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19 Within the framework of an idealized model sensitivity study, three of the main 

20 contributors to future stratospheric climate change are evaluated: increases in 

21 greenhouse gas concentrations, ozone recovery, and changing sea surface 

22 temperatures (SSTs). These three contributors are explored in combination and 

23 separately, to test the interactions between ozone and climate; the linearity of 

24 their contributions to stratospheric climate change is also assessed. 

25 

26 In a simplified chemistry-climate model, stratospheric global mean temperature 

27 is most sensitive to C02 doubling, followed by ozone depletion, then by 

28 increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is 

29 more sensitive to changes in C02, SSTs and 03 than is the Southern Hemisphere 

30 (SH); the opposing responses to ozone depletion under low or high background 

31 C02 concentrations, as seen with present-day SSTs, are much weaker and are 

32 not statistically significant under enhanced SSTs. Consistent with previous 

33 studies, the strength of the Brewer-Dobson circulation is found to increase in an 

34 idealized future climate; SSTs contribute most to this increase in the upper 

35 troposphere/lower stratosphere (UT/LS) region, while C02 and ozone changes 

36 contribute most in the stratosphere and mesosphere. 

37 
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38 Braesicke et aI., 2006; hereafter BHP2006) examined the stratospheric sensitivity 

39 to ozone depletion and to the doubling of C02. Their study used a sea surface 

40 temperature (SST) climatology with a repeating annual cycle, representative of 

41 the late 20th century. That is, SSTs did not increase in response to increased 

42 greenhouse gas concentrations; their experiments primarily examined the 

43 stratospheric radiative impact of increased C02. 

44 

45 Using the same simplified chemistry-climate model (CCM) as in BHP2006, the 

46 relative response to changes in C02 and 03 concentrations and sea surface 

47 temperatures (SSTs) is explored; this approach considers the combined 

48 stratospheric response to warming from both the troposphere and the upper 

49 ocean by prescribing 'future' SSTs. To separate the three proposed contributions 

50 to stratospheric climate change, global mean temperature, eddy heat flux, 

51 winds and ozone are diagnosed in each of a set of idealized time-slice 

52 experiments. The strength of the Brewer-Dobson circulation, and the 

53 connection between tropical upwelling and polar ozone in an idealized 

54 present-day climate scenario is compared with an idealized future climate. 

55 

56 BHP2006 found that global mean temperatures cooled in response to both an 

57 03 change (2000-like - 1980-like) and a C02 change (704ppmv - 352ppmv), 

58 throughout the middle atmosphere. However, neither change much affected 

59 tropospheric temperatures because the same SST climatology was prescribed in 

60 all experiments. Recent trends in observed SSTs, as well as coupled ocean-

61 atmosphere simulations of the 21 st century, suggest that anthropogenic climate 

62 change will continue to affect the temperature of the sea surface (i.e. Johns et 

63 aI., 2003). When 'future' SSTs are used in conjunction with a doubled-C02 

64 atmosphere, the troposphere should respond by warming more significantly 

65 than for a doubling of C02 alone. Also, there may be feedbacks between 
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66 these increased tropospheric temperatures and global mean temperature in 

67 the stratosphere that can be considered when C02 concentrations and SSTs are 

68 increased together. 

69 

70 BHP2006 showed that two dynamical relationships held for a set of four idealized 

71 climate change simulations in a simplified CCM. First, the negative correlation 

72 between zonal mean zonal wind (a proxy for polar vortex strength) and total 03 

73 at Northern Hemisphere (NH) high latitudes in January, as was originally 

74 discussed by Braesicke and Pyle (2004). Second, high-latitude temperature was 

75 seen to mimic changes in mid-latitude heat flux (the 'tropospheric forcing' by 

76 planetary waves) in the December-January-February (DJF) season (e.g., as 

77 shown by Newman et ai., 2001). This paper will address how warmer SSTs affect 

78 the character of these two relationships. 

79 

80 In the time-slice experiments with present-day SSTs evaluated by BHP2006, it was 

81 noted that the behavior of the NH polar vortex (and thus of polar ozone) 

82 depended on the background C02 concentration: The single-C02 experiments 

83 responded to ozone depletion in the opposite sense to the doubled C02 

84 experiments; this effect provided an example of the competition between 

85 radiative and dynamical processes in the polar stratosphere. This paper will 

86 determine whether increased SSTs enhance cooling in the middle atmosphere, 

87 thus favoring stronger polar vortices in all experiments. Do 'future' SSTs affect 

88 the coupling between ozone depletion and tropospheric forcing? Sections 3, 4 

89 and 5 will assess the response of the UM chemistry-climate model to changes in 

90 03, C02 and SSTs with a set of transport, dynamical, radiative and chemical 

91 diagnostics. Section 6 will summarize the main conclusions. 

92 

93 2 Methods 

94 2.1 Model Description 
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95 The following discussion refers to a set of eight time-slice integrations conducted 

96 with version 4.5.1 of the MetOffice Unified Model (UM). In this configuration, the 

97 UM has 3.75 0 x 2.5 0 horizontal resolution and 64 vertical levels, with -1.3km 

98 resolution in the stratosphere. The climate model is coupled non-interactively 

99 with the Cariolle and Deque (1986) parameterized stratospheric ozone 

100 chemistry scheme. The chemical module contains a cold tracer (X) used to 

101 mimic the impact of polar stratospheric clouds (PSCs) on polar ozone: when 

102 temperatures drop below a given threshold (-195K for nitric acid trihydrate at 

103 50hPa) the cold tracer is produced exponentially with a time constant of four 

104 hours; the cold tracer decays with a ten-day time constant. This model setup 

105 has been used previously and documented by Braesicke and Pyle (2003, 2004) 

106 and Pyle et al. (2005). 

