A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features, and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.
U.S. PATENT DOCUMENTS

2,304,303 A 10/1942 Ferguson 166/2
2,507,467 A 5/1950 Fredrickson et al. 137/69
2,508,058 A 5/1950 Manville 15/129
2,750,962 A 6/1956 Kreitchman et al. 137/625.48
2,767,019 A 10/1956 Manville 299/58
2,822,818 A 2/1958 Breznick 137/454.6
2,894,695 A 7/1959 Belfcher et al. 239/443
2,941,820 A * 6/1960 Kallis 137/599.02
2,949,240 A 8/1960 Koollin 239/200
2,977,988 A 4/1961 Drobilitis et al. 137/625.17
3,096,786 A 7/1963 Rost 137/596.2
3,145,010 A 8/1964 Karr, Jr. 251/210
3,176,720 A 4/1965 Donahue 137/625.44
3,304,303 A 10/1942 Ferguson 166/2
5,355,905 A 10/1994 Burgess et al. 137/1
5,413,134 A 5/1995 Burgess et al. 137/1
5,573,186 A 11/1996 Loschelder 239/436
5,579,800 A 12/1996 Walker 137/15
5,622,203 A 4/1997 Givier et al. 137/337
5,718,257 A 2/1998 Burgess 137/218
5,842,680 A 12/1998 Bustamante et al. 251/65
5,937,885 A * 8/1999 Sampson 137/1
6,026,845 A 2/2000 Walrath et al. 137/360
6,109,293 A 8/2000 Walrath et al. 137/360
6,279,593 B1 8/2001 Walrath et al. 137/14
6,431,519 B1 8/2002 Smith 137/65
6,609,532 B1 * 8/2003 Peterson 137/15.18

FOREIGN PATENT DOCUMENTS

3,521,667 A 7/1970 Johnson 137/454.6
3,533,554 A 10/1970 Mengerson 239/27
3,762,682 A 10/1973 Franck 251/124
3,779,508 A 12/1973 Paul, Jr. 251/124
3,954,250 A 5/1976 Grace 251/144
4,022,243 A 5/1977 Edwards 137/360
4,117,856 A 10/1978 Carlson 137/62
4,178,956 A 12/1979 Fillman 137/360
4,261,332 A 4/1981 Stewart 251/124
4,316,481 A 2/1982 Fillman 137/302
4,475,570 A 10/1982 Pike et al. 137/218
4,672,247 A 6/1987 Madsen et al. 310/49
4,691,135 A 9/1987 Sogabe et al. 310/254
4,899,073 A 2/1989 Takeuchi et al. 310/116
4,903,570 A 11/1989 Rudelack 239/443
5,087,868 A 2/1991 Ishibashi et al. 318/296
5,148,895 A 9/1992 Kazikazi 188/299
5,283,495 A 2/1994 Wendel et al. 310/257
5,333,833 A 8/1994 Reinicke 251/77

FOREIGN PATENT DOCUMENTS

FR 2 638 503 10/1989
GB 920698 10/1959
GB 920710 10/1959

OTHER PUBLICATIONS

Standard Port Bronze Apollo with Center Brain, Apollo advertisement, 1 page.
Watts Series TWS Wall Hydrant, Watts Regulator advertisement, 1 page.

* cited by examiner
HIGH FLOW, LOW MOBILE WEIGHT QUICK DISCONNECT SYSTEM

This application claims the benefit of U.S. Provisional Application 60/340,715, filed Oct. 29, 2001, hereby incorporated by reference.

GOVERNMENT RIGHTS

The U.S. government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract No. SBIR-00-1 awarded by NASA.

FIELD OF THE INVENTION

The present invention relates generally to quick disconnect or coupling devices which may start and stop the flow of any fluid or even perhaps vacuum from a supply line to a discharge line or point of use. Specifically, the present invention may be especially applicable to fluid supply applications, such as fuel supply, and to mobile support applications such as flight vehicle preparation and launch, particularly those applications involving cryogens.

BACKGROUND OF THE INVENTION

Prior quick disconnect designs can often incur high pressure drop and associated energy losses at rated fluid flow conditions creating flow resistance in the system. For what may be the dominant technology, the poppet style quick disconnect, this flow resistance may be attributed to the tortuous and restricted flow path around the outside of the retracting poppets. The problem may become particularly troublesome when cryogens are pumped over long distances or through a complex configuration of valves and disconnects. Some efforts to address the problems of flow resistance may require larger pumps and more energy consumption to compensate for flow losses, creating additional problems relative to such past attempts in disconnect technology.

Furthermore, prior quick disconnect designs can typically waste a significant amount of fluid to the environment such as liquid hydrogen. Prior quick disconnect designs may also typically require high component weight to achieve required flow rates, representing a high mass-to-flow ratio. A function of the interface geometry of the mating halves of the disconnect, this mass-to-flow ratio may increase as the flow is increased. On the other hand, the fluid interface may not be completely free of fluid the entire time the poppets are engaged. Prior quick disconnect designs may also typically require high component weight to achieve required flow rates, representing a high mass-to-flow ratio. A function of the interface geometry of the mating halves of the disconnect, this mass-to-flow ratio may increase as the flow is increased. On the other hand, the fluid interface may not be completely free of fluid the entire time the poppets are engaged.

SUMMARY OF THE INVENTION

Objects of the present invention may be to provide an alternative technology that may achieve high flow, low energy loss, low mass, minimum spillage and low engagement force. The present invention may also address potential limitations that may have existed in presently employed technologies such as those previously described.

Other objectives and goals may be disclosed throughout this application for patent, including the written description, drawings, and claims. In addition, all objectives and goals may apply either in dependent or independent fashion to a variety of other objectives and goals, and in a variety of embodiments, consistent with the present disclosure.

Therefore, the present invention may provide a fluid coupling device comprising a first coupling, an actuator coupled with the first coupling, a second coupling configured to detachably engage the first coupling, and an actuator coupled with the second coupling, wherein the actuators are unitarily rotationally actuated. The present invention further provides coupling devices to provide coupling of fluid, fluid coupling systems, and fluid coupling devices. Further, methods of coupling fluid and other methods and process embodiments are also disclosed. Other embodiments may be disclosed throughout this application for patent, including those embodiments disclosed in the written description, drawings, and claims.

In some embodiments, the present invention may provide the fluid quick disconnect or coupling device may control the flow of a variety of fluids, but especially of cryogens, particularly an explosive substance such as liquid hydrogen. Prior quick disconnect designs can typically pose safety risks if the fluid is toxic or an explosive substance such as liquid hydrogen. Prior quick disconnect designs may also typically require high component weight to achieve required flow rates, representing a high mass-to-flow ratio. A function of the interface geometry of the mating halves of the disconnect, this mass-to-flow ratio may increase as the flow is increased. On the other hand, the fluid interface may not be completely free of fluid the entire time the poppets are engaged. Prior quick disconnect designs may also typically require high component weight to achieve required flow rates, representing a high mass-to-flow ratio. A function of the interface geometry of the mating halves of the disconnect, this mass-to-flow ratio may increase as the flow is increased. On the other hand, the fluid interface may not be completely free of fluid the entire time the poppets are engaged.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cutaway view of one embodiment of the present invention showing an engaged coupling device.

FIG. 2 is a cutaway view of the embodiment shown in FIG. 1 with two portions of the device de-mated or otherwise disengaged.

FIGS. 3A and 3B are exploded views of the entire device (both portions) of the embodiment shown in FIGS. 1 and 2.

FIG. 4 is a perspective view of a cartridge of the embodiment shown.

FIG. 5 is a perspective view of a second cartridge of the embodiment shown.

FIG. 6 is a perspective view of a collar of the embodiment with a VOST™ aperture shown.

FIG. 7 is a perspective view of a second collar element of the embodiment for a VOST™ aperture design as shown.

FIG. 8A is a cross-section of an embodiment of the present invention depicted through line B-B of the front view shown in FIG. 8B and FIG. 8C of a front view of the embodiment.

FIG. 9A is a perspective view of an assembled component of an embodiment shown in a perspective view, a side view in FIG. 9B, and in FIG. 9C a cross-section depicted through line A-A of the side view.

FIG. 10 is a side view of an assembled component of an embodiment shown in a side view and as a cross section depicted through line A-A of the side view.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

As can be easily understood, the basic concepts of the present invention may be embodied in a variety of ways. These concepts involve processes or methods as well as devices, various apparatus, and systems, systems accomplishing the disclosed processes or methods. In addition, while some specific designs are explicitly shown, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways.

The present invention may address potential limitations associated with current designs of quick disconnects in a variety of ways. Flow resistance may be minimized by incorporating a Venturi Offset Technology (VOST™) flow passage in both halves of the quick disconnect. Such technology is described in U.S. Pat. Nos. 6,279,595, 6,026,845, 6,109,293, and in WIPO Publication No. WO 99/13250, among other related references all hereby incorporated by reference.

Accordingly, and as shown in FIG. 1, the present invention may afford a minimally restricted flow path with the disconnect in the mated position. Spillage may be minimized by direct contact and interlocking between the rotating faces of the two halves of the quick disconnect. The direct contact and interlocking may be initiated prior to fluid flow and sustained beyond the stoppage of flow. FIG. 2 illustrates this feature of the embodiment by depicting the de-mated position. An O-ring seal 8 in the ground side face may be incorporated to prevent fluid leakage to the cavity 6 formed upon mating.

More broadly stated, a first fluid coupling 10 and a second fluid coupling 12 are shown in FIG. 1, referred to in some embodiments as halves of the quick disconnect. Actuators 14 and 16 are further provided, each actuator coupled with a respective one of the couplings. The actuators may be rotationally actuated, and in some embodiments, unitarily rotationally actuated, as further described below.

The present invention, in some preferred embodiments, may minimize flight side mass by placing most of the actuation mechanism on the ground side of the quick disconnect. FIG. 2 illustrates the distribution of mass between the two sides in one embodiment. FIG. 3 shows a exploded view of an embodiment, illustrating its low piece count and simple design. It can be seen from the illustrations that each half of the quick disconnect may also function as an open-close valve.

The two halves of the quick disconnect device may be engaged axially by external or other force, whether manual, hydraulic, pneumatic, etc. In a preferred embodiment, engagement may be provided by movement of the carrier plate, which may contain the ground half of the quick disconnect. The carrier plate may also assure axial alignment prior to engagement. Initial contact between the two sides may occur at the outer housing 18. The housing may contain a ring seal 8 that may isolate the intermediate cavity 6, in some embodiments a spill cavity, formed by this contact, from the environment. Shortly after the ring seal is made, the rotating, inner faces 20, 22 of the two sides may make contact and may then lock together such as in tongue-and-groove fashion. Further axial movement may then be converted into synchronous rotation of these two faces, herein referred to as collars, by means of spiral grooves 24 in the ground-side collar 26. Spring loaded ball pins 28, mounted to the ground-side outer housing, may engage these spiral grooves, providing couple with the actuator, and may then force the collars to rotate about 180 degrees and may allow axial motion to be completed. The inner tubes or cartridges 30, 32 that form the flow path, and in some embodiments venturi portions and a venturi 34, collectively, may be restrained from rotating by means of longitudinal guides and matching locator pins, which may be fixed to the outer housing. Some preferred embodiments may provide an offset venturi, as shown for example in FIG. 1.

Hence, the process of engagement may culminate in a fully open flow passage in both halves of the quick disconnect, as illustrated in FIG. 1.

More broadly stated, actuators 14 and 16, in some preferred embodiments comprising collars 26 and 27, may be unitarily rotationally, and in some embodiments, actuated upon axial movement of at least one actuator, as further described below. Preliminarily, but incorporating aspect of the present invention, as couplings 10 and 12 are moved axially toward engagement, housing 18 of coupling 10 contacts housing 18 of coupling 12, forming a seal at seal 8 and an engaged configuration of the couplings. This engaged configuration in some embodiments may form cavity 6, which may serve as a spill cavity for excess fluid during actuation of actuators or as a cavity to hold measuring devices, such as a flow meter, a pressure meter, a leak detection device, or the like. It should be noted that axial movement may be accomplished by one or both couplings. In some embodiments, one of said couplings may be fixed, as in attached or coupled with a fuel source or vehicle.

Further relative axial movement of couplings 10 and 12 move coupled actuators 14 and 16 into contact or engagement. The axial movement may be defined, in some embodiments, as axial movement along a flow axis of a coupling, as shown. In one embodiment, collars 26 and 27 are brought into engagement via an engagement element. The engagement element may comprise various configurations of portions of collars 26 and 27, in some embodiments, but may preferably be provided as a rotary interlock 36. In one embodiment, best shown in FIGS. 6 and 7, each collar 26, 27, the rotary interlock may comprise at least one tongue and groove arrangement 37 of the collars, and may specifically comprise at least one boss 38.

As the couplings and actuators continue axial movement and engagement, forces applied between the actuators, specifically actuator portion collars 26 and 27, and the contacting or engaging surfaces therefore, create a rotation of collar 26 as a result of the coupling of spring loaded ball pins 28 and helical grooves 24. This creates a helical movement of actuator 14, and in preferred embodiment helical movement of collar 26. The helical grooves may be provided in some preferred embodiments as four helical grooves, and in preferred embodiments, 180 degree helical grooves. Rotation of the actuator 14, or collar 26 in some embodiments, creates a corresponding, and in some embodiment unitary, rotation of actuator 16, or collar 27 in some embodiments, due to engagement of the actuators and collars. Some embodiments, collar 27 rotates with housing 18 (depicted fully rotated in FIGS. 1 and 8A). Therefore, the actuators 14 and 16, and in some embodiments collars 26 and 27, may be unitarily rotationally actuated. This actuation may be provided as an axial movement of at least one actuator. Unitary rotational actuation of the actuators may be further provided upon an axial movement of at least one of the actuators, as movement of actuator 14, collar 26, and other elements such as cartridge 30 axially move against opposing compression forces of compression element 40, further described below. Additionally, in some embodiments, unitary rotational actuation of the actuators may be further provided upon a helical movement of one of the actuators, as previously described.

Further referring to the actuators, generally, each actuator may comprise a flow aperture, and in some preferred embodiments...
ments, a venturi flow aperture 42 and 44, as shown in FIGS. 6 and 7 regarding embodiments of collars 26 and 27. As previously described, actuation of the actuators, and in some embodiments collars 26 and 27, is provided by rotational movement, and in some embodiments having 180 helical grooves, 180 degree rotational movement is provided and a corresponding unitary rotational actuation of the actuators. Rotation of the actuators creates in most situations a full flow or a no flow configuration of the actuators or the collars. A full flow configuration is shown in FIGS. 1 and 8A, providing rotation of the flow aperture about 180 degrees and in alignment with the venturi portions 46 and 48 of cartridges 30 and 32.

As referred to earlier, at least one compression element may be provided, the compression element potentially serving as a bias, in some embodiments, and as a seal force, in some embodiments, such that the actuators are biasingly or sealingly responsive, or both, to the compression element, and in some embodiments, responsive in a direction along a flow axis of the couplings. As the couplings and actuators are moved axially, both in engagement of the coupling device or system and in disengagement, the compression element provides counteracting forces to the axial movement of the various elements, creating, for example, a bias on the actuators. This bias, provided axially in the embodiments of the figures, may serve to aid in a engagement or a disengagement response of the actuator 14, such that collar 26 may rotate in a desired manner or such that collars 26 and 27 may appropriately engage, or may serve to aid in the sealing relationship of the various elements, such as that of the seals created during engagement of surfaces of collars 26 and 27.

Additionally, it should be noted that other compression elements may be provided, such as compression springs, spring washers, spring seals, or thrust washers, consistent with the present invention. For example, a wave washer 50, as shown in FIGS. 3A and 5, for example, may be provided to assist in engagement of the collars, to assist in sealing the collars or other components, or the like.

Further embodiments of the present invention may include, but not be limited to the following additional features:

1. The use of an offset venturi may allow transition from fully closed to fully open position without incurring large pressure drop and energy loss associated with typical quick disconnects.
2. The use of spiral grooves and matching ball pins may convert axial displacement to rotation with minimal friction.
3. The use of a rotary interlock between the two halves of the quick disconnect may force both faces to rotate in unison and may minimize void volume between the faces that could contribute to spillage when disengaging.
4. The use of a spring washer may maintain face seal pressure on the flight side, and may thereby reduce the length and mass of the flight half of the quick disconnect.
5. The provision of an easily accessible cavity between the mated halves of the quick disconnect, may accommodate instrumentation which may then detect flow, pressure, leakage, etc.

As shown in FIG. 4, an in reference to ground side and flight side of flight applications, such as cryogenic fueling of a space shuttle, the ground side cartridge may move axially against a compression spring, with retaining pins sliding in two, diametrically opposed, axial slots (one shown in the figure). It may include a VOST™ ramp, providing half the venturi. Ring seals may be included to inhibit leakage from the flow path to the cavity separating the cartridge from the outer shell. The flight side cartridge such as shown in FIG. 5 may provide the other venturi half, and may include outer ring seals, along with a wave washer to maintain pressure on the face seal when two mating components are not engaged.

The ground side rotating collar such as shown in FIG. 6 may have a VOST™ aperture and four, 180° helical grooves. These grooves may be engaged by matching ball pins perhaps fixed to the outer shell, thus forcing rotation upon axial engagement. The ground side collar such as shown in FIG. 7 may also have four protruding bosses that may provide tongue-in-groove mating with the flight side collar.

As shown in the drawings depicted as FIGS. 8-10, a preferred embodiment can be designed as shown. This may include—but should not be understood as limited to—the elements listed or shown. Naturally, it should be understood that this is but one design using the various concepts of the invention. Other designs are, of course, possible using any selection of the principles disclosed herein.

As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both fluid coupling techniques as well as devices to accomplish the appropriate fluid or other flow coupling or control. In this application, the fluid coupling techniques are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.

Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regardless this last aspect, as but one example, the disclosure of an “actuator” should be understood to encompass disclosure of the act of “actuating”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “actuating”, such a disclosure should be understood to encompass disclosure of a “actuator” and even a “means for actuating”. Such changes and alternative terms are to be understood to be explicitly included in the description.

Any patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as con-
8. A fluid coupling device, comprising:
a first coupling comprising a first actuator; and
a second coupling comprising a second actuator and con-
figured to detachably engage said first coupling;
wherein there is an axis of fluid flow through the first and
second couplings, and
wherein said actuators are unitarily rotationally actuated
along the axis of fluid flow through the couplings,
and
a cavity formed by an engaged configuration
of said couplings and a measuring device within
said cavity.

9. A fluid coupling device as described in claim 8 wherein
said measuring device comprises a measuring device selected
from the group consisting of a flow meter, a pressure meter,
or a leak detection device.

10. A fluid coupling device, comprising:
a first coupling comprising a first actuator;
a second coupling comprising a second actuator and con-
figured to detachably engage said first coupling;
wherein there is an axis of fluid flow through the first and
second couplings,
wherein said actuators are unitarily rotationally actuated
along the axis of fluid flow through said couplings;
and
wherein said actuators each comprises a collar;
wherein said actuators each comprises an engagement ele-
ment;
wherein said engagement element comprises a rotary inter-
lock;
wherein said rotary interlock comprises at least one tongue
and groove arrangement; and
wherein said rotary interlock comprises at least one boss.

11. A fluid coupling device, comprising:
a first coupling comprising a first actuator; and
a second coupling comprising a second actuator and con-
figured to detachably engage said first coupling;
wherein there is an axis of fluid flow through the first and
second couplings,
wherein said actuators are unitarily rotationally actuated
along the axis of fluid flow through said couplings,
and
wherein each of said actuators comprises a rotatable flow
aperture formed by said actuator, and
wherein said rotatable flow aperture comprises a venturi
flow aperture.

12. A fluid coupling device, comprising:
a first coupling comprising a first actuator; and
a second coupling comprising a second actuator and con-
figured to detachably engage said first coupling;
wherein there is an axis of fluid flow through the first and
second couplings,
wherein said actuators are unitarily rotationally actuated
along the axis of fluid flow through said couplings,
and
wherein each of said actuators comprises a housing and a
cartridge coupled to said housing,
wherein each of said cartridges have a fluid flow path, and
wherein each of said cartridges comprises a venturi
portion.

13. A fluid coupling device as described in claim 12 wherein
said fluid flow paths of each of said cartridges from a venturi.

14. A fluid coupling device as described in claim 13 wherein
said venturi comprises an offset venturi.

15. A method of coupling fluid sources, comprising the
steps of:
coupling a first coupling to a fluid source, said first
coupling coupled with an actuator;
coupling a second coupling to a fluid source, said second
coupling coupled with an actuator; and
9

wherein there is an axis of fluid flow through the first and second couplings, unitarily rotationally actuating said actuators along the axis of fluid flow through said couplings,

wherein said step of unitarily rotationally actuating said actuators comprises helically moving at least one of said actuators.

16. A method of coupling fluid sources as described in claim 15 wherein said step of helically moving at least one of said actuators comprises helically moving at least one of said actuators along a flow axis of at least one of said couplings.

17. A method of coupling fluid sources as described in claim 15 wherein said step of unitarily rotationally actuating said actuators comprises actuating said actuators to a no flow configuration upon helically moving at least one of said actuators in a first direction about the length on a helical groove of said at least one actuator and actuating said actuators to a full flow configuration upon helically moving at least one of said actuators in a second direction about the length of a helical groove of said at least one actuator.

18. A method of coupling fluid sources as described in claim 15 wherein said step on unitarily rotationally actuation said actuators comprises axially moving at least one of said actuators.

19. A method of coupling fluid sources as described in claim 18 wherein said step of axially moving at least one of said actuators comprises axially moving at least one of said actuators along a flow axis of at least one of said couplings.

20. A method of coupling fluid sources as described in claim 15, further comprising the step of engaging said actuators prior to said step of unitarily rotationally actuating said actuators.

21. A method of coupling fluid sources as described in claim 16, further comprising the step of engaging said actuators prior to said step of unitarily rotationally actuating said actuators.

22. A method of coupling fluid sources as described in claim 18, further comprising the step of engaging said actuators prior to said step of unitarily rotationally actuating said actuators.

23. A method of coupling fluid sources as described in claim 20 wherein said step of engaging comprises contacting said actuators.

24. A method of coupling fluid sources as described in claim 21 wherein said step of engaging comprises contacting said actuators.

25. A method of coupling fluid sources as described in claim 22 wherein said step of engaging comprises contacting said actuators.

26. A method of coupling fluid sources as described in claim 23 wherein said step of engaging comprises rotationally interlocking said actuators.

27. A method of coupling fluid sources as described in claim 24 wherein said step of engaging comprises rotationally interlocking said actuators.

28. A method of coupling fluid sources as described in claim 25 wherein said step of engaging comprises rotationally interlocking said actuators.

29. A method of coupling fluid sources, comprising the steps of:

coupling a first coupling to a fluid source, said first coupling coupled with an actuator;

coupling a second coupling to a fluid source, said second coupling coupled with an actuator; and

wherein there is an axis of fluid flow through the first and second couplings, unitarily rotationally actuating said actuators along the axis of fluid flow through said couplings,

further comprising the step of detachably engaging said first coupling to said second coupling,

wherein said step of detachably engaging comprises the step of forming a cavity from an engaged configuration of said first coupling and said second coupling, and

further comprising the step of measuring fluid parameters from a measuring device within said cavity.

30. A method of coupling fluid sources as described in claim 29 wherein the step of measuring fluid parameters comprises measuring fluid parameters selected from the group consisting of: flow measurements, pressure measurements, or leak detection measurements.

31. A method of coupling fluid sources, comprising the steps of:

coupling a first coupling to a fluid source, said first coupling coupled with an actuator;

coupling a second coupling to a fluid source, said second coupling coupled with an actuator; and

wherein there is an axis of fluid flow through the first and second couplings, unitarily rotationally actuating the axis of fluid flow through said couplings,

further comprising the step of flowing a fluid through a flow path of said couplings,

wherein said step of flowing a fluid comprises flowing a fluid through a venturi of said couplings.

32. A method of coupling fluid sources as described in claim 31 wherein said step of flowing a fluid comprises flowing a fluid through an offset venturi of said couplings.

33. A fluid coupling device, comprising:
a first coupling comprising a first actuator;
a second coupling comprising a second actuator and configured to detachably engage said first coupling;

wherein there is an axis of fluid flow through the first and second couplings;

wherein said actuators are unitarily rotationally actuated along the axis of fluid flow through said couplings;

wherein said actuators each comprises an engagement element;

wherein said engagement element comprises a rotational interlock;

wherein said rotary interlock comprises at least one tongue and groove arrangement; and

wherein said rotary interlock comprises at least one boss.

* * * * *