 7.33 0.609 0.683 89.2 
45 0 200 36 0.30 5.96 8.68 7.87 0.655 0.633 103.5 
45 0 200 82 0.45 3.97 29.98 7.20 0.599 0.679 88.1 
45 0 250 97 0.23 6.22 43.44 5.47 0.455 0.686 a66.3 

aIce shape erosion in the IRT. 
 

 
Figure 3.—Experimental and analytical variation of (0,/cos) 

versus K0 compared. (0, )theory calculated using Equation (19). 
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Figure 4.—An eroded rime ice tracing. Figure 5.—The close-up image for September 23, 2008, 

   run 6. 

Conclusion 

Icing tests were performed in the NASA Glenn Icing Research Tunnel to develop a test method for 
measuring the stagnation point collection efficiency of the NACA 0012 swept wing tip. The data obtained 
were used to calibrate a proposed correlation for such collection efficiency calculation as a function of the 
modified inertia parameter and the sweep angle.  

The preliminary results showed the effectiveness of the test method developed in the IRT could be 
somewhat limited due to the ice erosion problem encountered. It also showed that accurate LWC 
measurements in the IRT are essential in obtaining stagnation point collection efficiency results. The 
correlation of 0 cos was found to approximate the experimental 0, reasonably well for sweep angles 
up to 45 and the modified inertia parameter K0 in the value range of 6 to 35. Further evaluation of the 
correlation over a wider flow/icing cloud conditions as well as different model sizes is recommended to 
assess its applicability for swept-wing icing scaling analysis. 
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