107 

108 2.2 Experimental Design 

109 Eight 2G-year time-slice experiments will be discussed in this paper (see Table 1). 

110 Each experiment tests the combination of one of two C02 concentrations 

111 (1 XC02 or 2XC02), stratospheric ozone climatologies (198G-like or 200G-like), and 

112 SST and sea ice climatologies (present-day or future). Differences between 

113 pairs of experiments can be examined so as to isolate the effects of changes in 

114 each of the three parameters (ozone, C02 and SSTs) on the climate of the 

115 middle atmosphere. Since one of the time-slice experiments represents an 

116 idealized present-day climate (1 B; low C02, depleted ozone layer and present-

117 day SSTs) and another represents the likely stratospheric climate in the mid- to 

118 late 21 st century (2C; high C02, recovered ozone layer and future SSTs), the 2C-

119 1 B difference can be interpreted as the 'climate change signal' (see WMO, 

120 2007). 

121 

122 A 198G-like ozone climatology is prescribed in experiment 1 A, whereas a 2000-

123 like ozone climatology, with substantial polar ozone deficits as compared with 
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124 the 1980-like climatology, is prescribed in experiment 1 B. Experiments 1 A and 1 B 

125 use a background C02 concentration of 352ppmv. Experiments 2A and 2B are 

126 designed to investigate the same change under doubled C02 (704ppmv) 

127 conditions. As discussed by BHP2006, annually repeating boundary conditions 

128 are imposed in all four experiments: AMIP III sea surface temperature (SST) and 

129 sea ice climatologies representative of the late 20th century2. Volcanic aerosols 

130 and the solar cycle are not considered. Experiments 1 C to 2D are identical to 

131 experiments 1A to 2B, except that they use the 'future' SST climatology 

132 described in the next section. The difference in the setup between experiments 

133 1 A and 1 C, for example, is solely a switch from the present-day to the future SST 

134 climatology, as is the difference between experiments 1 Band 1 D, 2A and 2C, 

135 and 2B and 2D. 

136 

137 2.3 Construction of a 'Future' SST Climatology 

138 Including SSTs as a factor in this study, and thus examining the impact of the 

139 ocean surface on the stratospheric chemistry-climate system, requires a 'future' 

140 SST climatology. While some CCMs now include an interactive ocean model, 

141 UM 4.5.1 is an atmosphere-only model and future SSTs derived from another 

142 ocean-atmosphere model simulation must be prescribed. In the present model 

143 study, a future SST dataset is constructed by adding a twelve-month set of SST 

144 anomalies to the existing present-day SST climatology. A MetOffice SST dataset. 

145 spanning from 1970 to 2020, merges HadlSST3 data (1970-1995) with SST and sea 

146 ice output from HadGEM 1 simulations (beginning in 1995). The 'climate change' 

147 SST anomalies are defined as the difference between mean SSTs in the 1970s 

148 (1971-1980) and mean SSTs the 201 Os (2011-2020) from this MetOffice dataset. 

148 
I http://www-pcmdi.llnl.gov/projects/omip/AMIP2EXPDSN/BCS_OBS/amip2_bcs.htm. 

2 The' present-day' SST and sea ice climatologies were defined as the AMIP II 1979-1996 mean. 

3 http://hadobs.metoffice.com/hadisst. 
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149 The 201 Os - 1970s differences are large enough to simulate differences between 

150 present-day SSTs and those projected for the mid-21st century, and thus provide 

151 a stratospheric response. 

152 

153 The idealized 'climate change' SST anomalies (i.e. future present-day) are 

154 generally positive. In the tropics and at mid-latitudes, anomalies are of the 

155 order of 1-2K (consistent with coupled ocean-atmosphere predictions of SST 

156 changes by the mid-21St century; see IPCC, 2007). The largest positive 

157 differences occur at high latitudes. Near the Gulfstream and Kuroshio currents, 

158 the SST changes exceed 10K; this is larger than predicted by most ocean-

159 atmosphere models (IPCC, 2007). In the tropical Pacific Ocean, the climate 

160 change anomalies are positive but small (up to 1.SK) in the Intertropical 

161 Convergence lone (ITCl), and negligible or slightly negative to the north and 

162 south of this region. The strongest positive-negative-positive pattern occurs in 

163 the DJF season; this is the pattern of SST anomalies that defines EI Nino events. 

164 There is a positive trend in the 1970-2020 timeseries of HadGEM 1 SSTs in the Nino 

165 3.44 region. This finding is in agreement with Timmermann et al. (1999), who 

166 predict a climate change-induced shift toward an increasingly positive Nino 3.4 

167 index, and thus toward more frequent EI Nino events, in future. 

