Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Prepared by GSFC:

Instrument Design Lab Team
Scott Janz, Code 613
James C. Smith, Code 550
Antonio Mannino, Code 614

January 29, 2010
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Systems Presentation

January 29, 2010
GEO-CAPE Mission Overview

- **Mission Configuration A:**
 - GEO-CEDI (Coastal Ecosystem Dynamics Imager)
 - GEO-MAC
 - CISR (Compact Imaging Spectro-Radiometer)
- **Mission Configuration B:**
 - GEO-CEDI only
- **Mission Class:** B
- **Launch Date:** 2017
- **Launch Vehicle:** Undetermined
- **Orbit:** Geostationary 95W Longitude
- **Science FOR:** 50N Lat to 45S Lat / ~160W Long to ~30W Long
Primary Science Requirements

- **Scan of U.S. Coastal Water** 3x day during daylight hours
 - Other Regions of Interest from 50 N Lat to 45 S Lat
- **Spatial resolution**
 - 375m x 375m per pix
 - Goal of 250m x 250 m per pix
- **Coverage area**
 - 300 km
 - Goal of 500 km
- **Spectral Range**
 - Hyperspectral UV-VIS-NIR; Multispectral SWIR
 - 345-900 nm; SWIR bands: 1245, 1640 & 2135 nm
 - Goal of 340-1100 nm; SWIR bands: 1245, 1640 & 2135 nm
- **Calibration**
 - Onboard Lunar and Solar Calibration
 - No internal wavelength sources
 - Each camera head includes several LEDs for flood lamp calibration
Coastal Ecosystem Dynamics Imager (CEDI) Block Diagram

- **Multi-Use Aperture (and launch)**
 - **Cover** *(closed during solar cal)*
 - **External Baffle**
 - **Aperture Door Launch Lock**

- **Primary Mirror**
 - **Enclosure**
 - **Detectors**
 - **HyVISI TCM8050A**
 - Custom 1K x 2K
 - **HyVISI TCM8050A**
 - Custom 1K x 2K
 - **MCT H2RG**
 - 2Kx2K

- **Scan Mirror**
 - **Optical Bench**
 - **Telescope “Aft” Optics**
 - **Band 1 (345-600nm)**
 - **Band 2 (600-900 nm)**
 - **SWIR Band**
 - **Slit**
 - **Thru-hole**
 - **Aperture Door Launch Lock**

- **Calibration Source**
 - **Thru-hole**

- **Trackers (3)** *(orthogonally mounted)*
Coastal Ecosystem Dynamics Imager (Other Assemblies For CEDI “Only” Configuration)

- Calibration Assembly (on instrument enclosure)
- Stewart Platform
- CEDI Main Electronics Box (A/B - internally redundant, mounted on spacecraft)
- Small Strongback Assembly

(Items not to scale)
Coastal Ecosystem Dynamics Imager
(Other Assemblies For GEO CAPE “Suite” Configuration)

Calibration Assembly
(on instrument enclosure)

Stewart Platform

Payload C&DH Boxes
(A and B)
(on spacecraft)

CEDI Main Electronics Box
(A/B - internally redundant, mounted on spacecraft)

Large Strongback Assembly

Not costed in this study
No provision for Thermal control

GEO-MAC

CISR

Items not to scale
GEO-CAPE Mechanical Configuration

Integrated Design Capability / Instrument Design Laboratory

GEO-CAPE Study Week: 1/25-1/29/10
Presented January 29, 2010
Total Instrument Rack-up

(no contingency included)

<table>
<thead>
<tr>
<th>GEO-CAPE (CEDI) Instrument Assemblies</th>
<th>Total Mass</th>
<th>Total Power</th>
<th>Total Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEDI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture Cover Mechanism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan Mirror Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telescope Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 1 (340-600nm) Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 2 (600-900nm) Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWIR Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Baffle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Bench</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Star Trackers (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIRU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEDI Main Electronics Box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongback (small)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart Platform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional GEO-CAPE Suite Assemblies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload C&DH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-MAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CEDI Only
- **Total Mass**: 621.4 kg
 - Details on page 15, 16
- **Total Power**: 392 W
 - Details on page 19
- **Total Data Rate**: 88.4 Mbps
 - Details on page 18

GEO-CAPE Suite
- **Total Mass**: 852.6 kg
 - Details on page 15
Design Discussions / Design Evolution

- **Detectors**
 - Essentially no change in detector performance specs from last study
 - Adopting MCT H2RG 2Kx2K simply because that form factor is “off-the-shelf”
 - Assuming UV-VIS-NIR detector is custom 1Kx2K form factor of the TCM8050A
 - Assuming read out rates of 2.62 MHz and 1.25 MHz respectively

- **Optics**
 - Design developed assuming 375m spatial resolution per pixel which allowed implementation of a 0.5 m Primary and shrinking of optical the layout reducing the volume of the MDI (now CEDI) instrument
 - Was 15.3 m3 (including calibration assembly)
 - Is 7.5 m3 (including calibration assembly)
 - UV-VIS-NIR split into 2 bands
 - 345 nm to 600 nm
 - 600 nm to 900 nm (up to 1100 nm achievable optically but the QE of the detector is very low after 1 micron)
 - Optics presentation will provide commentary on implications of achieving a 300m spatial resolution
Design Discussions / Design Evolution

Integrated Design Capability / Instrument Design Laboratory

- **Solar Calibration Assembly**
 - Previous study inserted calibration source into optics train beyond the scan mirror and primary mirror and therefore was relatively small compared to current implementation.
 - Current calibration system incorporates a reflective diffuser plate (spectralon) in a “pop-up” configuration that illuminates the entire scan mirror and primary mirror.
 - “Lazy-Susan” approach abandoned in favor of smaller “pop-up” configuration.
 - Note: The spectralon diffuser plate is larger than 15 cm and thus requires a trade study as precision hardware of that size has little heritage.

- **GEO-CEDI Mechanisms**
 - Reusable Aperture Door / launch lock
 - Scan Mirror (2DOF)/ launch lock(2)
 - Calibration Assembly Cover / launch lock
 - Diffuser Plate Select Mechanism / launch lock

- **GEO-CAPE Suite Mechanical**
 - Mounting is similar to GEO-MDI configuration
 - Strongback size has been scaled back in keeping with reduction in size of CEDI; updated mass to be provided.
Design Discussions / Design Evolution

ACS
- Increased the number of Star Trackers from 2 to 3
 - Note: We are assuming the same Star Trackers from GEO-MDI study (BALL CT-602)
 - Other smaller and cheaper options are available (e.g. DTU micro-Astro Stellar Camera)
- Provides redundancy and ability to maintain pointing requirements in the event of a Star Tracker Failure
- Assuming a Stewart platform is required for GEO-CEDI standalone and GEO-CAPE Suite configurations
 - We did not reevaluate or resize the platform from the GEO MDI study
 - Passive, 6 DOF Stewart platform was recommended for the GEO-CEDI standalone configuration

Electronics
- Assuming internally redundant CEDI Main Electronics Box
- Assuming redundant Payload C&DH boxes (GEO-CAPE Suite configuration only)
Design Discussions / Design Evolution

- **GEO-CEDI Solo Mechanical**
 - Current design would also require a strongback (assuming top mounting to spacecraft)
 - Orientation of slit must be maintained w/r/t earth
 - Rotation of instrument would necessitate reorientation of optics

- **Instrument Processing Capability**
 - Driven by ACS System / Scan Mirror control loop interface
 - 100 Hz scan mirror control is the maximum capacity of the 133MHz BAE Rad750, given other nominal 1Hz processing responsibilities
 - Assuming 750RAD Processor as current “line-in-the-sand”
 - Expect new technology available before instrument design/development starts
SCS-2 SYSTEMS PRESENTATION
PART II
CEDI Mass Summary by Subsystem

<table>
<thead>
<tr>
<th>Subsystem*</th>
<th>CEDI Mass CBE (kg)</th>
<th>% of Total Mass</th>
<th>MDI Mass CBE (kg)</th>
<th>% of Total Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td>36.1</td>
<td>5.8%</td>
<td>81.8</td>
<td>8.7%</td>
</tr>
<tr>
<td>Detector</td>
<td>0.2</td>
<td>0.0%</td>
<td>0.141</td>
<td>0.0%</td>
</tr>
<tr>
<td>Mechanism</td>
<td>38.5</td>
<td>6.2%</td>
<td>74.6</td>
<td>7.9%</td>
</tr>
<tr>
<td>Mechanical</td>
<td>378</td>
<td>60.8%</td>
<td>598.1</td>
<td>63.3%</td>
</tr>
<tr>
<td>Electrical</td>
<td>15.4</td>
<td>2.5%</td>
<td>10.0</td>
<td>2.6%</td>
</tr>
<tr>
<td>Harness</td>
<td>9.9</td>
<td>1.6%</td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>ACS</td>
<td>22.5</td>
<td>3.6%</td>
<td>25.2</td>
<td>2.7%</td>
</tr>
<tr>
<td>Thermal</td>
<td>71.6</td>
<td>11.5%</td>
<td>140.9</td>
<td>14.9%</td>
</tr>
<tr>
<td>Contamination</td>
<td>10</td>
<td>1.6%</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>5% misc Hardware</td>
<td>39.2</td>
<td>6.3%</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total (+ 5% hardware and no margin):</td>
<td>621.4</td>
<td>100%</td>
<td>930.7</td>
<td>100%</td>
</tr>
</tbody>
</table>

*this listing does not include all subassemblies, please refer to the final mass model (MEL) for a full summary

IDL provides cost estimates based on Current Best Estimate (CBE) of mass; mass margin and contingency is accounted for in the Integrated Design Center’s Mission Design Lab (MDL), otherwise the customer must account for this additional mass.
UV/VIS & VIS/NIR Detector Assumptions & Data Rate

Detector Assumptions
- 2 (1Kx2K) Custom Detector Arrays, 8 outputs each (ie. 0.25Mpix each output)
 - Readout [1K (spectral) x 2K (spatial)] pix.
 - Frame transfer readout capability.

Readout Assumptions
- 4 frames @ 200mSec integration period
 - 14 bits/pix resolution

Data Rate Calculations
⇒ ADC Sample rate = 0.25Mpix/0.2sec = 1.25Mpix/sec (ie. 1.25MHz sample rate)
⇒ Readout Rate ~ (1.25Mpix/sec)x14bits/pix ~ 17.5Mbps each output
⇒ 140Mbps total for all 8 outputs

Co-Add 4 frames
⇒ Data Rate ~ 140Mbps/4 ~ 35Mbps each detector
⇒ 70Mbps total for both detectors
Detector Assumptions
- 1 (2Kx2K) Detector Array, 32 outputs (ie. 0.125Mpix each output)
- Readout [512 (spectral) x 2K (spatial)] pix.
- Frame transfer readout capability.

