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Abstract 

 A preliminary study has been completed to determine the feasibility of using high-pressure angle 
gears in aeronautic and space applications. Tests were conducted in the NASA GRC Spur Gear Test 
Facility at speeds up to 10,000 rpm and 73 N*m (648 in.-lb) for 3.18, 2.12, and 1.59 module gears 
(8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module 
(8-diametral pitch), 28 tooth, 20 degree pressure angle gears are the NASA GRC baseline test specimen. 
Also, 2.12 module (12-diametral pitch), 42 tooth, 25 degree pressure angle gears were tested. Finally, 
1.59 module (16-diametral pitch), 56 tooth, 35 degree pressure angle gears were tested. The high-pressure 
angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, 
lubricated with a synthetic turbine engine oil) and produced the lowest wear rates when tested with a 
perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.-lb).  

Introduction 

Gearing is chosen very carefully for any given application to have a sufficient strength (load capacity) 
and, therefore, a long life before one of the many failure mechanisms initiates and results in component 
failure.  Operating in very hostile environment conditions, such as large temperature swings, very 
abrasive dust, the use of nontraditional terrestrial lubricants, etc., premature failure can result (Refs. 1 
and 2). In an attempt to improve gear performance, high-pressure angle (HPA) gearing is examined for 
possible use in space mechanism applications. As the pressure angle of a gear mesh increases, the rate of 
sliding of the surfaces over each other is reduced (Refs. 3 to 6). There are limits to how much the pressure 
angle can be increased as the design can eventually have a contact ratio approaching one and/or the tooth 
top land can become pointed. An approach to circumvent this dilemma is to make the gear mesh helical 
and use the face contact ratio to boost the overall contact ratio to a value greater than one (Refs. 7 and 8). 

Gear Design and Analysis 

To understand the effects of pressure angle increase, an analysis used for gear tooth contact fatigue 
was utilized. A computer code developed at NASA (Ref. 9) was used to calculate various parameters, 
including the sliding velocity of the teeth, and the resultant gear meshing power losses. The difference in 
sliding velocity between two of the designs tested is shown in Figure 1.  The sliding velocity as a function 
of meshing position is shown for the 88.9 mm (3.5 in.) center distance (1:1 ratio) and two gear types—the 
standard 3.18 module (8 diametral pitch) 20 degree pressure angle and the high-pressure angle gears with 
1.59 module (16 diametral pitch) and a 35 degree pressure angle.  

There are other design considerations when changing to a higher-pressure angle. When trying to 
modify a design the pressure angle can only be modified so far for any given diametral pitch before tooth 
pointing can be design limiting. In the design mentioned in this report, the 35 degree pressure angle 
required doubling the diametral pitch. This increased the tooth count from 28 to 56 teeth. Also, due to the 
tooth pointing issues and the size of the teeth, the gear material, and the heat treatment process employed 
required modification. Instead of using 9310 gear steel and carburizing, Nitralloy 135M material using a 
nitriding heat treatment was chosen (very thin, hardened surface layer). With this material and heat-treat  
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Figure 1.—Effect of gear design on sliding velocity at any point along the line of action 

between 3.18 and 1.59 module (8 and 16 diametral pitch) gears for a 1:1 ratio. 

 
TABLE 1.—RESULTS FROM PERFORMANCE (EFFICIENCY) AND LOAD CAPACITY ANALYSIS CODES  
  Standard gear  

geometry #1 
Standard gear  
geometry #2 

High pressure  
angle  

Number of teeth 28 42 56 
Gear material AISI 9310 AISI 9310 Nitralloy 135M 
Module, mm (diametral pitch, 1/in.) 3.18 (8) 2.12 (12) 1.59 (16) 
Pressure angle, degrees 20 25 35 
Addendum, mm (in.) 3.18 (0.125) 2.12 (0.083) 1.40 (.055) 
Outside diameter, mm (in.) 95.25 (3.75) 93.17 (3.668) 91.69 (3.610) 
Chordal tooth thickness, mm (in.) 4.85 (0.191) 3.25 (0.128) 2.41 (0.095) 
Clearance, mm (in.) 0.79 (0.031) 0.79 (0.031) 0.19 (0.0075) 
Face width, mm (in.) 6.35 (0.25) 6.35 (0.25) 6.35 (0.25) 
Center distance, mm (in.) 88.9 (3.5) 88.9 (3.5) 88.9 (3.5) 
Profile shift (-) 0 0 0 
Backlash, mm (in.) 0.15 (0.006) 0.15 (0.006) 0.076 (0.003) 
Contact ratio 1.64 1.53 1.16 
Efficiency, load, and stress, at 10000 rpm, 

71 N*m (630 in*lb) torque 
   

Efficiency, % 99.41 99.62 99.77 
Tangential load, N (lbs) 1601.4 (360) 1601.4 (360) 1601.4 (360) 
Radial load, N (lbs) 582.7 (131.0) 746.9 (167.9) 1121.4 (252.1) 
Bending stress, GPa, (ksi) 0.246 (35.7) 0.353 (51.2) 0.308 (44.6) 
Contact stress, GPa (ksi) 1.09 (158.1) 1.03 (149.3) 0.89 (129.1) 

Note: Bending and contact stress found via ISO6336 (Ref. 10). 
 
change the gears could be normally manufactured without the threat of tooth capping. Capping occurs when 
carburized surfaces come together at thin material regions, such as at the top of the tooth, and the induced 
stress field, from the heat-treating process, causes the material to fracture even without an applied load.  

The designs and the results of analysis are shown in Table 1. Calculations were made for the gears 
operating at 10,000 rpm using a synthetic aerospace lubricant. The one item to note in the table is that 
while the tangential load is the same (torque), the separating force between the gears has nearly doubled 
with the high-pressure angle design. While the design changes reduced the gearing losses, they increased 
the load the bearings must carry.  
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ISO 6336 analysis was conducted on these three gear designs for tooth bending and contact stress.  
The results are shown in Table 1. From Table 1, the results between the three designs were fairly 
comparable with the 3.18 module (8 diametral pitch) gears having the lowest bending stress and the 
1.59 module (16 diametral pitch) gears having the lowest contact stress.  

Experimental Results  
Test procedure: Testing was done in two different modes for the gears evaluated in this study. The 

basic properties of the two lubricants used are provided in Table 2. In the high-speed test mode, the gears 
were lubricated with a synthetic turbine engine lubricant. The gear mesh was lubricated with the jet 
pointing into mesh. The lubricant is gravity drained and returned to the lubricant reservoir. Lubricant 
temperature was measured just prior to the jet and at the exit region (drain) of the test gear cover. The 
load applied was measured statically using a torque wrench and was proportional to the torque actuator 
pressure applied. For these high-speed tests, the facility was brought up to full speed (10,000 rpm) prior 
to increasing the load to the maximum conditions tested.  

In the low-speed, grease-lubricated mode, both the gears and the amount of grease applied were 
weighed prior to testing, and the gears were also weighed post test. Gears were rotated up to the 150 rpm 
condition where tests were run prior to increasing to the maximum load applied  (pressure on torque 
actuator).   

High-Speed Aerospace (Rotorcraft) Operation 
Three-gear designs were tested in the same gearbox, at identical rotational speed, torque, lubricant, 

and inlet temperature. A photograph of the three designs tested is shown in Figure 2. The test rig used in 
this study is shown schematically in Figure 3. In this test rig, the drive motor only needs to provide 
enough power to overcome the losses within the geared system. A rotating torque actuator uses fluid 
pressure to apply torque by rotating one of the slave gears (shown in green) relative to its shaft.  The test 
gears are shown in red in the figure. Tests were conducted at full-face width contact for all tests. 
 
 

TABLE 2.—BASIC PROPERTIES OF THE TWO LUBRICANTS USED IN THIS STUDY 
  Turbine engine lubricant Space grease 
Mixture Synthetic ester blend  Base oil-perfluorinated polyether 
Pour point, °C (°F) –62 (–80) –73 (–100) 
Specific gravity 1 1.85 
Viscosity, cSt. at 38 °C, 100 °F 29.2 148 
Viscosity, cSt. at 100 °C, 210 °F 5.3 45 

 
 

 
Figure 2.—Left to right: 3.18, 2.12, and 1.59 module (8, 12, and 16 diametral pitch) test gears. 
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Figure 3.—Test facility at NASA Glenn Research Center. 

 

 
Figure 4.—Temperature results for three different gearing configurations. All tests 

conducted at 10,000 rpm, 71 N*m (630 in.-lb). Flow rate at 40 psi 8.1 ml/s (0.13 gpm). 
 

The gears were tested at three levels of lubricant jet pressure (flow). The lubricant inlet and outlet 
temperatures were monitored throughout the tests. The data acquired for each gear design is shown in 
Figure 4. Seven different tests were conducted to generate the data shown in Figure 4. A comparison of 
the results indicates there is a definite difference between the three gear designs.  

The lubricant temperature rise across a gearbox is a function of the gear meshing losses and any 
resultant windage losses. Pitch line velocity for these tests was 48.8 m/s (9160 ft/min). Finer pitch teeth 
with high-pressure angle showed an improvement resulting in a lower temperature change across the 
gearbox. Lubricant jet pressure (flow) into the gearbox had a lesser effect for each of the gear 
configurations, but there was a definite trend of lower temperature difference as the jet pressure was 
increased. It would be expected that heat removed from the gearbox should be related to TCm p∆  
(lubricant flow rate, heat capacity of the lubricant, and the temperature difference between inlet and outlet 
for the lubricant) if other effects are neglected.   
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Figure 11.—Shrouds on the high-pressure angle gears during tests. 

 

Conclusions 
Based on the results obtained in this study, the following conclusions can be drawn: 

 
1. High-pressure angle spur gears (35 deg pressure angle) running at high-speed provide improved 

performance with similar bending and contact stress over more traditional gear pressure angles 
(20 deg). This was verified via analytical computer codes for efficiency, bending and contact stress 
analysis, as well as through experimental testing. 

2. A general trend found from the experimental testing at identical conditions in the aerospace, jet-
lubricated configuration was that the higher the pressure angle, the lower the temperature increase 
of the lubricant across the gearbox.  This is an indication of the improved efficiency. 

3. The space grease-lubricated tests conducted at 150 rpm and high load requires shrouding of the 
gear mesh to produce lower wear rates. 

4. The high-pressure angle gears appeared to be better suited to the low-speed, high load, grease- 
lubricated conditions compared to the 3.18 and 2.12 module (8 and 12 pitch) gears with 
perfluoroether-based space grease.  
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