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Axially Compressed Orthotropic Cylinders
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Structural stability is a major consideration in the design of lightweight shell structures.
However, the theoretical predictions of geometrically perfect structures often considerably
over predict the buckling loads of inherently imperfect real structures. It is reasonably well
understood how the shell geometry affects the imperfection sensitivity of axially compressed
cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is
less well understood. In the present paper, the development of an analytical model for
assessing the imperfection sensitivity of axially compressed orthotropic cylinders is
discussed. Results from the analytical model for four shell designs are compared with those
from a general-purpose finite-element code, and good qualitative agreement is found.
Reasons for discrepancies are discussed, and potential design implications of this line of
research are discussed.

Nomenclature
a; = shell in-plane compliances
Ay = shell in-plane stiffnesses
A, B = undetermined coefficients in the bifurcation solution
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= shell bending stiffnesses

initially unknown nondimensional radial-displacement amplitudes
dimensional initial imperfection amplitude

= nondimensional initial imperfection amplitude, f; = f;/%/11022D11D52
nondimensional stress function

homogeneous part of nondimensional stress function

cylinder wall thickness

cylinder length

characteristic shell dimensions

number of axial half waves

number of circumferential full waves

moment resultants

force resultants

axial compressive load

lowest linear bifurcation buckling load

limit-point load for chosen m and n

lowest limit-point load for all considered m and n
nondimensional loading parameter

value of nondimensional loading parameter associated with Py
cylinder radius

= initially unknown, to-be-determined constants in ),

coefficient functions of m and n, the cylinder geometry, and the nondimensional parameters
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z1 = nondimensional axial coordinate, x/L

Z = nondimensional circumferential coordinate, RG/R = @
Uy, Uy = dimensional axial and circumferential displacement, respectively
U = nondimensional axial displacement, U; = u,L/\/a,,a5,D11D,,

= nondimensional circumferential displacement, U, = u,R/+/ 011852011 D,

U,
w = dimensional radial displacement

w = nondimensional radial displacement, W = w/%/a;1a22D11 D25
1434 = nondimensional initial radial imperfection

0 = average axial end shortening

g = coordinate angle

v, Oy B,
Hs Vm, ZZ,

nondimensional parameters that describe the shell behavior
superscripts
© = denotes the prebuckling state

M = denotes an adjacent equilibrium state

1. Introduction

tructural stability is a major consideration in the design of lightweight structures, and is often predicted by using
relatively simple linear eigenvalue buckling analyses that are based on idealized, perfect geometry. During the
past one hundred years, a large collection of theoretical buckling predictions for many idealized structures under
different loading conditions has been developed. However, these classical theoretical predictions are often
considerably nonconservative for certain classes of inherently imperfect thin-walled structures, such as cylinders. To

account for this nonconservatism in a design, a
correction factor known as the buckling knockdown
factor is often used to lower the theoretical
predictions to a safe level.

Though all real structures are imperfect,
different structural forms and constructions have
different sensitivity to imperfections. In particular,
the imperfection sensitivity of a structure is
influenced by the geometry, construction, material
properties, and the support and loading conditions.
In order to partially explain the nature of
imperfection sensitivity, two notional axial load
versus end-shortening response curves for structures
with relatively small geometric imperfections are
shown in Fig. 1. For brevity, these curves are
referred to herein as load-response curves. Figure 1a
shows the behavior of a typical imperfection-
sensitive cylindrical shell, and Fig. 1b shows the
behavior of a typical flat plate. In each of these
figures, the theoretical behavior of the idealized
perfect structure is shown with a dashed line, and
the behavior of the corresponding imperfect
structure is shown with a solid line. The load-
response curve of the perfect, highly imperfection-
sensitive cylinder (Fig. 1a) is characterized by a
steep, narrow cusp with large drop in load after the
maximum load, Py, is reached. For this case, the
maximum load occurs at a bifurcation point
(eigenvalue) where unstable equilibrium states that
are adjacent to the primary, linear equilibrium path
exist. The figure also shows that the load-response
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Figure 1. Notional load vs. end shortening curves for
geometrically perfect and imperfect structures.
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curve for the imperfect cylinder only extends part way into the cusp and exhibits a maximum, limit-point load, Py,
that is significantly lower than Pp;. The difference in these two buckling loads has been substantiated by numerous
experiments.! Thus, the predicted bifurcation-point load is not an adequate measure of the actual buckling
resistance, and buckling knockdown factors are needed to ensure that this imperfection sensitivity is taken into
account when classical analysis methods are used to design a shell. To illustrate how geometry affects imperfection
sensitivity, the load-response curve for a flat plate is shown in Fig. 1b. The bilinear dashed line shows a loss of
stiffness but no sudden loss of load carrying capacity when the buckling load, P,y is reached. For this case, Py
represents a bifurcation point (eigenvalue) where stable equilibrium states that are adjacent to the primary, linear
equilibrium path exist. The lack of a cusp, associated with an unstable bifurcation, and the proximity of the load
level where a significant stiffness change occurs for the imperfect plate indicates that the plate is not sensitive to
relatively small imperfections. Thus, the classical bifurcation-point load is an adequate measure of the buckling
resistance when designing structures that display this type of behavior.