Readout Assumptions
- 64 frames @ 12.5mSec integration period
- (64 x 512)pixels each of 32 outputs (ie. 0.0328Mpix each output)
- 14 bits/pix resolution

Data Rate Calculations
⇒ ADC Sample rate = 0.0328Mpix/0.0125sec = 2.62Mpix/sec (ie. 2.62MHz sample rate)
⇒ Readout Rate ~ (2.62Mpix/sec)x14bits/pix ~ 36.7Mbps each output
⇒ 1.17Gbps total for all 32 outputs

Co-Add 64frames
⇒ Data Rate ~ 1.17Gbps/64 ~ 18.4Mbps for downlink

⇒ CEDI Instrument Total: ~ (70+18.4)Mbps ~ 88.4Mbps
CEDI Main Electronics Box Summary

<table>
<thead>
<tr>
<th>Circuit Boards (8”x6”), 0.5Kg each</th>
<th>QTY</th>
<th>Avg. PWR (Watts)</th>
<th>Mass (Kg)</th>
<th>Description</th>
<th>% Analog/Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Processor Board</td>
<td>1A/1B</td>
<td>8.5</td>
<td>1.0</td>
<td>PowerPC750</td>
<td>5/90</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>1A/1B</td>
<td>4.0</td>
<td>1.0</td>
<td>3 circuits each</td>
<td>70/25</td>
</tr>
<tr>
<td>Scan Motor Control (2DOF)</td>
<td>2A/2B</td>
<td>5.0</td>
<td>2.0</td>
<td></td>
<td>70/25</td>
</tr>
<tr>
<td>Aperture Motor Control</td>
<td>1A/1B</td>
<td>5.0</td>
<td>1.0</td>
<td></td>
<td>70/25</td>
</tr>
<tr>
<td>Cal. Assembly Motor Control</td>
<td>1A/1B</td>
<td>5.0</td>
<td>1.0</td>
<td>Output switched between 2 motors</td>
<td>70/25</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>1A/1B</td>
<td>5.0</td>
<td>1.0</td>
<td>Temp, Voltages, Currents</td>
<td>70/25</td>
</tr>
<tr>
<td>* Power Converter (Assume 75% efficiency)</td>
<td>1A/1B</td>
<td>23.3</td>
<td>1.0</td>
<td></td>
<td>90/5</td>
</tr>
<tr>
<td>Backplane</td>
<td>1A/1B</td>
<td>-</td>
<td>1.4</td>
<td></td>
<td>0/0</td>
</tr>
<tr>
<td>Housing</td>
<td>1</td>
<td>-</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>55.8</td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Box Estimate: (23 x 18 x 43)cm, ~ 55.8Watts, 12.3Kg (ie. 9.4Kg board total + 2.9Kg Housing)

Note: This box is internally redundant (ie. 8 prime boards with backplane plus 8 redundant cold standby boards)
GEO-CEDI Power Requirement Summary

Spacecraft Power Bus Requirement

<table>
<thead>
<tr>
<th>Load</th>
<th>Avg. Power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload C&DH Box</td>
<td>25.0</td>
</tr>
<tr>
<td>CEDI Main Electronics Box</td>
<td>55.8</td>
</tr>
<tr>
<td>Detectors, FET Drivers & Digitizer Boards (3)</td>
<td>21.0</td>
</tr>
<tr>
<td>Scan Mirror Motors (1 of 2 ON at a time)</td>
<td>13.0</td>
</tr>
<tr>
<td>Heaters (actively controlled)</td>
<td>3.0</td>
</tr>
<tr>
<td>Heaters (thermost controlled)</td>
<td>300.0</td>
</tr>
<tr>
<td>CEDI Only Instrument Total:</td>
<td>392.0</td>
</tr>
</tbody>
</table>

Note:
- Total does not include ACS components or Payload C&DH Box, which are powered by the Spacecraft
- Total does not include survival heater power (222 to 317W) to the CEDI instrument which is also powered directly by the spacecraft
- The CEDI detector heater control power (actively controlled) is shown here as 3W, and is estimated in the thermal model to be between 4.5W (orbit average) and 6.4W (peak)
- The CEDI operating heater power (thermostat controlled) is shown here as 300W, and is estimated in the thermal model to be between 250W (orbit average) and 375W (peak)
- The CEDI instrument will require the X-band downlink interface in the Payload C&DH box; this interface could be placed in either the CEDI MEB or the Spacecraft if the Payload C&DH box is not flown.
Changes to GEO MDI 2006 Configuration & Rationale
(1 of 3)

DESIGN CHANGES from GEO MDI to CEDI

• Implemented customer’s degraded spatial and spectral resolution requirements to realize a significant volume savings in the entire optical assembly, as well as the 3 channels

• Implemented a calibration housing that includes all optics in the lunar and solar calibration, and provides full aperture illumination from a frequent and an infrequent diffuser surface
 - The previous diffuser housing did not illuminate the primary mirror and was injected downstream in the instrument to minimize volume
 - Eliminated the flip mirror in the GEO MDI design that initiated the calibration mode

• Implemented a detector readout scheme that meets SNR goals and eliminates saturation in critical channels in the SWIR channel
 - This increased the number of readout boards in the SWIR digitizer box, but they are identical, so there is an NRE savings

• Considered the CEDI MEB and Payload C&DH electrical boxes in the thermal budget for survival heater power; previously these were not addressed as it was assumed they were mounted directly to the S/C

• Costed the redundant electronics for the CEDI MEB and Payload C&DH; previously it was intended that these electronics were redundant, but they were not costed

• Added a 3rd star tracker for redundancy (only 2 operate simultaneously)
 - Confirmed the mass of the CT-602 star tracker, but allocated the additional 1.1kg as baffle mass where it was previously designated as electronics associated with the tracker
Changes to GEO MDI 2006 Configuration & Rationale
(2 of 3)

DESIGN CHANGES from GEO MDI to CEDI continued

- Scaled the strong back for both CEDI-alone (small strongback) and GEO CAPE Suite (large strongback) configurations
 - Confirmed that the preliminary structural assessment of the strongback indicated that the scale was appropriate in the original design
 - Confirmed that the CEDI-alone configuration would also need to be edge-mounted and require a similar strongback
- Eliminated calibration lamp sources from previous mass model and replaced them with camera-mounted LEDs as flood lamp calibrators
- Implemented lightweight structural materials (M55J graphic/epoxy and honeycomb) to save mass over Al, wherever possible, as proposed in the MDI design
- Incorporated updated volume/mass estimates for CISR, as provided by the customer team, in our mass and mechanical models (GEO MAC remained the same as it was shown in 2006)
- Confirmed that the instrument-mounted ACS components are necessary for the closed-loop operation of the scan mirror and have accounted for that flight software control in our grassroots cost estimate
 - Maintained a Rad750 PowerPC processor within the CEDI MEB as was proposed for MDI in 2006
- Eliminated a filter wheel mechanism from the 2006 version and replaced it with a dispersive element in the SWIR channel and detector mounted filters (3)
- Have assumed Class S electronic parts for CEDI to be consistent with the high reliability parts recommended for a Class B mission (or the labor to upscreen lower quality parts when necessary); Class B parts were modeled for MDI in 2006
Changes to GEO MDI 2006 Configuration & Rationale (3 of 3)

DESIGN CHANGES from GEO MDI to CEDI continued

- Have shown the detector digitizer boxes mounted to the instrument enclosure (as they were intended for MDI in 2006, but time did not permit adding those details to the mechanical model)
- Assumed the same instrument lifecycle (development) schedule, but moved it forward to 2013
- Accounted for thermal blankets to cover the strong back, but have not provided active temperature control (although it is anticipated that the GEO MAC & CISR instruments would benefit from the CEDI-mounted ACS hardware)

DESIGN CONSIDERATIONS that may need to be revisited in the future, but were not undertaken in the CEDI study

- Did not (re)evaluate the specific star tracker or SIRU chosen for GEO MDI
- Did not (re)evaluate the specific Stewart platform recommended for GEO MDI
- Did not (re)evaluate the Payload C&DH function or capability proposed for GEO MDI as we did not discuss the GEO MAC or CISR processing or interface needs
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Optics

January 29, 2010
Optical Specifications/Requirements

- Telescope Aperture: 0.5m
- Band 1 UVIS Spectrograph
 - 350 - 600 nm; 0.5nm/pixel
- Band 2 VNIR Spectrograph
 - 600 - 1100 nm; 0.5 nm/pixel
- Bands 1 and 2 share a common 18 µm x 3600 µm slit
- Band 3 - SWIR
 - Camera with strip filters on detector
 - Filters at 1245, 1640, 2135 nm
- Spatial Resolution for all channels: 375m/pixel; 2k pixels in spatial direction
- All detectors have 18 µm pixels
- Telescope focal length set for 1:1 Offner Spectrograph designs
 - 0.375 km / 35786 km orbit = 1 pixel
 - Effective focal length = 1717.728 m, F/3.44 focal ratio
 - Field of view corresponding to the slit length: 1.2 degrees
- This design is a modification of the previous IDL design of the MDI instrument in 2006.
Telescope Design

Primary Mirror (Gregorian 1)

Gregorian 2
Depolarizer
Schwarzschild 1
Slit
Schwarzschild 2
Telescope Details

- Near diffraction limited at long wavelengths
 - Airy disk diameter = 3 um at 350 nm and 18 um at 2135 nm
- Changed the primary mirror to be a “super conic” to reduce rms spot diameters.
- Secondary changed to off-axis hyperbola.
- Two Schwarzschild mirrors remain spherical.
- Depolarizer required to be in collimated beam.
 - Two calcite wave plates with their fast axes 45 degrees apart
Band 1 Layout

Dichroic 1
Transmit > 1um

Dichroic 2
Reflect < 600 nm

Offner 1 & 2
Grating
Band 2 Layout

- Dichroic 1: Transmit > 1um
- Dichroic 2: Transmit > 600 nm
- Offner 1 & 2
- Fold
- Grating
Performance of Band 1

Integrated Design Capability / Instrument Design Laboratory

GEO CAPE Study Week: 1/25 - 1/29/10
Presentation Delivered: Jan 29, 2010
Optics, p8
Final Version
Performance of Band 2
Band 1 and 2 Optics

- Offner mirrors changed to conics to improve image quality.
- Convex gratings have low groove density - 108 and 112 grooves / mm.
Band 3

• Assumed that this would be a camera with bandpass filters on the detector.
 - 16 pixels required for each band and several pixels needed between bands.

• Image quality needs to be improved.
Port Size

North 50 degrees-South 45 degrees Latitude
East-West +/- 65 degree Longitude scan
Max 9.26 degree optical angle
Science Port (5% oversize) at 675mm diameter

Instantaneous footprint on science port
(534x498mm)
Baffle Details

Moon diameter 0.44 - 0.51 degrees
Moon declination: +/- 18 degrees and +/- 29 degrees
min inclusion angle = 29 + 0.51 degrees = 29.51 degrees

Conical Baffle
outer diameter 1066mm
inner diameter 675mm (science port diameter)
height 332mm
block angle 55 degrees
admittance angle 30.5 degrees
Baffle Optical Model

Block angle of 55 degrees

Admitting angle up to 30.5 degrees

55 degrees is a preliminary number. Need required viewing scenario.
Diffuser Discussions

- We considered a transmissive diffuser but decided it was not at a high enough TRL level.
 - The diffuser would have to be at least 0.5 m in diameter and this is hard to build.
 - No technology required to scale it up, it just hasn’t been done.
 - Presumably this would yield a smaller volume impact.
Band 1 Throughput Estimates

<table>
<thead>
<tr>
<th>Band 1</th>
<th>340 - 600 nm</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td>350 360 385 412 425 443 460 475 490 510 532 555 583</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Quantum Silver</td>
<td>0.938 0.939 0.932 0.958 0.952 0.943 0.936 0.941 0.950 0.961 0.967 0.971 0.971</td>
</tr>
<tr>
<td>Collimator</td>
<td>Quantum Silver</td>
<td>0.938 0.939 0.932 0.958 0.952 0.943 0.936 0.941 0.950 0.961 0.967 0.971 0.971</td>
</tr>
<tr>
<td>Relay Mirror 1</td>
<td>Quantum Silver</td>
<td>0.938 0.939 0.932 0.958 0.952 0.943 0.936 0.941 0.950 0.961 0.967 0.971 0.971</td>
</tr>
<tr>
<td>Relay Mirror 2</td>
<td>Quantum Silver</td>
<td>0.938 0.939 0.932 0.958 0.952 0.943 0.936 0.941 0.950 0.961 0.967 0.971 0.971</td>
</tr>
<tr>
<td>Depolarizer</td>
<td>Calcium Flouride</td>
<td>0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930</td>
</tr>
<tr>
<td>Dichroic 1</td>
<td>Reflection</td>
<td>0.900 0.920 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950</td>
</tr>
<tr>
<td>Dichroic 2</td>
<td>Reflection</td>
<td>0.900 0.920 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950</td>
</tr>
<tr>
<td>Offner Mirror 1</td>
<td>Quantum Silver</td>
<td>0.938 0.939 0.932 0.958 0.952 0.943 0.936 0.941 0.950 0.961 0.967 0.971 0.971</td>
</tr>
<tr>
<td>Grating</td>
<td></td>
<td>0.500 0.600 0.600 0.700 0.700 0.700 0.700 0.700 0.600 0.550 0.550 0.500</td>
</tr>
<tr>
<td>Offner Mirror 3</td>
<td>Quantum Silver</td>
<td>0.938 0.939 0.932 0.958 0.952 0.943 0.936 0.941 0.950 0.961 0.967 0.971 0.971</td>
</tr>
<tr>
<td>Degrading 5% over time</td>
<td></td>
<td>0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.24 0.31 0.31 0.43 0.42 0.39 0.38 0.39 0.41 0.38 0.36 0.37 0.33</td>
</tr>
</tbody>
</table>

Quantum Silver Reflectivities based on measured data. Depolarizer transmission based on transmission curves. Grating efficiencies based on measured curves. However these covered slightly different wavelength regions and groove densities.
Band 2 & 3 Throughput Estimates

Integrated Design Capability / Instrument Design Laboratory

Band 2

<table>
<thead>
<tr>
<th>wavelength (nm)</th>
<th>600 - 1100 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Quantum Silver</td>
</tr>
<tr>
<td>Collimator</td>
<td>Quantum Silver</td>
</tr>
<tr>
<td>Relay Mirror 1</td>
<td>Quantum Silver</td>
</tr>
<tr>
<td>Relay Mirror 2</td>
<td>Quantum Silver</td>
</tr>
<tr>
<td>Depolarizer</td>
<td>Calcium Flouride</td>
</tr>
<tr>
<td>Dichroic 1</td>
<td>Reflection</td>
</tr>
<tr>
<td>Dichroic 2</td>
<td>Transmittance</td>
</tr>
<tr>
<td>Fold Mirror</td>
<td>Quantum Silver</td>
</tr>
<tr>
<td>Offner Mirror 1</td>
<td>Quantum Silver</td>
</tr>
<tr>
<td>Grating</td>
<td></td>
</tr>
<tr>
<td>Offner Mirror 3</td>
<td>Quantum Silver</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>617</th>
<th>640</th>
<th>655</th>
<th>665</th>
<th>678</th>
<th>710</th>
<th>748</th>
<th>765</th>
<th>820</th>
<th>865</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>0.967</td>
<td>0.965</td>
<td>0.964</td>
<td>0.964</td>
<td>0.963</td>
<td>0.965</td>
<td>0.971</td>
<td>0.973</td>
<td>0.980</td>
<td>0.983</td>
</tr>
<tr>
<td>Collimator</td>
<td>0.961</td>
</tr>
<tr>
<td>Relay Mirror 1</td>
<td>0.961</td>
</tr>
<tr>
<td>Relay Mirror 2</td>
<td>0.961</td>
</tr>
<tr>
<td>Depolarizer</td>
<td>0.930</td>
</tr>
<tr>
<td>Dichroic 1</td>
<td>0.950</td>
</tr>
<tr>
<td>Dichroic 2</td>
<td>0.850</td>
</tr>
<tr>
<td>Fold Mirror</td>
<td>0.961</td>
</tr>
<tr>
<td>Offner Mirror 1</td>
<td>0.961</td>
</tr>
<tr>
<td>Grating</td>
<td>0.600</td>
<td>0.600</td>
<td>0.650</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.650</td>
<td>0.650</td>
<td>0.650</td>
<td>0.650</td>
</tr>
<tr>
<td>Offner Mirror 3</td>
<td>0.961</td>
</tr>
<tr>
<td>Degrading 5% over time</td>
<td>0.950</td>
</tr>
<tr>
<td>Total</td>
<td>0.33</td>
<td>0.33</td>
<td>0.35</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Band 3

<table>
<thead>
<tr>
<th>wavelength (nm)</th>
<th>1245</th>
<th>1640</th>
<th>2135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collimator</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Mirror 1</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Mirror 2</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depolarizer</td>
<td>Calcium Flouride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichroic 1</td>
<td>Transmittance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offner Mirror 1</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offner Mirror 2</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offner Mirror 3</td>
<td>Quantum Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter on detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degrading 5% over time</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
</tr>
<tr>
<td>Total</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
</tbody>
</table>
SWIR bands changed to Spectrograph

• Required change to generalized aspheres for two Offner mirrors.
• Would fit in the same general volume.
• Image quality requirements need to be determined.
• Assumed 2.5 nm/pixel sampling
 - From 1225 - 2160 covers 374 pixels.
“New” SWIR Band Performance
Impact to Changing to 300 m Spatial Resolution

- **Assuming keep the 500 mm aperture stop diameter**
 - Less signal because of smaller footprint.
 - Length of slit on the ground becomes smaller (600km vs. 750km)
 - Field of view is smaller
 - Takes longer to scan the same area on the ground
 - Effective focal length becomes longer (2147mm vs. 1717mm)
 - System wants to be longer.
 - Quick look at keeping telescope the same and modifying Offner designs:
 - Telescope slit would have to be 14.4 um width
 - Airy disk diameter is 14.4 um and larger for 1.75 um and longer
 - Do not want a slit smaller than Airy disk diameter.
 - Offner mirrors want to be larger and the second leg wants to be much longer.
 - Keeping Gregorian primary and secondary constant and modifying two Schwarzschild mirrors.
 - This looks very promising!
 - Distance from second Schwarzchild mirror to slit grows but because spectrograph designs are 1:1 magnification, they can remain nearly the same.
 - Slight degradation at the ends of the slit - more design work needed.
 - It looks as if all spectrographs could be packaged in the same volume!

- **What happens if you have 300 m spatial resolution and 585 mm entrance aperture?**
 - Modified the telescope model for above requirements, image quality was degraded.
 - Need more time to evaluate.
 - Worst case is to scale system by 585/500.
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Detectors

January 29, 2010
Geo-CAPE Detector Requirements

• Near UV-Visible Channel 1:
 - 340nm-600nm
 - 1k x 2k array format
 - 1Me- well capacity
 - <100e- read noise
 - QE>60%

• Visible-Near Infrared Channel 2:
 - 600nm-900nm
 - 1k x 2k array format
 - 1Me- well capacity
 - <100e- read noise
 - QE>60%

• Short Wave IR:
 - (3) Bands at 1245nm, 1640nm, 2135nm
 - 512 x 2k array format
 - 100ke- well capacity
 - 20e- read noise
 - QE>60%
Geo-CAPE Detector Choices

- Channels 1& 2: Silicon material of choice for the required wavelengths
 - High quantum efficiency, low dark current and noise
 - Well known and understood technologies, high TRL level
- CCDs:
 - Pros
 - 100% fill factor
 - Very low read noise
 - Cons
 - Slow readout speed: would require a frame transfer device and multiple read taps
 - Small full well capacity (~150-200ke- for 18um pixels)
 - 2kX1k non-standard format
- PIN diode array hybridized with a Si ROIC (Read Out Integrated Circuit)
 - TCM 8050A
 - 100% fill factor
 - medium read noise
 - Limited readout speed/number of outputs
 - Large full well capacity 3Me- lowest gain setting
 - 2kX1k non-standard format
 - HAWAII-2RG
 - 100% fill factor
 - low read noise
 - Limited readout speed/number of outputs
 - Small full well capacity 100ke-
Channels 1&2 Detector Choice

- Custom 2k x 1k Teledyne TCM 8050A
 - TCM 8050A not designed to be buttable like HAWAII ROICs
 - Use higher gain setting with 1Me- well capacity
 - ~100e- read noise
 - No CDS built in. Would have to be performed in software using a minimum integration time frame. Pseudo CDS can be performed in software by subtracting a common dark frame obtained each day
 - (8) outputs, 256 rows each, maximum read rate of 5M pixels/sec
 - Silicon thickness and anti-reflection coating optimized for each wave band
 - UV-A Coating for channel 1
 - Near IR coating for channel 2
 - Set operating temperature to maintain dark current and noise below all other noise sources <220K
 - Radiation damage not an issue: slight increase in dark current and noise due to displacement damage
 - (No need to keep the traps full like in a CCD)
Teledyne HyViSI Quantum Efficiency
Teledyne HyViSI Dark Current

Figure 8 Darkcurrent as a function of temperature.
Geo-CAPE Detector Choices

• Channel 3: Mercury Cadmium Telluride (MCT) is the material of choice for the required wavelengths
 - High quantum efficiency, low dark current and noise (operate at 150K)
 - InSb or InGaAs would require cryogenic operating temperatures
 • Sterling cycle cooler cost, mass and power hit
 - Well known and understood technologies, high TRL level
 - PIN diode array hybridized with a Si ROIC (Read Out Integrated Circuit)
 • HAWAII-2RG
 - 100% fill factor
 - low read noise
 - High readout speed
 • 32 outputs, each reads out 64 rows at 5M pixels/sec
 - Small full well capacity, 100ke-, requires frame averaging to avoid saturation
 - 2k X 512 non-standard format: just use ¼ of a 2k X 2k array rather than a custom array

Only use 512 Columns in Spectral direction

32 outputs

Note: Any section of 512 contiguous columns could be used
Conclusions

- No technology issues or concerns
- Heritage on the HAWAII-2RG, Si-PINs and MCT-PINS
- Custom 2k X 1k TCM8085A required to avoid lost spatial pixels if (2) 1k x 1k arrays were butted
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Mechanical Systems

January 29, 2010
Study Requirements

Package CEDI components
- Optical - Telescope, Band 1, Band 2 and SWIR
- Mechanisms - Aperture door, Scan Mirror, diffuser assembly
- Star trackers, Gyro

Minimize mass and volume

Represent S/C mounted boxes: Payload C&DH, CEDI MEB

Re-evaluate the “Strong back” in light of reduced size and mass for the CEDI (vs. GEO-MDI), GEO-MAC and CISR.

Develop two instrument/spacecraft configurations:
- CEDI only
 - Develop an instrument/spacecraft interface w/o strong back
- CEDI, GEO-MAC, and CISR
 - GEO-MAC and CISR represented as volumes only
 - Instruments mount to the strong back; strong back interfaces to the spacecraft.
Study Design Drivers

- Minimize volume: package optics as tight as possible
- Minimize mass: material selection (aluminum, M55J graphite/epoxy), light weight structural components (honeycomb panels)
- Alignment/stability requirements: material selection (low Coefficient of Thermal Expansion (CTE) composites)
- I&T considerations
- Detector electronics located close to the detectors.
External Assembly

- Instrument enclosure
 - 1 inch alum. core
 - M55J facesheet (f/s)

- Detector readout
 - Digitizer boxes
 (1 for each detector)

- Calibration assembly

- Aperture door

- SWIR channel
 - Digitizer box

- Instrument optical bench
 - 4 inch. Core
 - M55J f/s
Mounting Interface

External baffle
M55J

Instrument mounting flexures
4 ea. titanium

SIRU

Ball CT-602 star tracker
3 ea.
Aperture & Calibration Covers Opened

2-Sided Diffuser plate

Solar Calibration View

Lunar Calibration & Nadir Science Views

Scan mirror mechanism
Calibration FOV Requirement

Lunar Calibration & Nadir Science Views

+/- 11.2 degrees

Solar Calibration View

-23 degrees
The customer team intends to align and calibrate each channel individually before integrating with the main bench.
Optical Paths
Volume Comparison

GEO-MDI
15.3 cubic meters
(includes calibration assy. Volume)

CEDI
7.5 cubic meters
(includes calibration assy. volume)

Note: dimensions in millimeters
GEO-CAPE Suite

Note: The large or “tall” Strong Back for the GEO CAPE Suite was not costed.

Note: CAD models of the current GEO-MAC and CISR instruments were not available. These instruments are represented by volume envelope only.

Strong back
4 inch core
M55J f/s

CEDI

CISR

GEO-MAC
Note: The small or “short” Strong Back for a CEDI-only configuration was costed, along with thermal blankets for the Strong back to minimize temperature gradients.
CEDI Only Strong Back

Note: dimension in meters
GEO-CAPE in Atlas 5 Fairing

Note: spacecraft configuration shown is from previous GEO-MDI study and has not been (re)evaluated for GEO-CAPE (recommended Stewart platform at the spacecraft interface is not shown)
Relative Size

Payload C&DH
2 ea.

CEDI MEB
(internally redundant)
Conclusions

• The SWIR, Band 1, and Band 2 optics are mounted to 3 individual “mini” optical benches which are in turn mounted to the instrument optical bench. This approach was driven by I&T considerations. An alternate approach would eliminate the “mini” benches and mount the SWIR, Band 1 and Band 2 optics directly to the instrument optical bench.

• There are no technology risks associated with the mechanical or structural design (i.e. standard materials as well as fabrication and assembly techniques for primary and secondary structure).

• The detector readout digitizer boxes are required to be in close proximity to the detectors. There are two options: mount the electronics to the optical benches or to the instrument enclosure. For optical bench thermal distortion considerations, these heat sources were located on the outside of the instrument.

• The CEDI instrument could be rotated 180 degrees so that the scan mirror assembly and calibration assembly are near the S/C mounting interface. This will lower the CG, but it is not clear how significant the change would be. FOV’s will also need to be considered when positioning the CEDI on the S/C.

• A strong back approach to mounting CEDI is still required for the “CEDI only” configuration because the current optical design dictates the orientation of CEDI with respect to the S/C.
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Electromechanical

January 29, 2010
Overview

- **Scan Mirror**
 - Used to direct sensor path to various ground POIs and to diffuser for calibration

- **Aperture Door**
 - Used to shield internal optics from stray light and contamination

- **Calibration Assembly**
 - Used to calibrate instrument optics
 - Composed of the Cover Mechanism and the Diffuser Plate Select Mechanism
Scan Mirror Mechanism
Design Assumptions

• 2 Degrees of Freedom (DOF)

• Range of motion
 - Optical sensors need to see...
 • View of Earth from 50N - 45S, 30W - 160W during science operations
 • Direct view of diffuser during solar calibration
 • Moon at 1° off of Earth disk through science aperture (during lunar calibration)
 - The actuator requirements are therefore...
 • N-S DOF: -10.2° to +90°
 • E-W DOF: -10.2° to +10.2°

• Motion
 - E-W DOF: step over 1.1 arc-sec and settle in <250 ms, repeat once per second
 - N-S DOF: slew between scan boxes
 • No motion requirements defined

• Image Stability
 - Goal of 0.5 arc-sec (0.5 arc-sec on N-S DOF, 0.25 arc-sec on E-W DOF)
Scan Mirror Mechanism
Proposed Solution

E-W DOF

N-S DOF
Scan Mirror Mechanism
Proposed Solution

• **Limited Angle Torque Motor**
 - No commutation
 - Very smooth torque curve (no torque ripple)
 - Low electrical time constant
 - Direct drive, no transmission issues
 - Redundant windings
 - Tend to be slightly larger than commutating equivalent
 - Flight heritage
 - Need linear amplifier and programmable motion controller

--

• **Inductosyn Transducer**
 - High accuracy (<±0.5 arc-sec)
 - Dependant on electronics accuracy
 - High resolution
 - Flight heritage

http://www.ruhrle.com/absolute_rotary_transducer.htm
Scan Mirror Mechanism
Proposed Solution

- **Implementation based on GEO-MDI report written in 2008**
 - Controller requires input from accelerometer and angular rate gyro
 - Requires that dampers (passive stewart platform) are placed between S/C and instrument for vibration isolation

- **Control system corrects for various types of disturbances**
 - With no disturbances, settling time is <200 ms
 - Low frequency disturbances (~40 rad/sec) are adequately attenuated by feed-forward controller
 - Higher frequency disturbances (~100/sec) are not significantly attenuated by feed-forward controller

- **Report uses system that is not identical to CEDI. The report uses...**
 - Larger mirror
 - Larger motor
 - Smaller step size (1.4 arc-sec, CEDI is 1.1 arc-sec)

- **More intensive and detailed study is needed to determine whether or not this control scheme can be successfully implemented for CEDI.**
Scan Mirror Mechanism
Proposed Solution

- **Cable Wrap**
 - Protects E-W Actuator cables from fatigue

- **Pin Puller**
 - SMA type actuator
 - Acts as launch lock
 - One for each DOF
 - Redundant activation circuit
 - Highly reliable mechanism
 - Much less power draw than fail-safe brakes

Example cable wrap assembly

Pin Puller (http://www.tiniaerospace.com)
Scan Mirror Mechanism

Summary

- **Power**
 - 9.5W for 120ms; twice at beginning of mission for launch locks
 - 13W continuous during data scanning

- **Mass**
 - About 31kg total for mechanisms, structural elements, and mirror

- **Volume**
 - Envelope about 1.1m cube

- **TRL**
 - Individual hardware components are level 5
 - Implementation of control scheme may be level 3 or 4. More investigation is needed.

- **Other**
 - Actuator will need to be very stiff, smooth, well balanced, and well characterized in order to achieve intended accuracy and stability
Aperture Door Mechanism
Design Assumptions

• Door must be rigid for launch
• Door must be opened to take science data
• Door must be closed during optical calibration and launch
Aperture Door Mechanism
Proposed Solution

Actuator
Launch Lock
Aperture Door Mechanism
Proposed Solution

- **Actuator**
 - Brushless DC motor
 - Smooth, precise motion
 - Redundant windings
 - Harmonic Drive
 - Provides transmission ratio so that motor can be smaller and less massive
 - Very reliable

- **Absolute Encoder**
 - Provides knowledge of angle. Knowledge will not be affected by power failure.
 - 12-bit BEI sensor
 - Redundant read heads

- **Pin Puller**
 - Keeps aperture door locked closed
 - TiNi Aerospace model P5-STD
 - Redundant activation circuit
 - Highly reliable mechanism
Aperture Door Mechanism

Summary

- **Power**
 - 9.5W for 120ms; once at beginning of mission for launch lock
 - 3W for opening and closing of door; once per week for calibration

- **Mass**
 - About 4kg, including aperture door

- **TRL 5**

- **Other**
 - Entire mechanism could easily incorporate ejection system so that aperture can be ejected if it becomes stuck closed
Calibration Assembly Mechanism
Design Assumptions

• Mechanism must switch between each side of a double-sided diffuser

• Mechanism must protect diffusers from sunlight when not in use, and must prevent stray light from entering instrument optics during science mode

• Diffuser orientation must be repeatable within ±3.4 arc-min
 - Cosine of reflection angle must not deviate by more than 0.1%
Calibration Assembly Mechanism
Proposed Solution

Diffuser Plate
Select Mechanism

Double sided diffuser
Calibration Assembly Cover
Cover Mechanism
Launch Lock
Calibration Assembly Mechanism
Proposed Solution

- **Brushless DC Motor**
 - Provides smooth, precise motion
 - Redundant windings

- **Harmonic Drive**
 - Gears down motor to provide smoother operation, allow for smaller motor
 - Must use gear ratio larger than 50:1 and size larger than 20 in order to maintain positional accuracy
 - Very reliable

- **Absolute Encoder**
 - 13-bit BEI sensor needed to control positional accuracy

- **Pin Puller**
 - Used as launch lock; one time use
 - TiNi Aerospace model P5-STD
 - Redundant activation circuit
 - Highly reliable mechanism
Diffuser Assembly Mechanism
Summary

- **Power**
 - About 3W once a week for calibration
 - Motors will not be actuated simultaneously

- **Mass**
 - About 27 kg, including actuators, diffusers, and cover

- **Volume**
 - In closed configuration, protrudes about 0.9m out from instrument

- **TRL 5**
 - Low TRL is partially due to size of diffuser
Conclusions

- Aperture Door mechanism is fairly straightforward.
- Calibration Assembly mechanism is also fairly straightforward, but could be further optimized to reduce volume and/or mass.
- Scan Mirror mechanism is on the edge of what is achievable. A separate, intensive study should be performed to determine feasibility.
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Electrical Design

29 January 2010
Figure 1.

GEO CAPE Instrument Suite Block Diagram

- **Spacecraft**
 - S/C Power
 - S/C C&DH
 - Timing (1pps)
 - X Band Transmitter
 - +28V Supply
 - +28V Survival Power

- **Instrument**
 - GEO-CEDI Main Electronics Box
 - Processor (PowerPC)
 - Spacewire
 - 1553 I/F
 - H/K
 - Thermal Control
 - DC/DC Converter
 - Payload C&DH Electronics
 - Spacewire
 - 1553 I/F
 - Payload Processor (PowerPC)
 - X Band Downlink Card*
 - Payload C&DH Electronics
 - Spacewire
 - 1553 I/F
 - GEO-MAC Instrument Electronics
 - Spacewire
 - 1553 I/F
 - CISR Instrument Electronics
 - Spacewire
 - 1553 I/F

- **Detector I/F**
 - Pre-Amp/ Digitizer
 - Pre-Amp/ Digitizer
 - Pre-Amp/ Digitizer

- **Focal Planes**
 - UV/VIS (2K x 1K)
 - VIS/NIR (2K x 1K)
 - SWIR (2K x 512)

- **Mechanism Control**
 - Scan mirror pointing
 - Scan Motors (2)
 - Aperture Motor (1)
 - Cal. Assy Motors (2)
 - Aperture Door & Launch Locks

- **Key:**
 - PDU – Power Distribution Unit
 - 1pps – 1 pulse per second (1Hz)
Payload C&DH Box Diagram

Note: The payload C&DH function/capability recommended for GEO MDI in 2006 was not evaluated for the 2010 CEDI design, as we did not evaluate the processing or control of the other 2 GEO CAPE instruments (CISR & GEO MAC). If CEDI is manifested alone, the Payload C&DH box is not required as long as the S/C provides the X-Band downlink capability.

Figure 2.

Payload C&DH Box Diagram
Detector Assumptions
- 2 (1Kx2K) Custom Detector Arrays, 8 outputs each (ie. 0.25Mpix each output)
- Readout [1K (spectral) x 2K (spatial)] pix.
- Frame transfer readout capability.

Readout Assumptions
- 4 frames @ 200mSec integration period
- 14 bits/pix resolution

Data Rate Calculations
⇒ ADC Sample rate = 0.25Mpix/0.2sec = 1.25Mpix/sec (ie. 1.25MHz sample rate)
⇒ Readout Rate ~ (1.25Mpix/sec)x14bits/pix ~ \(17.5 \text{Mbps} \) each output
⇒ \(140 \text{Mbps} \) total for all 8 outputs

Co-Add 4 frames
⇒ Data Rate ~ 140Mbps/4 ~ \(35 \text{Mbps} \) each detector

⇒ \(70 \text{Mbps} \) total for both detectors
Detector Readout & Digitizer Board

Box Estimate: (23 x 18 x 7.5)cm, 2Kg (ie. 1Kg board total + 1Kg Housing), 3.5W

Note:
This digitizer box is internally redundant (ie. Two boards for the UV/VIS box and Two boards for the VIS/NIR box).

Figure 3.
Detector Assumptions
- 1 (2Kx2K) Detector Array, **32 outputs** (ie. 0.125Mpix each output)
- Readout [512 (spectral) x 2K (spatial)] pix.
- Frame transfer readout capability.

Readout Assumptions
- 64 frames @ 12.5mSec integration period
- (64 x 512) pixels each of **32 outputs** (ie. 0.0328Mpix each output)
- 14 bits/pix resolution

Data Rate Calculations
⇒ ADC Sample rate = 0.0328Mpix/0.0125sec = 2.62Mpix/sec (ie. 2.62MHz sample rate)
⇒ Readout Rate ~ (2.62Mpix/sec) x 14bits/pix ~ **36.7Mbps** each output
⇒ **1.17Gbps** total for all 32 outputs

Co-Add 64 frames
⇒ Data Rate ~ **1.17Gbps**/64 ~ **18.4Mbps** for downlink

⇒ **CEDI Instrument Total: ~ (70+18.4)Mbps ~ 88.4Mbps**
Detector Readout & Digitizer Board

Focal Plane Array

- (2Kx512)
- (2Kx512)
- (2Kx512)
- (2Kx512)

Pre-Amps

FET Drivers

- ADCs(8) 14-bits
- FIFOs(8)

Amp

- (2.62MHz)
- (36.7Mbps each)

LVDS

Readout / Control FPGA

- (64 frame co-add)

Box Estimate: (23 x 18 x 23)cm, 6.6Kg (ie. 4.8Kg board total with backplane + 1.8Kg Housing), 14.0W

Note:
This digitizer box is internally redundant (ie. 4 prime boards with 8 channels each plus 4 cold standby boards).

Figure 4.
Electrical Components & Redundancy

GEO CAPE Instrument Suite Architecture

Figure 5.
Power Supply Load

<table>
<thead>
<tr>
<th>E-Box External Load</th>
<th>Average Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 2 Scan Motors</td>
<td>13.0</td>
</tr>
<tr>
<td>Detectors</td>
<td>0.4</td>
</tr>
<tr>
<td>Digitizers</td>
<td>21.0</td>
</tr>
<tr>
<td>Heaters</td>
<td>3.0</td>
</tr>
<tr>
<td>E-Box External Dissipation:</td>
<td>37.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Box Boards (Internal Load)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Board</td>
<td>8.5</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>4.0</td>
</tr>
<tr>
<td>Scan Motor Drive Board -1</td>
<td>5.0</td>
</tr>
<tr>
<td>Scan Motor Drive Board -2</td>
<td>5.0</td>
</tr>
<tr>
<td>Cal Assembly Motor Drive Board</td>
<td>5.0</td>
</tr>
<tr>
<td>Aperture Motor Drive Board</td>
<td>5.0</td>
</tr>
<tr>
<td>LVPC (Power Supply) Board</td>
<td>~</td>
</tr>
<tr>
<td>Circuit Boards Dissipation:</td>
<td>32.5</td>
</tr>
<tr>
<td>E-Box Power Board Load</td>
<td>69.9</td>
</tr>
<tr>
<td>Converter % Efficiency</td>
<td>75 %</td>
</tr>
<tr>
<td>E-Box Power Converter Dissipation</td>
<td>23.3</td>
</tr>
<tr>
<td>E-Box Dissipation:</td>
<td>55.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spacecraft Load</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Load</td>
<td>0.0</td>
</tr>
<tr>
<td>EE Total:</td>
<td>93.2</td>
</tr>
</tbody>
</table>

S/C Power Bus Requirement
CEDI Main Electronics Box Summary

<table>
<thead>
<tr>
<th>Circuit Boards (8”x6”), 0.5Kg each</th>
<th>QTY</th>
<th>Avg. PWR (Watts)</th>
<th>Mass (Kg)</th>
<th>Description</th>
<th>% Analog/Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Processor Board</td>
<td>1A/1B</td>
<td>8.5</td>
<td>1.0</td>
<td>PowerPC750</td>
<td>5/90</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>1A/1B</td>
<td>4.0</td>
<td>1.0</td>
<td>3 circuits each</td>
<td>70/25</td>
</tr>
<tr>
<td>Scan Motor Control (2DOF)</td>
<td>2A/2B</td>
<td>5.0</td>
<td>2.0</td>
<td>70/25</td>
<td></td>
</tr>
<tr>
<td>Aperture Motor Control</td>
<td>1A/1B</td>
<td>5.0</td>
<td>1.0</td>
<td>70/25</td>
<td></td>
</tr>
<tr>
<td>Cal. Assembly Motor Control</td>
<td>1A/1B</td>
<td>5.0</td>
<td>1.0</td>
<td>Output switched between 2 motors</td>
<td>70/25</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>1A/1B</td>
<td>5.0</td>
<td>1.0</td>
<td>Temp, Voltages, Currents</td>
<td>70/25</td>
</tr>
<tr>
<td>* Power Converter (Assume 75% efficiency)</td>
<td>1A/1B</td>
<td>23.3</td>
<td>1.0</td>
<td>90/5</td>
<td></td>
</tr>
<tr>
<td>Backplane</td>
<td>1A/1B</td>
<td>-</td>
<td>1.4</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>1</td>
<td>-</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>55.8</td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Box Estimate: (23 x 18 x 43)cm, ~ 55.8Watts, 12.3Kg (ie. 9.4Kg board total + 2.9Kg Housing)

Note:
This box is internally redundant (ie. 8 prime boards with backplane plus 8 redundant cold standby boards).
Payload Interface Electronics Box Summary

<table>
<thead>
<tr>
<th>Load</th>
<th>Avg. Power (Watts)</th>
<th>Mass (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Board Computer (SBC)</td>
<td>7</td>
<td>1.5</td>
</tr>
<tr>
<td>X-Band Downlink Card</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>C&DH Interface Card</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>Backplane + Stiffener</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Power Distribution Unit (PDU)</td>
<td>10</td>
<td>1.8</td>
</tr>
<tr>
<td>Box Total:</td>
<td>25</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Box Size: (10” X 9.6” x 5.5”) @ 8.1Kg (ie. 6.1Kg board & modules total + 2Kg Housing)

Note: The payload C&DH function/capability recommended for GEO MDI in 2006 was not evaluated for the 2010 CEDI design, as we did not evaluate the processing or control of the other 2 GEO CAPE instruments (CISR & GEO MAC). The power estimates shown here are the same as those presented in the GEO MDI 2006 study. Two C&DH boxes are recommended for reliability; previously only one box was costed.
GEO-CEDI Power Requirement Summary

Spacecraft Power Bus Requirement

<table>
<thead>
<tr>
<th>Load</th>
<th>Avg. Power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload C&DH Box</td>
<td>25.0</td>
</tr>
<tr>
<td>CEDI Main Electronics Box</td>
<td>55.8</td>
</tr>
<tr>
<td>Detectors, FET Drivers & Digitizer Boards (3)</td>
<td>21.0</td>
</tr>
<tr>
<td>Scan Mirror Motors (1 of 2 ON at a time)</td>
<td>13.0</td>
</tr>
<tr>
<td>Heaters (actively controlled)</td>
<td>3.0</td>
</tr>
<tr>
<td>Heaters (thermost controlled)</td>
<td>300.0</td>
</tr>
<tr>
<td>CEDI Only Instrument Total:</td>
<td>392.0</td>
</tr>
</tbody>
</table>

Note:
- Total does not include ACS components or Payload C&DH Box, which are powered by the Spacecraft.
- Total does not include survival heater power (222 to 317W) to the CEDI instrument which is also powered directly by the spacecraft.
- The CEDI detector heater control power (actively controlled) is shown here as 3W, and is estimated in the thermal model to be between 4.5W (orbit average) and 6.4W (peak).
- The CEDI operating heater power (thermostat controlled) is shown here as 300W, and is estimated in the thermal model to be between 250W (orbit average) and 375W (peak).
- The CEDI instrument will require the X-band downlink interface in the Payload C&DH box; this interface could be placed in either the CEDI MEB or the Spacecraft if the Payload C&DH box is not flown.
Harness Mass Estimates

<table>
<thead>
<tr>
<th>Harness Definition</th>
<th>Qty</th>
<th>Avg. Length Each (M)</th>
<th>Mass (Kg)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEDI MEB to Payload C&DH Box</td>
<td>1A/1B</td>
<td>1.0</td>
<td>1.0</td>
<td>LVDS, 1553, Power, bi-level (1pps)</td>
</tr>
<tr>
<td>CEDI MEB to detector Heaters</td>
<td>3A/3B</td>
<td>3.0</td>
<td>0.7</td>
<td>power</td>
</tr>
<tr>
<td>CEDI MEB to Operational Heaters</td>
<td>1A/1B</td>
<td>3.0</td>
<td>1.2</td>
<td>power</td>
</tr>
<tr>
<td>CEDI MEB to Motors</td>
<td>5A/5B</td>
<td>4.0</td>
<td>2.5</td>
<td>Analog Drive, Digital position</td>
</tr>
<tr>
<td>CEDI MEB to Launch Locks</td>
<td>5A/5B</td>
<td>4.0</td>
<td>1.3</td>
<td>Switched power</td>
</tr>
<tr>
<td>CEDI MEB to Digitizer Boxes</td>
<td>3A/3B</td>
<td>3.0</td>
<td>2.3</td>
<td>Spacewire (LVDS)</td>
</tr>
<tr>
<td>Digitizer Boxes to Detector Arrays/Drivers</td>
<td>3A/3B</td>
<td>0.3</td>
<td>0.2</td>
<td>Analog/Digital</td>
</tr>
<tr>
<td>MEB to TEC harness</td>
<td>3A/3B</td>
<td>3.0</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>9.9</td>
<td></td>
</tr>
</tbody>
</table>
Issues / Conclusion

• No low TRL items or concerns. All TRLs are > 6.

• Baseline design assumed 200mSec integration period for the UV/VIS & VIS/NIR detectors and a pixel readout rate of 1.25Mhz (versus spec limit of 5MHz). Therefore, it is possible to reduce the integration period to 100mSec and increase the pixel readout rate to 2.5MHz if desirable.

• Revised Baseline design now assumes 12.5mSec integration for the SWIR detector and a pixel readout rate of 2.6MHz which is allows 64 frame co-add, thereby improving the dynamic range. Initial baseline assumed 25mSec integration period and a 5MHz readout which is at the specification limit (not good design practice).

• Baseline design is best estimate of actual mass, power, and volume (ie. No margins or contingency were added).
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Final Presentation ~

Flight Software

January 29, 2010
Introduction

- Functional Diagrams
- Block Diagrams
- Flight Software Requirements
- Conceptual Architecture
- Concerns and Future Investigation
Coastal Ecosystem Dynamics Imager (CEDI) Block Diagram

- Multi-Use Aperture (and launch)
- Cover (closed during solar cal)
- Scan Mirror
- Calibratino Source Thru-hole
- Telescope ‘Aft’ Optics
- Aperture Door Launch Lock
- External Baffle
- Primary Mirror
- Optical Bench
- SwIR Band
- Trackers (3) (orthogonally mounted)
- Enclosure

Detectors:
- HyVISI TCM8050A Custom 1K x 2K
- HyVISI TCM8050A Custom 1K x 2K
- MCT H2RG 2Kx2K

- Band 1 (345-600nm)
- Band 2 (600-900 nm)
CEDI Driving Computations

<table>
<thead>
<tr>
<th>Computation</th>
<th>Responsible Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Processing</td>
<td>Pre-Amp Digitizer contains FGPA based control and processing of pixel data -see electrical presentation</td>
</tr>
<tr>
<td>- Co-adding</td>
<td></td>
</tr>
<tr>
<td>- Look-up Table Correction</td>
<td></td>
</tr>
<tr>
<td>- Bias Subtraction</td>
<td></td>
</tr>
<tr>
<td>- Gain Table Correction</td>
<td></td>
</tr>
<tr>
<td>- Band Averaging</td>
<td></td>
</tr>
<tr>
<td>Precision Instrument Attitude Determination</td>
<td>Main Computer</td>
</tr>
<tr>
<td>- Read a suite of Gyros, Accelerometers, Star Trackers mounted on optical bench</td>
<td></td>
</tr>
<tr>
<td>- 10Hz to 100Hz attitude determination</td>
<td></td>
</tr>
<tr>
<td>High Rate Scan Mirror Control</td>
<td>Embedded Controller on Scan Motor Mechanism Boards</td>
</tr>
<tr>
<td>- > 1KHz feedback control loop</td>
<td></td>
</tr>
</tbody>
</table>
Flight Software Requirements

Requirements

- Mode Control: configuration of integration times and pixel/frame processing performed in digitizer
 - Earth View Mode
 - Solar Calibration Mode
 - Lunar Calibration Mode
 - Dark Space Calibration Mode
 - LED Flood Mode
 - Diagnostic Mode (raw data)
 - Manual Target Mode

- Attitude Determination (< 100Hz)

- Mechanism Control
 - Scan Motors (Scan Mirror)
 - Aperture Motor
 - Diffuser Motor

- Packetization and Science Buffer Management
 - Certain modes may require data to be buffered and streamed to the spacecraft at a lower data rate

- Instrument Command and Configuration
 - Pass through mechanism commands
 - Real-time command processing

- Thermal Control

- Housekeeping

Not Requirements

- Stored Command Processing
- Compression

Interfaces

- 1553 command and housekeeping spacecraft interface
- 1553 ACS interface
- 1PPS from spacecraft
- Spacewire science interface
- TBD (cPCI?) interface to mechanism and housekeeping boards
- LVDS (Spacewire?) pre-amp/digitizer science interface
- Serial (422?) pre-amp/digitizer control interface

Derived

- Diagnostics
- Bootstrap
- Software Management
What These Requirements Mean

- The attitude determination requirement, if near 100Hz is SIGNIFICANT.
 - Assume typical S/C ACS is 1% of CPU per 1Hz of processing
 - If 100Hz is needed, it would consume 100% of 133MHz BAE Rad750 and other (future) alternatives would need to be explored

- High bandwidth mechanism control loop
 - In order to preserve determinism, processing should be handled in a dedicated embedded processor resident on mechanism board

- There are no Fault Detection & Correction (FDC) requirements
 - If you can keep it this way, the better you are!
 - Once you take on the responsibility of looking at the data you are collecting and making decisions based off of it you promote the class of your software and significantly increase cost
 - Try to hold off on this decision and see if the autonomous monitoring requirements can be handled by a Spacecraft TM system

- Human in the Loop Control
 - Your current system design has all important decisions going through a human - there are no autonomous decisions being made on-board
 - Keeping it this way will keep costs down. It is my experience that having the on-board processing make autonomous decisions based on the data it sees can increase costs by a factor of two.
GEOCAPE Layer Architecture

Software Base: Use cFE/CFS (GSFC 582 product: C&DH executive) in order to leverage existing in-house GN&C code and architecture. LRO & GPM both use the cFE/CFS. LRO is proven, but GPM uses a purer implementation of the cFE/CFS abstraction. I therefore recommend using the GPM GN&C software as a baseline.

Operating System / BSP: Due to complexity of BAE board, use of VxWorks and provided BSP leverages lessons learned and allows reuse of code from other projects.
cFE - Core Flight Executive

- 582 developed and maintained product.
- cFE Overview
 - Provides component based architecture
 - Event notification
 - Publish/Subscribe messaging mechanism (software bus)
 - Time services
 - Operating system abstraction
 - Execution context (task creation, initialization)
- Advantages
 - True code reuse - verified and previously flown code that doesn’t change
 - Plug ’n play applications available
- Disadvantages
 - Increased complexity
 - 3rd party dependency
Concerns & Future Investigation

- **100Hz Attitude Determination may exceed existing proven technologies**
 - The current trend for achieving higher processing power is fabricating devices in radiation tolerant but not hard devices. This works well for on-board science data processing when upsets can be handled by reprocessing the data. But it is much harder for computations that are a part of control systems. If an upset is not tolerable, voting may be required and complexity increases dramatically.
 - There are higher throughput commercial SBCs on the market
 - Maxwell SCS750 - disaster on GLORY
 - AiTech S950 - designed for LEO
 - BRE440
 - Maestro / Maestro-Lite - single chip data processing solution developed by NRO, tremendous processing power (x100 anything above), difficult logistical path

- **Compression**
 - If compression is needed you will need either dedicated hardware or a separate processing board.
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Electro-Optics

January 29, 2010
Changes from last MDI Study

- Ground scene IFOV resolution from (250m x 250m) to (375m x 375m)
- Instrument swath FOV was 500km and is now 750km
- FOR probably the same as before or larger to accommodate the solar and lunar observations.
- Most UV - NIR FWHM bandwidths went from 12nm to 15nm
- Entrance aperture reduced from 0.66m dia. to 0.5m dia.
- UV to NIR sampling $\Delta\lambda$ (FWHM) went from 0.8nm to 0.5nm
- SWIR sampling $\Delta\lambda$ (FWHM) went from fixed filters with full width to 2.5nm
 - Grating dispersion for all there bands
- Revised Ltyp and Lmax values
- Revised Dynamic range for unsaturated operation
- Maximum well capacities were ‘refined’ (as well as read noise, dark signal, ...)
 - Silicon = 1 million pe’s
 - MCT = 100k pe’s
- Balanced SNR performance with saturation avoidance at full Dynamic range
Radiometry Model

- **Irradiance** = $W / m^2 - \Delta\lambda_{um}$ (TOA = top of atmosphere)
 - Used MODTRAN4 model output to compute Lunar performance

- **Radiance**: $L = W / m^2 - \Delta\lambda_{um} - \Omega_{ster}$
 - Ltyp and Lmax data provided by the CEDI science team
 - Lambertian surface scatter
 - Ltyp and Lmax surface reflectivity
 - Ltyp and Lmax Solar illumination angle (SZA = 70°)

- **Watts = Joules / sec**
- **Photon Energy = hc / λ = Joules / photon**
- **Watts / Photon Energy = photons / sec**
- **Radiance on detector (photons) = P_s**

- $P_s = L* \tau_{sec} * A_m^2 * \Delta\lambda_{um} * \Omega_{ster} * eff$
 - (eff = system Tx * det. QE)
- **Noise** = $\sqrt{\text{signal}_pe's + \text{dark}_pe's + \text{read}_{noise}^2 + \text{quant}_{noise}^2}$
- **SNR_{pixel} = $P_{s_{pixel}} / \text{Noise}$**
- **SNR_{final} = SNR_{pixel} * \sqrt{\text{# of data points averaged}}**
Radiometry Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar Distance - m</td>
<td>384,400,000</td>
</tr>
<tr>
<td>Lunar radius - m</td>
<td>3,476,000</td>
</tr>
<tr>
<td>Orbit - m</td>
<td>35,786,000</td>
</tr>
<tr>
<td>$h^\text{c} - (\text{J}\cdot\text{m})$</td>
<td>1.9864E-25</td>
</tr>
<tr>
<td>Si - $\Delta\lambda$ - um</td>
<td>0.00050</td>
</tr>
<tr>
<td>SWIR - $\Delta\lambda$ - um</td>
<td>0.00250</td>
</tr>
<tr>
<td>Scene (sq) - m</td>
<td>375</td>
</tr>
<tr>
<td>Pixel IFOV - rad</td>
<td>1.0479E-05</td>
</tr>
<tr>
<td>Total Integ. τ_{sec}</td>
<td>0.8</td>
</tr>
<tr>
<td>UV/VIS Integ. τ_{sec}</td>
<td>0.4</td>
</tr>
<tr>
<td>VIS/NIR Integ. τ_{sec}</td>
<td>0.4</td>
</tr>
<tr>
<td>SWIR Integ. τ_{sec}</td>
<td>0.0173913</td>
</tr>
<tr>
<td>A/D Bits</td>
<td>14</td>
</tr>
<tr>
<td>Si - Well Capacity</td>
<td>1.00E+06</td>
</tr>
<tr>
<td>Dark Signal</td>
<td>1</td>
</tr>
<tr>
<td>Quant. Noise</td>
<td>18</td>
</tr>
<tr>
<td>Read Noise</td>
<td>100</td>
</tr>
<tr>
<td>Si - NOISE total</td>
<td>10,311</td>
</tr>
<tr>
<td>MCT - Well Capacity</td>
<td>1.00E+05</td>
</tr>
<tr>
<td>Dark Signal</td>
<td>100</td>
</tr>
<tr>
<td>Quant. Noise</td>
<td>2</td>
</tr>
<tr>
<td>Read Noise</td>
<td>20</td>
</tr>
<tr>
<td>MCT - Noise total</td>
<td>503</td>
</tr>
<tr>
<td>Aperture (dia) - m</td>
<td>5.00E-01</td>
</tr>
<tr>
<td>Aperture Area - m2</td>
<td>1.96E-01</td>
</tr>
</tbody>
</table>
Radiometry Requirements & Results

<table>
<thead>
<tr>
<th>λ0 Bands</th>
<th>FWHM</th>
<th>W/m²-Aλμm-ster</th>
<th>Req'd</th>
<th>Well_Capacity</th>
<th>Averages</th>
<th>Ltyp</th>
<th>Lmax</th>
<th>eff</th>
<th>Req'd</th>
<th>Ltyp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λλ - mm</td>
<td>Ltyp</td>
<td>Lmax</td>
<td>Dynamic Range</td>
<td>Dynamic Range</td>
<td>λλ</td>
<td>Well Volume</td>
<td>Well Volume</td>
<td>Opt. Tx</td>
<td>Det. QE</td>
</tr>
<tr>
<td>350</td>
<td>15</td>
<td>39.26</td>
<td>117.5</td>
<td>2.99</td>
<td>21.49</td>
<td>60.00</td>
<td>46,838</td>
<td>139,247</td>
<td>0.24</td>
<td>0.65</td>
</tr>
<tr>
<td>360</td>
<td>15</td>
<td>38.00</td>
<td>124.1</td>
<td>3.27</td>
<td>16.71</td>
<td>60.00</td>
<td>59,840</td>
<td>195,393</td>
<td>0.31</td>
<td>0.65</td>
</tr>
<tr>
<td>385</td>
<td>10</td>
<td>32.16</td>
<td>125.7</td>
<td>3.91</td>
<td>17.65</td>
<td>40.00</td>
<td>56,656</td>
<td>221,513</td>
<td>0.31</td>
<td>0.68</td>
</tr>
<tr>
<td>412</td>
<td>10</td>
<td>41.77</td>
<td>198.7</td>
<td>4.76</td>
<td>8.65</td>
<td>40.00</td>
<td>115,662</td>
<td>550,095</td>
<td>0.43</td>
<td>0.72</td>
</tr>
<tr>
<td>425</td>
<td>10</td>
<td>40.63</td>
<td>193.1</td>
<td>4.75</td>
<td>8.70</td>
<td>40.00</td>
<td>114,935</td>
<td>546,085</td>
<td>0.42</td>
<td>0.73</td>
</tr>
<tr>
<td>443</td>
<td>10</td>
<td>37.51</td>
<td>219.1</td>
<td>5.84</td>
<td>9.61</td>
<td>40.00</td>
<td>104,106</td>
<td>608,151</td>
<td>0.39</td>
<td>0.74</td>
</tr>
<tr>
<td>460</td>
<td>10</td>
<td>33.14</td>
<td>238.9</td>
<td>7.21</td>
<td>10.60</td>
<td>40.00</td>
<td>94,319</td>
<td>679,962</td>
<td>0.38</td>
<td>0.75</td>
</tr>
<tr>
<td>475</td>
<td>10</td>
<td>30.25</td>
<td>238.3</td>
<td>7.88</td>
<td>10.96</td>
<td>40.00</td>
<td>91,250</td>
<td>718,621</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>490</td>
<td>10</td>
<td>29.25</td>
<td>226.4</td>
<td>7.74</td>
<td>10.45</td>
<td>40.00</td>
<td>95,675</td>
<td>740,472</td>
<td>0.41</td>
<td>0.75</td>
</tr>
<tr>
<td>510</td>
<td>10</td>
<td>24.23</td>
<td>218.8</td>
<td>9.03</td>
<td>13.08</td>
<td>40.00</td>
<td>76,411</td>
<td>690,354</td>
<td>0.38</td>
<td>0.75</td>
</tr>
<tr>
<td>532</td>
<td>10</td>
<td>20.09</td>
<td>214.8</td>
<td>10.69</td>
<td>15.96</td>
<td>40.00</td>
<td>62,645</td>
<td>669,884</td>
<td>0.36</td>
<td>0.75</td>
</tr>
<tr>
<td>555</td>
<td>10</td>
<td>16.11</td>
<td>212.2</td>
<td>13.17</td>
<td>18.57</td>
<td>40.00</td>
<td>53,862</td>
<td>709,431</td>
<td>0.37</td>
<td>0.75</td>
</tr>
<tr>
<td>583</td>
<td>10</td>
<td>14.56</td>
<td>205.9</td>
<td>14.14</td>
<td>22.22</td>
<td>40.00</td>
<td>45,007</td>
<td>636,418</td>
<td>0.33</td>
<td>0.74</td>
</tr>
<tr>
<td>617</td>
<td>10</td>
<td>11.25</td>
<td>192.1</td>
<td>17.07</td>
<td>22.34</td>
<td>40.00</td>
<td>44,758</td>
<td>764,026</td>
<td>0.33</td>
<td>0.75</td>
</tr>
<tr>
<td>640</td>
<td>10</td>
<td>9.39</td>
<td>186.1</td>
<td>19.82</td>
<td>25.53</td>
<td>40.00</td>
<td>39,177</td>
<td>776,529</td>
<td>0.33</td>
<td>0.91</td>
</tr>
<tr>
<td>655</td>
<td>10</td>
<td>8.33</td>
<td>176.6</td>
<td>21.20</td>
<td>26.51</td>
<td>40.00</td>
<td>37,718</td>
<td>799,554</td>
<td>0.35</td>
<td>0.91</td>
</tr>
<tr>
<td>665</td>
<td>10</td>
<td>7.83</td>
<td>176.9</td>
<td>22.59</td>
<td>25.58</td>
<td>40.00</td>
<td>39,087</td>
<td>882,988</td>
<td>0.38</td>
<td>0.91</td>
</tr>
<tr>
<td>678</td>
<td>10</td>
<td>7.37</td>
<td>171.3</td>
<td>23.24</td>
<td>26.66</td>
<td>40.00</td>
<td>37,910</td>
<td>871,697</td>
<td>0.38</td>
<td>0.91</td>
</tr>
<tr>
<td>710</td>
<td>15</td>
<td>5.36</td>
<td>161.4</td>
<td>30.10</td>
<td>35.39</td>
<td>60.00</td>
<td>28,256</td>
<td>850,622</td>
<td>0.38</td>
<td>0.9</td>
</tr>
<tr>
<td>748</td>
<td>10</td>
<td>4.89</td>
<td>147.5</td>
<td>30.17</td>
<td>36.82</td>
<td>40.00</td>
<td>27,156</td>
<td>819,179</td>
<td>0.38</td>
<td>0.9</td>
</tr>
<tr>
<td>765</td>
<td>40</td>
<td>3.62</td>
<td>141.9</td>
<td>39.18</td>
<td>51.32</td>
<td>160.00</td>
<td>19,486</td>
<td>763,516</td>
<td>0.36</td>
<td>0.9</td>
</tr>
<tr>
<td>820</td>
<td>15</td>
<td>2.82</td>
<td>129.7</td>
<td>46.04</td>
<td>62.24</td>
<td>60.00</td>
<td>16,067</td>
<td>739,677</td>
<td>0.36</td>
<td>0.89</td>
</tr>
<tr>
<td>865</td>
<td>40</td>
<td>4.50</td>
<td>139.0</td>
<td>30.89</td>
<td>37.36</td>
<td>160.00</td>
<td>26,770</td>
<td>826,886</td>
<td>0.36</td>
<td>0.88</td>
</tr>
<tr>
<td>1245</td>
<td>20</td>
<td>0.88</td>
<td>59.5</td>
<td>67.61</td>
<td>67.72</td>
<td>368.00</td>
<td>1,477</td>
<td>99,643</td>
<td>0.336</td>
<td>0.85</td>
</tr>
<tr>
<td>1640</td>
<td>40</td>
<td>0.29</td>
<td>17.6</td>
<td>60.69</td>
<td>156.00</td>
<td>736.00</td>
<td>641</td>
<td>38,903</td>
<td>0.336</td>
<td>0.85</td>
</tr>
<tr>
<td>2135</td>
<td>50</td>
<td>0.08</td>
<td>4.7</td>
<td>58.75</td>
<td>424.41</td>
<td>920.00</td>
<td>236</td>
<td>13,643</td>
<td>0.336</td>
<td>0.87</td>
</tr>
</tbody>
</table>
SNR Model Predictions

CEDI SNR Performance Predictions

SNR vs Wavelength (nm)

- SNReq
- SNRtechnical
Detector Well Predicts

Well Volume

- 1 million pe well capacity
- 100k pe well capacity
TOA Irradiance (MODTRAN4)
Lunar Radiometry and Performance

Integrated Design Capability / Instrument Design Laboratory

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>Bands</th>
<th>FWHM</th>
<th>(\Delta \lambda - \text{nm})</th>
<th>(\text{W/m}^2-\text{um})</th>
<th>(\text{Lunar})</th>
<th>(\text{SNR}_{\text{Lunar}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>583</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>655</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>665</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>678</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>865</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1245</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1640</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2135</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
- TOA - Irradiance
- Lunar Reflectance
- Lunar Radiance
- Well Volume
- \(\text{SNR}_{\text{Lunar}} \)

GEO CAPE Study Week: 1/25 - 1/29/10
Presentation Delivered: Jan 29, 2010

Electro-Optics p9 Final Version
Lunar View SNR Predicts
Design Drivers

- Balancing Ltyp SNR performance while avoiding well saturation at Lmax.
 - Spectral sampling interval
 - Silicon - 0.5nm
 - MCT - 2.5nm
 - Integration times
 - Multiple smaller integration period ‘snapshots’ to fill available integration window (0.8sec) allows for more dynamic radiance range with minimal impact on SNR performance

- Balancing MCT well volume (100k pe’s) with max. ROIC readout speed (5MHz)
 - Solution = Rotate array 90° and read out ‘column’ (now rows) data along the spectral direction thus enabling the use of all available readout taps (32 vs. 8) to readout 2048 columns (now rows), but now you only need to readout the 256 spectral columns and ‘dump’ the rest of the elements.
Conclusions and Future Work

- Current baseline requirements have been met with Aperture = 0.5m
- **Minimum footprint - 350m**
 - Si - integration = 2 x 0.4 sec
 - MCT - integration ~ 46 x 17.4ms
 - SNR at 678nm = 997 vs. 1000 required
- **SNR performance with footprint = 300m with same spec’s as above (chart below)**

![CEDI SNR Performance Predictions](chart.png)

- With footprint = 300m, the aperture would need to increase to 0.585m to preserve SNR performance & radiance dynamic range (Ltyp to Lmax).
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Thermal

January 29, 2008
Thermal Requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature (°C)</th>
<th>Temperature Stability (°C)</th>
<th>Survival Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWIR Detector</td>
<td>-123 (150 K)</td>
<td>±0.1</td>
<td>-243</td>
</tr>
<tr>
<td>Band 1 Detector</td>
<td>-60</td>
<td>±0.1</td>
<td>-243</td>
</tr>
<tr>
<td>Band 2 Detector</td>
<td>-60</td>
<td>±0.1</td>
<td>-243</td>
</tr>
<tr>
<td>Detector Electronics (Qty.: 3)†</td>
<td>-10 to 40</td>
<td>N/A</td>
<td>-20 to 50</td>
</tr>
<tr>
<td>Optics</td>
<td>23</td>
<td>±2</td>
<td>-30 to 50</td>
</tr>
<tr>
<td>Scan Mirror Assembly</td>
<td>23</td>
<td>±2</td>
<td>-30 to 50</td>
</tr>
<tr>
<td>Primary Mirror & Aft Optics</td>
<td>23</td>
<td>±2</td>
<td>-30 to 50</td>
</tr>
<tr>
<td>Diffuser Assembly</td>
<td>-40 to 50</td>
<td>N/A</td>
<td>-50 to 60</td>
</tr>
<tr>
<td>Star Tracker (Qty.: 3; 2 Op)‡</td>
<td>23</td>
<td>±0.2</td>
<td>-30 to 50</td>
</tr>
<tr>
<td>Gyro</td>
<td>-20 to 40</td>
<td>N/A</td>
<td>-30 to 50</td>
</tr>
<tr>
<td>Main Electronics Box†</td>
<td>-10 to 40</td>
<td>N/A</td>
<td>-20 to 50</td>
</tr>
<tr>
<td>Payload I/F Electronics†</td>
<td>-10 to 40</td>
<td>N/A</td>
<td>-20 to 50</td>
</tr>
<tr>
<td>Aperture Cover Mechanism†</td>
<td>-40 to 50</td>
<td>N/A</td>
<td>-50 to 60</td>
</tr>
</tbody>
</table>

†Not included in thermal control in 2006 study.
‡Qty.=2 in 2006 study
Power Dissipation

<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal Dissipation (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWIR Detector</td>
<td>0.2</td>
</tr>
<tr>
<td>Band 1 Detector</td>
<td>0.2</td>
</tr>
<tr>
<td>Band 2 Detector</td>
<td>0.2</td>
</tr>
<tr>
<td>Detector Electronics (FET Drivers & Digitizer Boards (Qty: 3; all Operating))</td>
<td>Bands 1 & 2 are 3.5 W each; SWIR is 14 W</td>
</tr>
<tr>
<td>Scan Mirror Assembly</td>
<td>18 (75% duty cycle)</td>
</tr>
<tr>
<td>Star Trackers (Qty: 3; 2 Operating)</td>
<td>8 Each</td>
</tr>
<tr>
<td>SIRU/Gyro</td>
<td>22</td>
</tr>
<tr>
<td>Main Electronics Box</td>
<td>55.8</td>
</tr>
<tr>
<td>Payload C&DH Electronics (Qty,: 2; 1 Operating)</td>
<td>25</td>
</tr>
</tbody>
</table>
Detector Thermal Design Summary

- Temperature limitation of thermoelectric cooler (TEC)
 - Current technology limits coldest temperature to 160 K, due to material properties
- Disadvantages of TEC (for use in flight)
 - Reliability
 - Electrical power required
 - Power supply/electronics required
 - Radiator required for cooling hot side heat sink
- Advantage of TEC is ground testing in ambient air
- Use TEC in ground testing in ambient air but passive cooling in thermal vacuum test and in flight
- Detector temperatures are cold biased and temperature stability is maintained by trim heaters and precision heater controllers
- Constant conductance heat pipes (ethane) thermally coupled detector cold fingers to radiators
- Short K1100 heat straps provide flexible linkages between heat pipes and detectors
Optics, Electronics and ACS Component Operating Mode Thermal Design Summary

- Optical Bench thermally isolated from payload deck
- Thermal coating for interior of optics/mirrors enclosure and optical bench in enclosure is Aeroglaze Z307 black paint
- Operating mode heater circuits on optics/mirrors enclosure and optical bench controlled to 23°C±2°C by mechanical thermostats
 - Constant conductance heat pipes (CCHPs) embedded in optical bench ensure uniform temperature and minimize number of heater circuits
- Operating mode heater circuits on diffuser mechanism assembly controlled to -37°C±2°C by mechanical thermostats
Optics, Electronics and ACS Component Operating Mode Thermal Design Summary

- Detector electronics thermally isolated from optics/mirrors enclosure and cooled by patch radiators
- MEB and Payload C&DH Electronics (location TBD) thermally isolated from spacecraft and cooled by radiators
- Star Trackers thermally isolated from optical bench, cooled by a radiator, and controlled to 23°C±0.2°C by temperature controllers provided by Electrical System
- Gyro outside thermally isolated from optical bench, cooled by a North radiator
Survival Mode Thermal Design Summary

• Survival heater circuits maintain
 - Optics/mirrors enclosure and optical bench above -30ºC
 - Scan mirror assembly, diffusion mechanism assembly and aperture cover mechanism above -50ºC
 - Detector electronics, MEB and Payload C&DH Electronics above -20ºC
 - Star Trackers and gyro above -30ºC
 - Detectors above -243ºC
Scan Mirror Assembly Thermal Design Summary

• Scan mirror Vacuum Deposited Aluminum (VDA) is over-coated with Y_2O_3 to minimize degradation due to charged particle bombardment

• AZ93 white paint on scan mirror backside

• Scan mirror sunshield/baffle reduces solar flux entering scan mirror aperture (0.684 m diameter)
 - Sunshade is conductively isolated from optics/mirrors enclosure frame
 - Sunshield length is presently 0.332 m
 - An increase in sunshield length decreases solar flux entering scan mirror cavity, but won’t eliminate the problem
 - Length may be constrained by fairing
 - GOES scan mirror peak temperature is close to 70°C
 - Phase change material (paraffin) could resolve peak temperature issue
Thermal Design

Patch radiators

Heaters

MLI, heaters and black paint

Heat pipes embedded in optical bench
Detector and ACS Thermal

Gyro Radiator and MLI

Star Tracker Radiators, MLI and Heaters

Detector Radiators
Detector Thermal

Heat Pipes: Ethane Constant Conductance

Cold Finger

Detector Radiator

Detector

Thermal Electric Cooler (Ground Testing Only)
Thermal Model

- S/C Bus
- Detector Readout Electronics
- Sunshade/Baffle
- Gyro
- Scan Mirror
- Star Trackers
- Detector Radiators and Sunshades
Thermal Model

Solar Flux Enters Aperture
Hot Case Thermal Predictions

Optical Bench/Optics Housing Temperature Predictions in Worst Hot Case

<table>
<thead>
<tr>
<th>Time (Minute)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800</td>
<td>20</td>
</tr>
<tr>
<td>3300</td>
<td>30</td>
</tr>
<tr>
<td>3800</td>
<td>40</td>
</tr>
<tr>
<td>4300</td>
<td>50</td>
</tr>
</tbody>
</table>

Legend:
- Bench
- Housing
Hot Case Thermal Predictions for Scan Mirror

Scan Mirror Temperature Predictions in Worst Hot Case

Time (Minute) vs Temperature (°C) graph showing the temperature predictions for the scan mirror in the worst hot case.
Hot Case Thermal Predictions for Detectors

Detector Temperature Predictions in Worst Hot Case (Passive Cooling; Trim Heaters)

Temperature (°C)

-160
-140
-120
-100
-80
-60

Time (Minute)

2800 3300 3800 4300

-160

SWIR Band1 Band2
Hot Case Thermal Predictions for ST, Gyro and Diffuser

Star Tracker, Gyro and Diffuser Temperature Predictions in Worst Hot Case

Temperature (°C)

Time (Minute)

2800 3300 3800 4300

ST 1 ST 2 Gyro Diffuser
Cold Case Thermal Predictions for Detectors

Detector Temperature Predictions in Worst Cold Case (Passive Cooling; Trim Heaters)