168 

169 3 Radiative and Dynamical Response to Changes in Ozone, C02 

170 and SSTs 

171 3.1 Global Mean Temperature 

172 Profiles of global and annual mean temperature differences allow for an easy 

173 assessment of overall radiative changes, suppressing dynamical changes 

174 (important at seasonal timescales) and their effects on the thermal structure of 

175 the atmosphere. Consistent with Shine et al. (2003, 2008), in the idealized time-

175 
4 Monthly mean SST anomalies from the 1950-1999 period in the 120oW-170oW, 5°S-5°N region 
(see Trenberth, 1997). 
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176 slice experiments, the middle atmosphere cools in response to both ozone 

177 depletion (with a small peak in the lower stratosphere and a larger peak 

178 centered at 1 hPa) and increased C02 concentrations (with the strongest 

179 cooling at the stratopause). Profiles of the four sets of responses to ozone 

180 depletion (Fig. 1, left-hand panel) are indistinguishable from 1000 to 0.1 hPa; the 

181 responses are the same for both SST climatologies (i.e. 1 B-1 A ::::: 1 D-1 C) and for 

182 both C02 concentrations (1 B-1 A ::::: 2B-2A). That is, the global mean 

183 temperature response to ozone depletion is independent of both background 

184 C02 and thermal forcing from the sea surface. Similarly, the response to 

185 doubled C02 (Fig. 1, centre panel) is the same for both ozone climatologies (i.e. 

186 2A-1 A ::::: 2B-1 B) and for either present-day or future SSTs (2A-1 A ::::: 2C-1 C). 

187 

188 The troposphere and lower stratosphere are warmer in the future SST 

189 experiments than in the experiments using present-day SSTs (Fig. 1, right-hand 

190 panel). The magnitude of the SST-related change in global mean stratospheric 

191 temperature is far smaller than found for C02 doubling or for ozone depletion: 

192 Under future SSTs, the troposphere warms as much as 1.3K, while the lower 

193 stratosphere warms by -0.25K. Similarly to the response to ozone depletion and 

194 doubled C02, the response to the change in SSTs is similar under the differing 

195 ozone and C02 conditions. Small differences between the four pairs of 

196 experiments arise in the upper troposphere/lower stratosphere region, likely due 

197 to mismatches in the thermal forcing between the prescribed SSTs and 

198 atmospheric greenhouse gas concentrations. 

199 

200 As in the annual mean, future SSTs enhance warming in the upper 

201 troposphere/lower stratosphere region and raise the level where no 

202 temperature difference occurs throughout the seasonal cycle (not shown; see 

203 Hurwitz, 2008). This finding agrees with previous studies (i.e. Chakrabarty et aI., 
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204 2001; Fomichev et al" 2007; Lorenz and DeWeaver, 2007) that have found a link 

205 between climate change and tropopause height. 

206 

207 3.2 Wintertime Lower Stratospheric Temperature, Eddy Heat Flux and 

208 Geopotential Height 

209 Tropospheric forcing by planetary waves has a large influence on stratospheric 

210 temperatures, particularly in winter. Previous studies (e.g., Newman et al., 2001; 

211 Austin et aI., 2003; Cagnazzo et aI., 2006) have used the zonal mean eddy heat 

212 flux at 100hPa, averaged over a mid-latitude band (40oN/S and SooN/S) and 

213 over a two-month time period, to diagnose the tropospheric forcing. Fig. 2 

214 shows the modeled heat flux with respect to the SOhPa polar temperature. For 

215 the NH, December-January (positive) heat flux is plotted against January-

216 February temperature, while for the SH, August-September (negative) heat flux 

217 is plotted against September-October temperature. Fig. 2 shows that, for the 

218 set of eight experiments, the relationship between tropospheric forcing and 

219 polar temperature is linear and positive5: Increased tropospheric forcing in the 

220 early winter leads to increased polar temperatures at higher altitudes somewhat 

221 later in the winter. As expected, Southern polar temperatures are lower (by 

222 roughly 20K) than are northern polar temperatures. 

223 

224 The slopes of the regression lines are steeper in the NH than in the Southern 

225 Hemisphere (SH). The mean slope of the eight experiments is 1.29 m~l s in the NH 

226 and -O.SO m~l s in the SH. These values are in agreement with the analysis by 

227 Austin et al. (2003) that found the heat flux-temperature slopes based on the 

228 National Centers for Environmental Prediction/National Center for Atmospheric 

229 Research (NCEP/NCAR) reanalysis (Kalnay et aI., 1996) to be 1.49 ± 0.27 m~l s 

230 (NH) and -0.S9 ± 0.16 m~l s (SH). This result suggests that the NH polar region is 

230 
5 Heat flux is poleward in both hemispheres: positive (negative) values indicate northward 
(southward) heat flux. 
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231 more sensitive to changes in tropospheric forcing than is the southern polar 

232 region. 

233 

234 For the NH winter season stronger heat fluxes and lower temperatures are found 

235 in experiment 2C (idealized future climate; burgundy) relative to experiment 1 B 

236 (idealized present-day climate; turquoise). This result agrees with the work of 

237 Manzini et al. (2003), who found a downward shift of the heat flux versus 

238 temperature regression (perpendicular to the original slopes)) between 1960-like 

239 and 2000-like time-slice simulations. In the UM experiments, however, the shift 

240 toward stronger heat fluxes and lower temperatures is not significantly larger 

241 than the signal due to interannual variability. 

242 

243 In contrast to the NH, the SH interannual variability is lower, and there is little 

244 change in the heat flux and temperature values between the eight 

245 experiments. This suggests that the dynamics of the SH stratosphere are not as 

246 sensitive to changes in greenhouse gases, SSTs or ozone climatologies, though 

247 SH winters are slightly cooler in the doubled-C02 experiments. Rather, the SH 

248 polar stratosphere is closer to being in radiative equilibrium as compared with 

249 the NH. 