In the 1960s, NASA developed shell stability design recommendations that were published as a series of
monographs. The best known is NASA SP-8007" which gives design recommendations and knockdown factors for
thin-walled cylindrical shells; isotropic unstiffened, orthotropically stiffened, isotropic sandwich, and elastic-cored
cylinders are considered. Others monographs™ deal with conical and doubly curved shells. Though these documents
are widely used, they are based on test data, computational methods, and resources of the 1930-1960’s and are
thought to be overly conservative.*> Additionally, few data for laminated-composite shells were available when
these recommendations were developed and, and as a result, many designers arbitrarily apply the knockdown factors
for isotropic monocoque, stiffened, and sandwich shells to laminated-composite shells, for lack of anything better. In
many cases, the misapplication of the knockdown factor also results in excessive conservatism. This excessive
conservatism usually corresponds to an increase in structural mass, which is particularly important in the
development of launch vehicles. Thus, improved knockdown factors that can be used to design the acreage regions
of shell structures can produce significant mass savings in large launch-vehicle structures such as tanks, intertanks,
interstages, boosters, and shrouds.

Since NASA’s shell-buckling monographs were written, there have been many improvements made to analytical
tools, and experimental and measurement techniques.* Of particular interest to the shell buckling problem are the
advancement and wide-spread use of finite-element methods, and measurement techniques that allow accurate
measurement of actual as-manufactured shell geometries and real-time response. In order to make use of these and
other advancements, efforts are underway to develop recommendations for improved knockdown factors that are
conservative, but not excessively conservative. One general approach is to develop a characteristic geometric
imperfection “signature” associated with a particular manufacturing process that can be used with modern analysis
techniques to develop refined buckling knockdown factors. This type of approach has been outlined by Hilburger, et
al.’ and Arbocz and Hol® for laboratory-scale specimens.

Even if new methods for determining the knockdown factors based on known characteristic geometric
imperfection signatures are developed, it would be helpful for designers to know a priori which constructions are
likely to be more sensitive to imperfections. With this knowledge, judgments can be more easily made regarding the
need for more costly analysis methods or experiments, and over time, the institutional dependence on empiricism
can be reduced. Although a number of authors have explored the imperfection sensitivity of nonisotropic cylinders
(see for example, refs. 5-11), it appears that there have been no efforts to develop a general understanding of how
orthotropy and anisotropy affect the imperfection sensitivity of compression-loaded cylinders. If industry is to take
full advantage of the potential mass savings that composite materials and improved knockdown factors offer, a
general understanding of how orthotropy and anisotropy affect imperfection sensitivity is required.

Two common approaches to developing a broad understanding of imperfection sensitivity would be to use a
general-purpose finite-element code or to develop special-purpose analyses tailored to a specific class of problems
that are relevant to design. Using a finite-element code has the advantages that it is readily available and can handle
many different geometries and loading conditions in a robust manner. However, each analysis can take a long time,
the model must be recreated each time geometry changes, and little insight into the problem is gained from the
model formulation. Moreover, additional convergence studies may be required as problem variables change.
Collectively, these attributes of general-purpose finite-element codes make rapid navigation of design spaces
tedious. In contrast, a special-purpose analysis typically runs much faster than a corresponding finite-element
analysis done with a general-purpose code, and is inherently amenable to parametric studies because it easily
accommodates changes in shell-wall construction and geometry. However, the inherent simplifications present in a
special-purpose analysis are manifested by a limited range of validity that must be established within the context of
the fidelity required for design.
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