Temperature (C)
-160 -140 -120 -100 -80 -60

Time (Minute)
2800 3300 3800 4300

SWIR Band1 Band2
Cold Case Thermal Predictions for ST, Gyro and Diffuser

Star Tracker, Gyro and Diffuser Temperature Predictions in Worst Cold Case

Temperature (°C)

Time (Minute)

2800 3300 3800 4300

ST 1 ST 2 Gyro Diffuser
Cold Case Thermal Predictions for Optical Bench/Optics Enclosure

Optical Bench/Optics Housing Temperature Predictions in Worst Cold Case

Temperature (°C)

Time (Minute)

Bench
Housing
Cold Case Thermal Predictions for Scan Mirror

Scan Mirror Temperature Predictions in Worst Cold Case

Temperature (°C) vs. Time (Minute)

- Temperature range: 20 to 30°C
- Time range: 2800 to 4300 minutes

Presentation Delivered: Jan 29, 2010
Cold Survival Thermal Predictions

Optical Bench/Optics Housing Temperature Predictions in Cold Survival Case

Temperature (°C) vs. Time (Minute)
Cold Survival Thermal Predictions

Scan Mirror Temperature Predictions in Cold Survival Case

Temperature (°C) vs. Time (Minute)
Cold Survival Thermal Predictions

Star Tracker, Gyro and Diffuser Temperature Predictions in Cold Survival Case

Temperature (°C)

Time (Minute)

ST 1 ST 2 Gyro Diffuser
Operating Mode Heater Power

<table>
<thead>
<tr>
<th></th>
<th>Peak Heater Power (W)</th>
<th>Orbital Average Heater Power (W)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Bench/Optics Enclosure</td>
<td>321†</td>
<td>225‡</td>
</tr>
<tr>
<td>Detectors</td>
<td>6.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Star Trackers</td>
<td>16.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Diffuser</td>
<td>12.6</td>
<td>8.8</td>
</tr>
<tr>
<td>Total</td>
<td>357</td>
<td>250</td>
</tr>
</tbody>
</table>

70% duty cycle per GSFC Gold Rules.
†819 W in 2006 study.
‡573 W in 2006 study.
Survival Heater Power

<table>
<thead>
<tr>
<th>Component</th>
<th>Peak Heater Power (W)</th>
<th>Orbital Average Heater Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Bench/Optics Enclosure</td>
<td>154†</td>
<td>108‡</td>
</tr>
<tr>
<td>Star Trackers</td>
<td>16.6</td>
<td>11.7</td>
</tr>
<tr>
<td>Gyro</td>
<td>22.9</td>
<td>16.1</td>
</tr>
<tr>
<td>Diffuser</td>
<td>11.3</td>
<td>7.9</td>
</tr>
<tr>
<td>Detector Electronics*</td>
<td>22.0</td>
<td>15.4</td>
</tr>
<tr>
<td>MEB*</td>
<td>58.4</td>
<td>40.9</td>
</tr>
<tr>
<td>Payload I/F Electronics*</td>
<td>26.1</td>
<td>18.3</td>
</tr>
<tr>
<td>Aperture Cover Mechanism*</td>
<td>6.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Total</td>
<td>317</td>
<td>222</td>
</tr>
</tbody>
</table>

†295 W in 2006 study.
‡207 W in 2006 study.
*Not included in 2006 study.
Radiator Areas

<table>
<thead>
<tr>
<th>Location Coating Area (m²)</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Optical Bench/Enclosure</td>
<td>OSR</td>
</tr>
<tr>
<td>Outside Optical Bench/Enclosure</td>
<td>OSR</td>
</tr>
<tr>
<td>Patch on Electronics Box</td>
<td>OSR</td>
</tr>
<tr>
<td>Patch on Electronics Box</td>
<td>OSR</td>
</tr>
<tr>
<td>Patch on MEB</td>
<td>OSR</td>
</tr>
<tr>
<td>Patch on C&DH (thermal sharing)</td>
<td>OSR</td>
</tr>
<tr>
<td>Patch on Star Trackers</td>
<td>OSR</td>
</tr>
<tr>
<td>Patch on Gyro</td>
<td>OSR</td>
</tr>
</tbody>
</table>

Also require baffle/sunshade
Thermal System Mass Estimate/TRL

<table>
<thead>
<tr>
<th>Sub System Components</th>
<th>Mass Ea (kg)</th>
<th>Qty</th>
<th>Mass Total (kg)</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLI on optics enclosure and optical bench</td>
<td>15-layers; 20 m2</td>
<td>12</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>MLI on scan mirror aperture sunshade</td>
<td>15-layers; 0.9 m2</td>
<td>0.54</td>
<td>0.54</td>
<td>9</td>
</tr>
<tr>
<td>MLI on Diffuser</td>
<td>15-layers; 1.8 m2</td>
<td>1.08</td>
<td>1.08</td>
<td>9</td>
</tr>
<tr>
<td>MLI on Star Trackers</td>
<td>15-layers; 1.8 m2 each</td>
<td>1.08</td>
<td>3</td>
<td>3.24</td>
</tr>
<tr>
<td>MLI on Gyro</td>
<td>15-layers; 0.3 m2</td>
<td>0.18</td>
<td>3</td>
<td>0.54</td>
</tr>
<tr>
<td>MLI on Detector radiators and sunshields</td>
<td>15-layers; 1.634 m2</td>
<td>0.98</td>
<td>1</td>
<td>0.98</td>
</tr>
<tr>
<td>MLI on FPA assemblies, K1100 Heat Straps and CCHPs</td>
<td>0.45 m2</td>
<td>0.27</td>
<td>1</td>
<td>0.27</td>
</tr>
<tr>
<td>MLI on MEB, payload C&DH electronics and detector electronics</td>
<td>0.6 m2</td>
<td>0.36</td>
<td>1</td>
<td>0.36</td>
</tr>
<tr>
<td>MLI on CEDI strongback</td>
<td>15-layers; 15 m2</td>
<td>9</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Velcro, buttons, adhesive etc. for MLI blankets</td>
<td></td>
<td>2.5</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Aeroglate Z307 black paint</td>
<td>20 m2</td>
<td>1.736</td>
<td>1</td>
<td>1.736</td>
</tr>
<tr>
<td>K1100 heat straps from FPAs to CCHPs 0.076 m long</td>
<td></td>
<td>0.09</td>
<td>3</td>
<td>0.27</td>
</tr>
<tr>
<td>Ammonia CCHPs embedded in optical bench</td>
<td>2.8 m long</td>
<td>0.84</td>
<td>15</td>
<td>12.6</td>
</tr>
<tr>
<td>Ethane CCHPs from heat straps to FPA radiators</td>
<td>1.2 m long</td>
<td>0.292</td>
<td>4</td>
<td>1.168</td>
</tr>
<tr>
<td>SWIR FPA radiator</td>
<td>aluminum; 0.337 m2</td>
<td>2.887</td>
<td>1</td>
<td>2.887</td>
</tr>
<tr>
<td>SWIR FPA radiator OSR and adhesive</td>
<td>0.337 m2</td>
<td>0.438</td>
<td>1</td>
<td>0.438</td>
</tr>
<tr>
<td>SWIR FPA radiator sunshield shroud</td>
<td>Aluminum; 1.022 m2</td>
<td>4.379</td>
<td>1</td>
<td>4.379</td>
</tr>
<tr>
<td>Bands 1 and 2 FPA radiator</td>
<td>Aluminum; 0.0748 m2</td>
<td>0.642</td>
<td>1</td>
<td>0.642</td>
</tr>
<tr>
<td>Bands 1 and 2 radiator sunshield shroud</td>
<td>Aluminum; 0.200 m2</td>
<td>0.857</td>
<td>1</td>
<td>0.857</td>
</tr>
</tbody>
</table>
Thermal System Mass Estimate/TRL Cont’d

<table>
<thead>
<tr>
<th>Sub System Components</th>
<th>Mass Ea (m²)</th>
<th>Qty</th>
<th>Mass Total (kg)</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bands 1 and 2 radiator OSR and adhesive</td>
<td>0.0748</td>
<td>0.097</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Star Trackers radiator OSR and adhesive</td>
<td>0.0835</td>
<td>0.109</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Gyro radiator OSR and adhesive</td>
<td>0.0968</td>
<td>0.126</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>MEB radiator OSR and adhesive</td>
<td>0.241</td>
<td>0.314</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Payload C&DH radiator OSR and adhesive</td>
<td>0.11</td>
<td>0.143</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>SWIR Detector Electronics radiator OSR and adhesive</td>
<td>0.0616</td>
<td>0.08</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Bands 1 &2 Detector Electronics radiator OSR and adhesive</td>
<td>0.0308</td>
<td>0.04</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Heaters on optical bench/optics enclosure</td>
<td>15 cm x 30 cm each</td>
<td>0.0294</td>
<td>432</td>
<td>9</td>
</tr>
<tr>
<td>Heaters on Star Trackers, Gyro & Diffuser</td>
<td>5.1 cm x 6.4 cm each</td>
<td>0.002</td>
<td>64</td>
<td>9</td>
</tr>
<tr>
<td>Heaters on FPAs</td>
<td>1.5 cm x 1.5 cm each</td>
<td>0.001</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Heaters on MEB, Payload C&DH , Detector Electronics and aperture cover mechanism</td>
<td>5.1 cm x 6.4 cm each</td>
<td>0.0018</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>Thermistors/Platinum RTDs</td>
<td>0.001</td>
<td>0.08</td>
<td>80</td>
<td>9</td>
</tr>
<tr>
<td>Thermostats</td>
<td>0.006</td>
<td>1.74</td>
<td>290</td>
<td>9</td>
</tr>
<tr>
<td>Adhesive for Thermostats & Thermistors</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>71.3156</td>
<td></td>
</tr>
</tbody>
</table>

123 kg in 2006 study
Conclusions

• Passive cooling is thermally feasible for all 3 detectors

• Operating mode heater power for optics enclosure and optical bench is 348 W smaller than 2006 study due to smaller aperture and MLI areas
 - Reduces spacecraft electrical power system size and cost

• Mass of thermal system is about 50 kg smaller than 2006 study

• Even if MEB, payload C&DH and detector readout electronics are included, survival heater power is 20 W smaller than 2006 study
Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission

~ Concept Presentation ~

Contamination

January 29, 2010
Early Concerns

- Large instrument
 - Only largest clean room facility will do
 - Large optics that require special handling
 - Two large entrance apertures
 - Large internal spaces that can retain contaminants

- Significant number of optics
 - Number of optical surfaces
 - Band 1 - 11, Band 2 - 13, SWIR - 11
 - Scan Mirror is in an exposed position
 - Operational constraint is needed to prevent solar viewing

- Solar Calibration System
 - Requires a second aperture
 - Two large diffusers that are sensitive to molecular contamination

- Lunar and Stellar Calibration Capability
 - Requires a large primary aperture and light shield

- Scan Mirror needs a safe position
 - Facing away from sun
 - Position for launch
Solar Calibration Considerations

- **Two large Diffusers**
 - May be (white Teflon) or sandblasted quartz over aluminum
 - Elliptical in shape, 10% larger area than scan mirror.
 - May have to be a mosaic due to large size.

- **Two large doors**
 - Main aperture and solar calibration aperture
 - Both multi-use
 - Both can be closed on launch

- **Transmission Diffuser may save space**
 - Transmission differ would have a lower TRL number
 - Two technologies available:
 - Drilled plate - Less flight heritage, sensitive to particle contamination
 - Teflon - Long flight heritage, Teflon becomes brittle from radiation
 - Trade study required
GEO CAPE Wavelength Sensitivity

Line: 50 ang Molecular Contamination

Launch & end-of-life estimate of throughput loss
With 3% loss budget

Absorption Coefficient (1/Angstrom)

GEO CAPE Study Week: 1/25 - 1/29/10
Presentation Delivered: Jan 29, 2010
Conclusions

• No Show-stoppers
 - Only commonly used materials and processes are required

• Concerns
 - Large instrument
 • Only largest cleanrooms and vacuum chambers can be used
 - Effects cost and schedule
 • Custom fixtures are required
 - Large diffusers
 • Larger than heritage examples
 - Launch vents requires
 • Large volume of gas inside the instrument on launch
 • