Acute Modifications of Circulating Volume and Respiratory Maneuvers in the Cardiovascular Assessment of Long-Duration Crewmembers

Institute for Biomedical Problems (Moscow, Russia)1; Henry Ford Hospital System (Detroit, MI)2; Wyle (Houston, TX)3; Gagarin Cosmonaut Training Center (Star City, Russia)4; NASA Johnson Space Center (Houston, TX)5

Introduction
This U.S. - Russian project is aimed at improved assessment of cardiac and vascular parameters associated with circulating volume and its distribution in long-duration space flight. Objective responses to modified Valsalva and Mueller maneuvers were measured by cardiac and vascular ultrasound before, during, and after temporary volume redistribution by means of Braslet-M thigh occlusion cuffs (Russia). Braslet-M cuffs are custom fitted to each crewmember prior to launch on the Soyuz as a Russian countermeasure for space adaptation fluid shifts.

Protocol
The study protocol was conducted in 14 sessions on 9 ISS crewmembers, with an average exposure to microgravity of 122 days. All data were collected by ISS crewmembers with remote guidance. Baseline cardiovascular measurements were taken by echocardiography in multiple modes (including tissue Doppler of both ventricles) and femoral and jugular vein imaging. The Braslet devices were then applied and measurements were repeated after >10 minutes. The cuffs were then released and the hemodynamic "recovery" process was monitored.

Results

Cardiac 2-D imaging

![Cardiac 2-D imaging](image)

Figure 3: Dr. Mike Barratt, performing self-scan imaging with Tissue Doppler. Note the Braslet-M devices in place on his upper thighs.

Pulse wave Doppler

![Pulse wave Doppler](image)

Figure 4: Cardiac stroke volume with Braslet release (left ventricle); inset: apical four-chamber cardiac 2-D image. Measurements are dependent on probe placement, prompting a greater reliance on Tissue Doppler in later sessions.

Exhaled Pulses

![Exhaled Pulses](image)

Figure 5: Flow Doppler spectra of mitral valve inflow. Note the longer deceleration times with Braslet applied, indicating decreased cardiac preload.

Results

Peripheral vascular 2-D imaging

![Peripheral vascular 2-D imaging](image)

Figure 6: Internal jugular vein (IJV) with and without Braslet. Note the collapse of the IJV with Mueller and Braslet applied.

Discussion

Redistributed volume (central hypovolemia) in microgravity appears to be best detected by collapse of the jugular vein in response to Mueller maneuver and a decrease in E' (tissue Doppler). A secondary indicator of hypovolemia is the distension of the jugular vein in response to Valsalva maneuver.

The data validate a methodology to 1) address specific aspects of operational space medicine and space physiology, including assessment of circulating volume disturbances, and 2) expand diagnostic ultrasound imaging and Doppler techniques in microgravity. Respiratory maneuvers against the background of acute circulating volume manipulations enhance our ability to noninvasively demonstrate volume-dependency of a number of cardiac and vascular parameters.

Contact Information

Doug Ebert
Wyle Integrated Science and Engineering
1240 Hercules St, Houston, TX, 77058
E-mail: debert@wylehou.com
Phone: (281) 212-1263
Fax: (281) 212-1263

Table: Left heart tissue Doppler changes as a result of Braslet

<table>
<thead>
<tr>
<th>% change</th>
<th>Stddev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'</td>
<td>-1.66</td>
</tr>
<tr>
<td>E'</td>
<td>-29.60</td>
</tr>
</tbody>
</table>

% change

Redistributed volume (central hypovolemia) in microgravity appears to be best detected by collapse of the jugular vein in response to Mueller maneuver and a decrease in E' (tissue Doppler). A secondary indicator of hypovolemia is the distension of the jugular vein in response to Valsalva maneuver.

The data validate a methodology to 1) address specific aspects of operational space medicine and space physiology, including assessment of circulating volume disturbances, and 2) expand diagnostic ultrasound imaging and Doppler techniques in microgravity. Respiratory maneuvers against the background of acute circulating volume manipulations enhance our ability to noninvasively demonstrate volume-dependency of a number of cardiac and vascular parameters.

Contact Information

Doug Ebert
Wyle Integrated Science and Engineering
1240 Hercules St, Houston, TX, 77058
E-mail: debert@wylehou.com
Phone: (281) 212-1263
Fax: (281) 212-1263

Table: Left heart tissue Doppler changes as a result of Braslet

<table>
<thead>
<tr>
<th>% change</th>
<th>Stddev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'</td>
<td>-1.66</td>
</tr>
<tr>
<td>E'</td>
<td>-29.60</td>
</tr>
</tbody>
</table>

% change

Redistributed volume (central hypovolemia) in microgravity appears to be best detected by collapse of the jugular vein in response to Mueller maneuver and a decrease in E' (tissue Doppler). A secondary indicator of hypovolemia is the distension of the jugular vein in response to Valsalva maneuver.

The data validate a methodology to 1) address specific aspects of operational space medicine and space physiology, including assessment of circulating volume disturbances, and 2) expand diagnostic ultrasound imaging and Doppler techniques in microgravity. Respiratory maneuvers against the background of acute circulating volume manipulations enhance our ability to noninvasively demonstrate volume-dependency of a number of cardiac and vascular parameters.

Contact Information

Doug Ebert
Wyle Integrated Science and Engineering
1240 Hercules St, Houston, TX, 77058
E-mail: debert@wylehou.com
Phone: (281) 212-1263
Fax: (281) 212-1263