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Snap-Through Instability Patterns in Truss Structures  

Glenn A. Hrinda* 
NASA Langley Research Center, Hampton, Virginia 23831 

Geometrically nonlinear truss structures with snap-through behavior are demonstrated 
by using an arc length approach within a finite element analysis. The instability patterns are 
equilibrium paths that are plotted throughout the snap-through event. Careful observation 
of these patterns helps to identify weak designs in large space structures, as well as identify 
desirable snap-through behavior in the miniaturization of electronic devices known as 
microelectromechanicalsystems (MEMS). Examples of highly nonlinear trusses that show 
snap-through behavior are examined by tracing their equilibrium paths. 

Nomenclature 
dof =  degree-of-freedom 
lb = pound 
MEMS = microelectromechanicalsystems 

I. Introduction 
arge highly flexible truss systems have been investigated in the past to support new space technologies.  
Examples include solar power supply constellations that use trusses as their main support structure, deployable 

reticulated trusses for mounting solar array panels (Fig. 1) and large space truss structures for supporting microwave 
antennae and mirrors.1 Flexible trusses are well suited for space structures because of their compact packaging in the 
launch vehicle, their lighter mass and their reduced deployment time once in orbit. Understanding the large elastic 
displacement of these types of structures can prevent sudden buckling failures from applied operational and 
construction loads (Fig. 2). The structures must also be designed to maintain their integrity even after an initial 
inelastic failure. Some structures may collapse after a localized failure of one of their members. This is a progressive 
failure that redistributes loads, which causes other members to fail until the total structure becomes unstable.2 Slight 
manufacturing or assembly defects in the truss geometry can increase the risk for an unstable structure. The truss 
defects may also compromise the load-carrying capability of the structure.3 In this work, unique truss designs that 
exhibit snap-through instability are investigated. Their complex equilibrium paths are explained to inform engineers 
of possible nonlinear behavior in designs and that instability may occur before a design bifurcation limit is reached.
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Figure 1. Solar power satellite platform.  Figure 2. Hartford arena roof collapse.  
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 Another current use for the snap-through structure is in the miniaturization of electronic devices known as 
microelectromechanicalsystems (MEMS).4 These are formed microstructures that are integrated into silicon chips. 
The microstructures may be formed by trusses or plates that snap through under electrostatic forces. Figure 3 shows 
a MEMS switch before and after snap through. The micro switch, a silicon beam that is approximately 25 
micrometers in length, is activated by an electrostatic charge. 
 
 
 

II. Objectives 
 The primary goal of this investigation is to define truss geometries that exhibit complex nonlinear snap-through 
behavior. One type of truss configuration that is prone to snap-through is the shallow truss structure. This type of 
structure loses its stability differently than a structure that is undergoing bifurcation buckling. Finite element 
programs typically solve for elastic stability by running an eigenvalue buckling solution. However, shallow truss 
structures typically lose their ability to support any load well below their bifurcation load limit. If a standard 
eigenvalue buckling solution is run in NASTRAN for a shallow truss structure, then the load that is predicted in the 
analysis may be much higher than the snap-through load that is predicted with the arc length solver in NASTRAN. 
 Another goal is to understand why highly flexible structures may support loads up to a limit point and then 
suddenly snap through to a new stable equilibrium state while still remaining elastic. The post snap-through 
geometry may support an additional load up to the design limit of the structure, or it can suddenly snap back. An 
understanding of this nonlinear behavior can be gained by plotting the equilibrium path. The graphic trace of the 
equilibrium path is the load versus the displacement at a particular point on the structure.  An accurate plot of the 
path shows the sensitivity of the truss response to load changes.  

III. Analysis 
 A stable truss design exists when deformations increase as the applied load increases; an unstable design occurs 
when deformations increase as the load decreases. To understand this type of structural response, the equilibrium 
paths of key connection points are plotted. A typical equilibrium plot is shown in Fig. 4. The shallow truss geometry 
prompts snap-through buckling of many members rather than local buckling of a single member. Here a shallow 
truss is defined as a truss system that has a small out-of-plane dimension over a large span. The nonlinear buckling 
nature of shallow trusses includes a post-buckling instability region along the equilibrium path, which is shown in 
Fig. 4. The nonlinear instability region is the region in which “snap-through” occurs and in which the equilibrium 
path goes from one stable point (1) to another new stable point (2). The nonlinear behavior places the critical limit 
load at point 1 equal to that at point 2, but the load limit corresponds to a new structural shape. The second stable 
point along the equilibrium path occurs after a large displacement of the structure. During this snap-through, the 
slope of the equilibrium path (load versus deflection) eventually becomes zero. The slope of this curve is also 
referred to as the "tangent stiffness."5 When the tangent stiffness softens and approaches zero for a single-degree-of-
freedom system, many nonlinear solvers encounter convergence problems. Some solvers immediately jump to point 
2 without identifying the unstable snap-through path. Bifurcation buckling is also shown in Fig. 4 with a linear, pre-
buckling region along the equilibrium path up to a critical load point (Pcritical). At the bifurcation point the structure 

 

Figure 3. Photographs of fabricated MEMS switch (a) Before snap-through, (b) After 
snap-through. 4 
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immediately becomes unstable and buckles. The member is unable to support any additional load, which is not the 
case for nonlinear snap-through buckling. The focus of this work is on the fundamental path rather than the 
bifurcation points. The inertial forces during snap-through are not addressed in this work; the focus is confined to 
the application of static methods.  

Five truss designs are used to investigate the snap-through buckling behavior. All of the models demonstrate an 
attempt to find a nonlinear equilibrium path that is similar to that shown in Fig. 4. The designs are shallow trusses 
that have critical limit points. The designs are related to those from Khot and Kamat6 ,Crisfield7,8 ,Hrinda9 and are 
reviewed in detail in Ref. 10. The designs are analyzed by using a finite element approach and solved by using 
NASTRAN's nonlinear buckling solution. The results are plotted to form the system's nonlinear equilibrium trace. 
The dynamic inertial effects along the unstable region along the equilibrium path are excluded. The dynamic effects 
that result from the slender nature of the 
truss members are minimal at snap-
through. The first shallow truss solves a 
four-element asymmetric system with a 
vertical load applied at the midpoint and 
pinned-end conditions. The next truss 
problem is an eight-element system with 
equal lengths that resembles a spoke 
wheel. Then, a larger 16-member 
shallow truss problem is presented, 
which is similar to the Crisfield star 
dome that is discussed in volume two of 
Ref. 8. This problem was analyzed by 
using a constant cross-sectional area and 
long slender members. The fourth truss 
problem is a symmetric A-truss that is 
loaded at the apex node. The last truss 
problem is the large, two-dimensional 
arch truss that was used by Crisfield8. 

A. Four-Member Asymmetric Truss  
The first problem, shown in Fig. 5, is a four-member asymmetric truss with five nodes. The outer nodes are 

located 100 in. along the x axis from the center node and 20 in. along the y axis. The center node is raised 20 in. 
along the z axis to create the shallow truss. A 10000 lb vertical load is applied at the center node to cause snap-
through. The cross-sectional area of all members is 1in2 with a Young's modulus of 10e6 lb/in2. 

The results from NASTRAN are shown 
by the displacement plots in Fig. 6 and the 
load-displacement plot in Fig. 7. The plot 
shows the equilibrium path of the 
unconstrained center node. The four points 
that appear next to the curve correspond to 
the data that are listed sequentially in Table 
1. The critical limit, which occurs at point 1 
in Fig. 7, is reached at a load increment of 
0.56 and a center node displacement of -8.66 
in. Here, the structure becomes unstable and 
suddenly snaps through to point 4. The 
geometry undergoes a large nonlinear 
displacement without material yielding. 
Between points 1 and 4, the load increment 
reverses twice as the displacements continue 
to increase.  When the load increment 
reaches -0.56, which occurs at point 3, the 
load reverses and increases until the final 
load.  The plot shows that the critical limit 
load is the increment of 0.56 multiplied by 

 
 
Figure 5. Four-member asymmetric truss example. 

Figure 4. Equilibrium paths for nonlinear and bifurcation buckling.  
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the applied load of 10000 lb. This critical limit load is equal to 5600 lb and is the maximum load that the structure 
can support before snap-through. As shown in Fig. 7, the second stable point can be located by extending from point 
1 a vertical line that intersects the equilibrium path at point 4. At this point, the dynamic snap-through stops and the 
structure is now able to support additional loading. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Table 1. Four-Member Truss Example 
Location Load increment Displacement, 

inches 
1 0.56 -8.66 
2 0.00 -19.89 
3 -0.56 -31.39 
4 0.56 -43.17 

 Figure 7. Four-member asymmetric truss equilibrium path during snap-through. 

Figure 6. Four-member asymmetric truss displacement.
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B. Eight-Member Symmetric Shallow Truss 
The next example is an eight-member symmetric shallow truss which is shown in Fig. 8. Each member has a 

horizontal length of 500 in. measured from the center node. The vertical out-of-plane dimension of the common 
center node is 40 in. All members have an area of 10 in2 and a Young's modulus of 10000 lb/in2. A downward 
vertical 1000 lb load is applied at the center node to allow snap-through. The eight outer nodes are constrained with 
pin supports with the center node left unconstrained.  
 The displacement of the truss is shown in Fig. 9 and the equilibrium path of the center node is plotted in Fig. 10. 
The load increment is increased until a critical limit load of 0.078 is reached at a displacement of -16.75 in. This 
occurs at point 1 in Fig. 10 and corresponds to the first set of plot data that is given in Table 2. As in the first 
example, this model also suddenly snaps through to a new reconfigured stable geometry. The structure is unstable 
along the equilibrium path from points 1 through 4. After point 1, the displacements continue to increase as the load 
increment decreases. At data point 3, the load increment decreases to -0.078 and immediately reverses. The 
equilibrium path continues to point 4, which is the next stable equilibrium point of the structure. The dashed line in 
Fig. 10 shows the range of unstable 
displacements and indicates the next 
stable equilibrium location, which is 
point 4. The final displacement is 
115.24 in. at the final applied load 
increment of 0.96. The equilibrium 
path that is shown demonstrates that 
the structure can support 78.3 lb 
without snap-through buckling. The 
load is determined by multiplying 
the maximum load increment by the 
applied load of 1000 lb. After snap-
through, the structure becomes 
stable once again at point 4 and is 
able to support loads. The increase 
in loading begins at the same critical 
limit load that initially caused the 
snap-through.  

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 9. Eight-member truss displacements.

Table 2. Eight-Member Truss Example 
Location Load Increment Displacement, 

inches 
1 0.0783 -16.75 
2 0.00 -40.85 
3 -0.0783  -62.76 

 

Figure 8. Eight-member truss example. 
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C. Sixteen-Member Shallow Truss 
The next model is a symmetric sixteen-element truss, which is shown in Fig. 11.  The truss has nine nodes, with 

the four corner nodes constrained. The plan view of the structure gives the dimensions of the outer corner nodes. 
The vertical out-of-plane dimension, which places this design in the "shallow truss" family, is 4 in. The other nodes 
are spaced evenly between the outer nodes as shown. A 106 lb load is applied vertically at the center node to force 
the structure to buckle. The cross sectional area is 1 in2 and the Young's modulus is 107 lb/in2. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The deformed truss results are shown in Fig. 12. The displacement results for the center node are plotted in Fig. 

13; the results indicate several snap-through and snap-back events. In Fig. 13, the complex equilibrium path is 
shown at turning points with arrows. Table 3 gives the load increments and displacements at several of the turning 
points. The first limit point, which is shown in Fig. 13, coincides with the first data point that is listed in Table 3 and 
is the first critical limit point of the structure. The load increment at point 1 is 0.096 and is multiplied by the applied 
load of 105 lb to equal 9600 lb. This product is the maximum load that the structure can support before snap-through 
buckling. After reaching point 1, the load increment decreases until another turning point is reached at point 2. Here, 

Load vs. Displacement
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Figure 10. Eight-member truss equilibrium path.

Figure 11. Sixteen-member shallow truss example.
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the structure is still unstable; however, the load increment reverses and 
begins to increase. The structure continues to deform until a new stable 
equilibrium point is reached. This point is where the load increment is 
equal to the first critical load increment (0.096). In Fig. 13, the second 
stable equilibrium point is denoted with an x. After the load increment 
returns to the first critical limit load, the structure becomes static and 
can support additional load. Point 4 is another equilibrium path turning 
point. However, after passing this point, the structure begins a sudden 
snap-back that continues through point 5 and onto point 6. The 
equilibrium path resembles a "figure eight" and is a typical shape for 
structures with snap-back equilibrium paths. The following points, 8 
through 10, in Fig. 13 show another snap-through of the structure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Sixteen-member shallow 
truss equilibrium path. 

Table 3. Sixteen-Member Shallow Truss  
Location Load Increment Displacement, 

inches 
1 0.096 -0.97 
2 -0.096 -3.09 
3 0.00 -3.99 
4 0.321 -5.65 
5 -0.094 -5.37 
6 0.093 -2.52 
7 -0.320 -2.30 
8 0.096 -4.98 
9 -0.095 -6.91 

10 0.782 -10.05 

Figure 13. Sixteen-member shallow truss equilibrium path. 
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D. A-Truss 
The fourth snap-through design, which is shown in Fig. 14, is a symmetric A-truss that is assembled with 14 

members and 9 nodes. The out-of-plane motion has been constrained with pin supports added to each end of the 
truss. The cross-sectional area of each member is 1 in2 with Young's modulus of 107 lb/in2.  The four support nodes 
are located with a horizontal x-axis dimension of 20 in. from the center node and 4 in. along the y axis. The center 
node is raised 4 in. along the z axis to complete the shallow truss geometry.  As with the previous designs, a vertical 
load is applied at the center node to investigate buckling. The applied load in this design is 100000 lb. 