250 

251 As noted by BHP2006, when present-day SSTs are prescribed, DJF heat flux 

252 differences due to ozone depletion are positive in a single C02 atmosphere (1 B-

253 1 A) but negative in a doubled C02 atmosphere (2B-2A). These differences6 are 

254 shown in the two leftmost bars in Fig. 3. While the responses to ozone depletion 

255 have the opposite sign when future SSTs are prescribed, the 1 C-l D heat flux 

256 difference is not statistically distinct from the 2D-2C difference. Consistent with 

257 the heat flux differences described above, temperature and geopotential 

257 
6 In figure 3, heat flux differences due to ozone depletion are shown as 1 A-l B, 2A-2B, etc. as this 
clarifies the three contributions to the climate change signal, i.e. 2C-1 B = (2C-2A) + (2A-l A) + 
(lA-1B). 
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258 height differences due to ozone depletion are small in the experiments using 

259 future SSTs (see Hurwitz, 2008). 

260 

261 The error bars in Fig. 3 reveal the high degree of interannual variability in 

262 tropospheric forcing during the NH winter season, and thus the difficulty in 

263 evaluating heat flux differences and their subsequent effects on stratospheric 

264 dynamics. The only heat flux differences from that are statistically different from 

265 zero are the three changes of parameter relative to experiment 1 A (ozone 

266 depletion, doubling of C02 and increasing SSTs). While heat flux increases due 

267 to climate change (2C-l B), dynamical warming of the lower stratosphere is 

268 overwhelmed by the radiative cooling associated with doubled C02 and 

269 increasing SSTs. In the NH winter, 2C-l B temperature and geopotential height 

270 differences at 50hPa are generally negative (up to 3K and 30m, respectively; 

271 not shown). 

272 

273 4 Chemical Response to Changes in Ozone, C02 and SSTs 

274 4.1 Relationship Between Polar Vortex strength and Ozone at NH High 

275 Latitudes 

276 The strong relationship between NH polar vortex strength and high-latitude total 

277 ozone seen in other CCM experiments (e.g., Braesicke and Pyle, 2004; BHP2006) 

278 extends to the four experiments using future SSTs. The slope of the regression line 

279 fitting each set of 20 points in experiments 1 C through 2D is very similar to that 

280 seen in experiments 1 A as is the range of zonal wind and total ozone values 

281 (Fig.4a). 

282 

283 Fig. 4b shows the mean regression line of all eight 20-year time-slice experiments 

284 as well as the mean zonal wind and total ozone values for each experiment. As 

285 noted by BHP2006, experiments where present-day SSTs are prescribed (lA-2B) 

286 exhibit a 'flip flop' response to ozone depletion. The means of the future SST 
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287 experiments (1 C through 20) are situated between these two states (1 A/2B and 

288 1 B/2A); differences in the mean zonal winds and ozone in the future SST 

289 experiments are not statistically significant. 

290 

291 4.2 Polar Ozone Loss as a Function of PSC Volume 

292 Rex et 01. (2004, 2006) found a linear relationship between column ozone loss 

293 and PSC volume during the NH winter, in observations of the past two decades. 

294 BHP2006 examined this same relationship in four UM experiments using present-

295 day SSTs (lA-2B). The strongest correlation between ozone loss and PSC volume 

296 was found in experiment 1A (1980-1ike ozone and 1xC02; r = 0.98), while 

297 somewhat weaker linear relationships were found in two other experiments (1 B 

298 and 2A). In experiment 2B (2000-like ozone and 2XC02)' ozone losses were 

299 clustered around 900U despite interannual variation in PSC volumes and polar 

300 temperatures. 

301 

302 The relationship between ozone loss and PSC volume is examined in the future 

303 SST experiments (lC-20). Just as for experiments 1A-2B, PSC volume is defined 

304 as the sum of all grid cells where cold tracer values exceed a fixed threshold 

305 (0.95). For each time-slice experiment and for each winter season, the OJF 

306 average PSC volume is then sorted into size classes (bin width Ll = 1 . 107 km3; bin 

307 overlap () = 0.5 . 107 km3). Also, the modeled January mean polar temperature 

308 (at 30hPa, north of 85°N), and the wintertime column ozone loss from November 

309 to March (within the 400 to 550K potential temperature layer) are calculated for 

310 each winter and sorted according to the associated PSC volume size class. The 

311 linear relationship between ozone loss and OJF PSC volume in experiments 1 C 

312 and 20 (lA and 2B with future SSTs) have slopes nearly identical to that found in 

313 1A and a good fit (r - 0.85). Another of the future SSTs experiments (10) has a 

314 similar slope but a lower correlation coefficient. The idealized future climate 
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315 scenario (2C) exhibits the same 'saturation' behavior as does experiment 2B: 

316 wintertime column ozone losses do not correlate with PSC volumes. 

317 

318 In the NH winter, PSC volumes and polar temperatures are related by a power 

319 law. The highest mean wintertime PSC volumes generally correspond with the 

320 lowest mean January polar temperatures, as PSC formation is highly 

321 temperature-dependent. Three of the future SST experiments have continuous 

322 temperature distributions, similarly to experiment 1 A (refer to BHP2006, Fig. 7). 

323 The idealized future climate scenario (2C) has a bimodal distribution, as seen in 

324 two of the experiments with present-day SSTs (1 Band 2A). 

325 

326 5 

327 

Sensitivity of the Brewer-Dobson Circulation to Ozone Depletion 

and Climate Change 

328 Tropospheric forcing changes in response to ozone depletion/recovery and 

329 climate change, particularly during the NH winter season, are likely to be linked 

330 to changes in the strength of the Brewer-Dobson circulation (BDC; originally 

331 described by Brewer (1949) and Dobson (1956)). Tropospheric forcing correlates 

332 not only with stratospheric mid-winter temperatures in the lower stratosphere 

333 (e.g., as shown in Fig. 2) and with polar ozone, but is also connected to the 

334 residual circulation in the middle atmosphere. Newman et al. (2001) calculated 

335 that a 10% reduction in the 100hPa eddy heat flux would weaken the BDC by 

336 10%. Conversely, recent increases in tropospheric forcing (as discussed by 

337 Dhomse et aI., 2006) may have caused a strengthening of the stratospheric 

338 circulation. Modeling studies by Butchart and Scaife (2001), Austin and Li (2006) 

339 and Li et al. (2008) have shown that increased greenhouse gas concentrations 

340 lead to a strengthened BDC in the middle atmosphere. Increased heating near 

341 the equator and thus increased upward mass flux in the tropics is a key part of 

342 the mechanism that links greenhouse gas concentrations with a stronger 

343 Brewer-Dobson circulation (Eichelberger and Hartmann, 2005). Butchart and 
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344 Scaife (2001) and Li et al. (2008) found increased tropical upwelling in 

345 conjunction with increased downwelling at high latitudes, in climate change 

346 simulations, but could not provide an unambiguous mechanism for the 

347 strengthening. Climate change-related strengthening of the BOC has not been 

348 observed as yet (Engel et aI., 2009). 

349 

350 The present study will separate the effects of each parameter change (ozone 

351 depletion/recovery, increased greenhouse gas concentrations and increased 

352 SSTs) on the strength and character of the BOC. This study complements a 

353 recent study by Oman et al. (2009), which examined changes in the age of 

354 stratospheric air in transient simulations of the recent past and future. 

355 

356 5.1 Qualitative Streamfunction Analysis 

357 For each of the eight time-slice experiments, the residual streamfunction is 

358 calculated following Andrews et al. (1987). A latitude-height cross-section of 

359 the residual streamfunction in the idealized present-day climate simulation (1 B), 

360 for the OJF season, is shown in Fig. Sa. Many features of the observed meridional 

361 circulation are reproduced: first, the separation of transport toward the South 

362 Pole (negative contours) from transport toward the North Pole (positive 

363 contours) is located just south of the equator (due to the southward shift of the 

364 ITCZ during the NH winter season). The strongest transport occurs in the 

365 troposphere; the Hadley and Ferrell cells can be seen in the tropics and at mid-

366 latitudes, respectively, and in both hemispheres. The larger but weaker BOC (i.e. 

367 following the ±0.1 kg S-3 contours) is characterized by upwelling in the tropics, 

368 poleward transport through the stratosphere, and downwelling at high latitudes 

369 (particularly in the NH, during the OJF season). Mesospheric transport also 

370 features equatorial upwelling and downwelling at high latitudes of the winter 

371 hemisphere, though the winter pole is favored. 

372 
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373 Pressure-weighting the streamfunction highlights the behavior of the middle 

374 atmosphere; an example is shown in Fig. 5b. In experiment 1 B, during the DJF 

375 season, the largest magnitudes occur above 5hPa, with another region of strong 

376 upwelling in the equatorial upper troposphere. 

377 

378 For an in depth comparison of streamfunction values, seven regions are defined. 

379 As shown in Fig. 5b, these regions provide good coverage of the features of the 

380 BDC. Each of the seven boxes covers a 20° latitude band and spans four model 

381 pressure levels. Region 1 is located in the equatorial lower stratosphere (1 OOS to 

382 lOON). Regions 2, 3 and 4 are located in the upper stratosphere; region 3 is 

383 centered at the equator, while regions 2 and 4 are located in the SH and NH 

384 high latitudes (60° to 80° latitude) respectively. Regions 5,6 and 7 are located in 

385 the mesosphere, region 6 at the equator, and regions 5 and 7 in the SH and NH 

386 mid- to high latitudes (40° to 60° latitude). 

387 

388 Seasonal differences in pressure-weighted streamfunction values generally have 

389 the same sign in the equatorial upper troposphere (region 1) as in the 

390 mesosphere (regions 5, 6 and 7; not shown). Doubling the background C02 

391 concentration (for example, 2A-1A or 2C-1B) leads to small changes in 

392 streamfunction values in the equatorial UT /LS and larger changes in the upper 

393 stratosphere, in the winter hemisphere. These streamfunction changes are 

394 positive in the DJF and MAM seasons, but negative in the JJA and SON seasons; 

395 streamfunction changes in the NH winter are generally larger than in the SH 

396 winter. The difference between the two ozone climatologies (i.e. the difference 

397 between experiments 1 A and 1 B) has little effect on streamfunction values in the 

398 troposphere and stratosphere; changes in the mesosphere tend to be smaller 

399 than for the difference seen when the background C02 concentration is 

400 doubled. For the change from the present-day to the future SST climatology, 

401 streamfunction values increase (decrease) during the NH (SH) winter. The 
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402 magnitude of the changes is larger in the upper troposphere than in the middle 

403 atmosphere. 

404 

405 While this initial, qualitative analysis hints at the influence of C02, 03 and forcing 

406 from the ocean surface on tropical upwelling and the overturning circulation in 

407 the middle atmosphere, a more quantitative approach (which follows) 

408 evaluates the relative importance of changes in these three parameters, as well 

409 as their variation with altitude and season, on the strength of the BDC under 

410 climate change. 

411 

412 5.2 Quantifying Seasonal Differences in the Mean Streamfunction 

413 The impact of changes in ozone, C02 and SSTs on the seasonal mean strength 

414 of the meridional overturning circulation is assessed quantitatively by grouping 

415 together pairs of experiments differing by the same boundary conditions. In Fig. 

416 6, the bars shown in blue represent pairs of experiments which differ only by their 

417 03 climatology (1980-1ike - 2000-Iike); the pink bars represent pairs of 

418 experiments which differ only by their background C02 concentration (704ppmv 

419 - 352ppmv); the green bars represent pairs of experiments which differ only by 

420 their SST climatology (future - present-day); the yellow bars represent the 

421 climate change signal (2C-1 B). Positive values (increased streamfunction) 

422 indicate increased transport toward the North Pole, whereas negative values 

423 (decreased streamfunction) indicate increased transport toward the South Pole. 

424 Values not significantly different from zero indicate that changing a particular 

425 parameter has not affected the meridional circulation. Error bars shown in 

426 region 5 (in Fig. 6) denote ±1 standard deviation; often, the uncertainties are 

427 comparable to the magnitudes of the differences themselves. 

428 

429 Fig. 6 shows pressure-weighed streamfunction differences between pairs of 

430 experiments, in the seven atmospheric regions defined in section 5.1, for the DJF 
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431 season. Streamfunction values are larger in the idealized future climate 

432 scenario (experiment 2C) than in the idealized present-day climate (1 B). 

433 Furthermore, this figure shows that the relative contribution of the three types of 

434 parameter changes is altitude dependent. The SST change dominates the 

435 climate change signal in the upper troposphere (region 1) while the C02 

436 change dominates in the NH high-latitude upper stratosphere (region 4), and 

437 the C02 and 03 changes dominate in the mesosphere (regions 5-7). 

438 

439 Streamfunction differences have a seasonal cycle. Streamfunction differences 

440 are generally positive in the DJF season (i.e" increased transport toward the 

441 North Pole; see Fig. 6) and negative in the June-July-August (JJA) season 

442 (increased transport toward the South Pole; not shown). That is, the strength of 

443 the meridional circulation increases in both the NH and SH winter seasons. 

444 Generally, differences are positive in the March-April-May (MAM) season and 

445 negative in the September-October-November (SON) season, though the 

446 magnitudes of these differences are smaller than in the two winter seasons. In 

447 regions 2 and 4 (located in the high-latitude upper stratosphere), pressure-

448 weighted streamfunction magnitudes in each of the simUlations are small (see 

449 Fig. 5b) and the seasonal cycles are much weaker than in other parts of the 

450 atmosphere. 

451 

452 5.3 Relationship Between Tropical Upwelling and Polar Ozone 

453 Time-slice simulations with increased C02 predict that the polar vortex will 

454 strengthen and, assuming the continued presence of anthropogenic chlorine, 

455 greater wintertime ozone loss should occur by the mid- to late 2pt century (note 

456 the differences between 2C and 1 B in Fig. 4). The same simulations predict that 

457 the strength of the BDC will increase as greenhouse gas concentrations 

458 continue to rise and the ozone layer recovers (see Fig. 6). Combining these two 
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459 predictions, increased tropical upwelling in early or mid-winter should correlate 

460 with a decrease in total column ozone at NH high latitudes in late winter. 

461 

462 For individual time-slice experiments, the correlation between tropical 

463 streamfunction and high-latitude total ozone is low, due to the high degree of 

464 interannual variability within the 20-year analysis period; Garda-Herrera et al. 

465 (2006) note that relating changes in tropical upwelling and circulation changes 

466 at high latitudes is made difficult because of various sources of climate 

467 variability, such as the quasi-biennial oscillation (QBO). A more robust 

468 relationship between tropical upwelling and polar ozone emerges when the 

469 means of each experiment are examined (Fig. 7). As expected, least squares 

470 fitting of the eight means yields a negative slope; that is, relative to present-day 

471 (experiment 1 BJ, there will be stronger tropical upwelling but lower total ozone 

472 near the north pole in March in a future climate (2C)7. Though differences 

473 between experiments 1 Band 2C are statistically significant, the linear regression 

474 of January pressure-weighted streamfunction in region 3 as a function of March 

475 total ozone at 800 N (Fig. 7) is not. 

476 

477 Correlations of the annual cycles of the pressure-weighted streamfunction 

478 between two of the seven atmospheric regions are much higher (generally 

479 exceeding 0.90; see Hurwitz, 2008) than for the tropical streamfunction-polar 

480 ozone link. That is, increased tropical upwelling corresponds with increased 

481 meridional transport in the mesosphere. (Correlations with region 2, which is 

482 outside the region of meridional overturning circulation for much of the year, are 

483 not statistically significant.) The magnitude of these correlations is generally 

484 consistent from experiment to experiment. Thus, although the strength of the 

485 BDC is likely to be affected by changes in greenhouse gas concentrations and 

485 
7 Note that this result is a dynamical signature and does not take into account potential 
changes in ozone chemistry. 
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486 other climate forcings, the structure of the circulation pattern itself will remain 

487 unchanged. 

488 

489 6 Discussion 

490 This study assessed the roles of three contributors to future stratospheric climate 

491 change: increasing C02, ozone recovery and generally warmer sea surface 

492 temperatures. Stratospheric temperatures, dynamics, ozone and the strength of 

493 the Brewer-Dobson circulation were examined in various idealized climate 

494 scenarios, using a chemistry-climate model with parameterized ozone 

495 chemistry. The 'climate change' signal (2C-1B), the difference from an 

496 idealized present-day climate and one predicted for the mid- to late 2]st 

497 century, corresponded with an increase in polar vortex strength, increased 

498 poleward heat fluxes, decreases in stratospheric temperature and a 

499 strengthening of the BDC. 

500 

501 In experiments where future SSTs were prescribed (lC-2D; see Table 1), the 

502 global mean temperature responses to decreased ozone and increased C02 

503 concentrations matched those seen in experiments using present-day SSTs (see 

504 Fig. 1). In the stratosphere, the SST-related global mean temperature response 

505 was weaker than was the response to doubling C02 or to ozone depletion. 

506 Nevertheless, the switch from present-day to future SSTs enhanced tropospheric 

507 warming and slightly increased global mean temperatures in the lower 

508 stratosphere, elevating the tropopause. 

509 

510 A time-lagged linear relation between heat flux and temperature held for all 

511 eight time-slice experiments in both winter seasons (see Fig. 2). The NH and SH 

512 heat flux-temperature relationships had different slopes, though both showed a 

513 positive association between poleward heat fluxes in the upper troposphere 
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514 and increased polar temperatures in the lower stratosphere. SH dynamics were 

515 less sensitive to changes in C02, 03 and SSTs than were NH dynamics. 

516 

517 As noted by BHP2006, the response to ozone depletion was CO~dependent: 

518 the NH stratospheric vortex weakened under present-day C02 conditions (1 B-

519 1A) but strengthened in a doubled-C02 atmosphere (2B-2A). This 'flip flop' 

520 response was not seen in the four experiments where future SSTs were 

521 prescribed. Under future SSTs, prescribed ozone depletion had no significant 

522 effect on temperatures, heat fluxes, ozone concentrations or zonal winds at NH 

523 high latitudes in winter. This may have resulted from the reduction in 

524 baroclinicity in the atmosphere, when SSTs and greenhouse gas concentrations 

525 were increased simultaneously. 

526 

527 A strong anti-correlation between 1 OhPa zonal wind at 600 N and total ozone at 

528 BooN is common to experiments using present-day SSTs (BHP2006) and to the 

529 future SST experiments. The lines of best fit were nearly identical. That the 

530 relationship between polar vortex strength and polar ozone remained robust, 

531 despite large changes in the temperature structure and dynamics of the middle 

532 atmosphere, points to the fundamental interdependence of chemistry and 

533 climate in the NH polar stratosphere. 

534 

535 Changes in tropical upwelling and meridional overturning in the middle 

536 atmosphere were quantified by examining regional streamfunction variations. 

537 In the model experiments, increased tropical upwelling, reduced mid-winter 

538 polar ozone and increased polar vortex strength occurred in a climate forced 

539 by warmer SSTs and higher greenhouse gas concentrations. The idealized 

540 climate change signal (2C-1 B) showed a strengthened streamfunction, 

541 particularly for the DJF and JJA seasons. This result, therefore, is consistent with 

542 previous modeling studies that suggest that the BDC will strengthen in a future 
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543 climate. The relative contribution of SSTs, 03 and C02 changes to the enhanced 

544 circulation in the middle atmosphere was altitude dependent: SST changes 

545 played an important role in the tropical upper troposphere (consistent with 

546 Garny et al. (2009)), while changes in C02 and 03 dominated the circulation 

547 response in the middle atmosphere (see Fig. 6). 

548 

549 This work predicted no substantial change in the relationship between 

550 tropospheric forcing, polar temperature and BDC in a future climate. However, 

551 it was not possible to relate climate change-induced increases in tropical 

552 upwelling in mid-winter to greater springtime ozone losses at NH high latitudes at 

553 statistically significant levels. 

554 
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697 Figure 1: Summary of global and annual mean temperature response for the set 

698 of eight time-slice experiments. The left-hand panel shows the ozone-related 

699 response (2000-like - 1980-like); the turquoise line shows 1 B-1 A differences, the 

700 yellow line shows 2B-2A differences, the pink line shows 1 D-1 C differences and 

701 the light grey line shows 2D-2C differences. The central panel shows the COr 

702 related response (2XC02 - 1 XC02); the orange line shows 2A-1 A differences, the 

703 yellow line shows 2B-1 B differences, the dark grey line shows 2C-1 C differences 

704 and the light grey line shows 2D-1 D differences. The right-hand panel shows the 

705 SST-related response (future - present-day); the burgundy line shows 1C-1A 

706 differences, the pink line shows 1 D-l B differences, the dark grey line shows 2C-

707 2A differences and the light grey line shows 2D-2B differences. 

708 

709 Figure 2: Zonal mean meridional mid-latitude heat flux at 100hPa versus polar 

710 temperature at 50hPa. For the NH winter, heat fluxes are northward (positive); 

711 the scatter plot shows December-January heat fluxes versus January-February 

712 temperatures for each year of each experiment. For the SH winter, heat fluxes 

713 are southward (negative); the scatter plot shows July-August heat fluxes versus 

714 August-September temperatures. Experiment 1 A is shown in blue, 1 B in 

715 turquoise, 2A in orange, 2B in yellow, 1 C in burgundy, 1 D in pink, 2C in dark grey 

716 and 2D in light grey; refer to table 1. 

717 

718 Figure 3: DJF 100hPa heat flux differences between pairs of experiments. The 

719 blue bars show heat flux differences due to ozone recovery (1980-1ike - 2000-

720 like); the pink bars show heat flux differences due to doubling C02; the green 
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721 bars show heat flux differences due to SSTs (future - present-day); the yellow bar 

722 shows the climate change signal (2C-1 B). 

723 

724 Figure 4: a) Scatter plot of January zonal mean zonal wind versus total ozone for 

725 experiments 1 A 1 C, 1 D, 2C and 2D. b) Scatter plot of the 20-year mean 

726 January zonal wind versus total ozone for all eight time-slice experiments. The 

727 dotted line shows the mean regression line relating zonal wind to total ozone. 

728 

729 Figure 5: (a) Latitude-height cross-section showing the mean streamfunction for 

730 experiment 1B, for the DJF season [lx10-9 kg/s3]. (b) Latitude-height cross-

731 section of the mean pressure-weighted streamfunction (the streamfunction 

732 divided by the pressure in hPa) for experiment 1 B for the DJF season [lxlO-9 m/s]. 

733 The seven numbered boxes identify the atmospheric regions defined in section 

734 5.1 of the text. 

735 

736 Figure 6: Pressure-weighted streamfunction differences between pairs of 

737 experiments, for seven atmospheric regions, for the DJF season. The spatial 

738 organization of the regions is as shown in figure 6b. The four bars for each set of 

739 differences denote the DJF, MAM, JJA and SON seasons, respectively. The blue 

740 bars represent the response to ozone recovery; the pink bars represent the 

741 response to doubled C02; the green bars represent the response to increased 

742 SSTs; the yellow bars represent the response in the climate change signal (2C-

743 1 B). Error bars in region 5 denote ±1 standard deviation. 

744 

745 Figure 7: January streamfunction in region 3 versus March total column ozone at 

746 SOON. The colored circles show the 20-year mean for each time-slice 

747 experiment; the dashed line shows the line of best fit, fitting the eight mean 

748 values. 
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752 Figure 1: Summary of global and annual mean temperature response for the set 
753 of eight time-slice experiments. The left-hand panel shows the ozone-related 
754 response (2000-1ike 1980-like); the turquoise line shows 1 B-1 A differences, the 
755 yellow line shows 2B-2A differences, the pink line shows 1 D-1 C differences and 
756 the light grey line shows 2D-2C differences. The central panel shows the C02-
757 related response (2XC02 - 1xC02); the orange line shows 2A-1A differences, the 
758 yellow line shows 2B-1 B differences, the dark grey line shows 2C-1 C differences 
759 and the light grey line shows 2D-1 D differences. The right-hand panel shows the 
760 SST-related response (future - present-day); the burgundy line shows 1 C-1 A 
761 differences, the pink line shows 1 D-1 B differences, the dark grey line shows 2C-
762 2A differences and the light grey line shows 2D-2B differences. 
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764 Figure 2: Zonal mean meridional mid-latitude heat flux at lOOhPa versus polar 
765 temperature at 50hPa. For the NH winter, heat fluxes are northward (positive); 
766 the scatter plot shows December-January heat fluxes versus January-February 
767 temperatures for each year of each experiment. For the SH winter, heat fluxes 
768 are southward (negative); the scatter plot shows July-August heat fluxes versus 
769 August-September temperatures, Experiment 1 A is shown in blue, 1 B in 
770 turquoise, 2A in orange, 2B in yellow, 1 C in burgundy, 1 D in pink, 2C in dark grey 
771 and 2D in light grey; refer to table 1. 
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3,-------------------------------------------------, 

-3~------------------------------------------------~ 

773 Figure 3: DJF 100hPa heat flux differences between pairs of experiments. The 
77 4 blue bars show heat flux differences due to ozone recovery (1980-1ike - 2000-
775 like); the pink bars show heat flux differences due to doubling C02; the green 
776 bars show heat flux differences due to SSTs (future - present-day); the yellow bar 
777 shows the climate change signal (2C-l B). 
778 
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780 Figure 4: oj Scatter plot of January zonal mean zonal wind versus total ozone for 
781 experiments 1 A 1 C, 1 D, 2C and 2D. bj Scatter plot of the 20-year mean 
782 January zonal wind versus total ozone for all eight time-slice experiments. The 
783 dotted line shows the mean regression line relating zonal wind to total ozone. 
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787 Figure 5: (a) Latitude-height cross-section showing the mean streamfunction for 
788 experiment 1 B, for the DJF season [lxlO-9 kg/s3]. (b) Latitude-height cross-
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789 section of the mean pressure-weighted streamfunction (the streamfunction 
790 divided by the pressure in hPa) for experiment 1 B for the DJF season [1 X 10-9 m/s]. 
791 The seven numbered boxes identify the atmospheric regions defined in section 
792 S.l of the text. 
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794 Figure 6: Pressure-weighted streamfunction differences between pairs of 
795 experiments, for seven atmospheric regions, for the DJF season. The spatial 
796 organization of the regions is as shown in figure 6b. The four bars for each set of 
797 differences denote the DJF, MAM, JJA and SON seasons, respectively. The blue 
798 bars represent the response to ozone recovery; the pink bars represent the 
799 response to doubled C02; the green bars represent the response to increased 
800 SSTs; the yellow bars represent the response in the climate change signal (2C-
801 1 B). Error bars in region 5 denote ±l standard deviation. 
802 
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January Pressure-Weighted Streamfunction (1 e-'1 m/s): Region 3 

803 Figure 7: January streamfunction in region 3 versus March total column ozone at 
804 SooN. The colored circles show the 20-year mean for each time-slice 
805 experiment; the dashed line shows the line of best fit, fitting the eight mean 
806 values. 