 
 The deformed geometry is shown in Fig. 15 and captures the snap through. The center node equilibrium path is 
plotted in Fig. 16 just as in the other examples. The displacement results are obtained from NASTRAN and are 
plotted to investigate any nonlinear behavior. In the A-truss model, the equilibrium curve has a familiar backward 
"S" shape that is a typical snap-through curve.  The structural response in Fig. 16 shows the critical limit point at a 
load increment of 0.55, which corresponds to a 55000 lb load. This is the maximum load that the structure can 
support while still remaining stable. After point 1, the structure dynamically snaps through to a second stable 
equilibrium point. As in the first two examples, a vertical line is drawn on the equilibrium path to intersect point 4, 
which is the second stable point in Fig. 16. The structure is now able to support additional loading but will 
eventually start material yielding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. A-truss example. 

Figure 15. A-truss deformed geometry. 

Table 4. A-Truss Example 
Location Load increment Displacement, 

inches 
1 0.55       -1.69 
2 0.00       -3.99 
3 -0.55      -6.30 
4 0.55       -8.64 
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E. Crisfield circular arch truss. 
The model is taken from the second volume of Crisfield8 and tests multiple snap-through and snap-back 

equilibrium paths. The model has 101 elements with 42 nodes and a total of 126 dof. The out-of-plane motion has 
been constrained with pin supports added to each end of the truss. Fig. 17 shows the finite element model and the 
applied load of 106 lb at the apex.   

The truss deformations are given in Fig. 18 and are similar to those found by Ref. 11. Referring to Fig. 19, the 
first snap-through, point 1, starts when the tangent to the equilibrium path is parallel to the displacement axis. The 
arch becomes unstable and releases stored strain energy and dynamically traces the equilibrium path from 1 to 8. 
The deformed structure's vertical apex node values are shown sequentially in Table 5. A snap-back starts at point 3 
and continues through 4 and on to 5. The snap-back is still unstable and occurs when the tangent to the equilibrium 
path is parallel to the load axis. The snap-back continues dynamically until point 6 in Fig. 19 is reached. The 
equilibrium path now continues through points 7 and 8 where another unstable snap-back begins.  
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Figure 16. A-truss equilibrium path.

Figure 17. Crisfield arch truss example.
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Figure 18. Crisfield arch truss deformed geometry. 
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IV. Discussion 
The investigated models displayed snap-through behavior after reaching a critical point. The nonlinear behavior 

was identified by plotting the equilibrium paths of the center nodes. The nonlinear truss designs were identified by 
applying different truss geometries until a snap-through occurred; finding a design that kept the snap-through 
displacement of the center node in the out-of-plane direction was important. The arc length method that is used in 
the NASTRAN solution allowed the equilibrium path to be followed when the tangent stiffness approached zero. An 
important feature regarding the appearance of equilibrium paths was identified: an equilibrium path with a backward 
"S" shape represents a snap-through event. This feature can be seen in the equilibrium paths that are plotted in Fig. 
7, 10, and 16, which correspond to designs 1, 2, and 4, respectively. Other observed shapes include the "figure 
eight" plot that can be seen in Fig.13 and the "flower petal" shape that is evident in Fig. 19. Both of these 
equilibrium paths are typical for structures that are exhibiting snap-back behavior.    

V. Conclusion 
 The exploration of space will require new technologies to enable future missions. New architectures may include 
platforms that require assembly in space by using a truss system. The safe deployment and assembly of large trusses 
requires that their nonlinear behavior be well understood through analysis and testing. The work presented in this 
investigation has contributed to this goal by demonstrating that equilibrium paths can be used to examine nonlinear 
behavior. Furthermore, the technique that is used here to investigate the snap-through behavior of large trusses may 
be applied similarly to micro-scaled structures. The miniaturization of trusses is of great interest to the 

Table 5. Arch Truss Crisfield Example 
Location Load increment Displacement, 

inches 
1 0.133 -7.20 
2 0.00 -22.38 
3 -0.207 -29.23 
4 -0.332 -25.51 
5 0.00 -12.36 
6 0.625 -4.75 
7 0.00 -17.80 
8 -0.838 -24.83 

 

 Figure 19. Arch truss Crisfield equilibrium path. 
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microelectromechanical systems since miniaturized trusses can be used as rapid switches that can be integrated into 
solid-state circuits.4  One problem in the design of these trusses has been identifying the critical limit point of the 
switch at snap-through.  The truss designs that were investigated in this paper potentially can be micro-sized for 
incorporation into MEMS devices. These designs represent examples of nonlinear behavior that other researchers or 
designers may find useful in verifying their analysis techniques.   
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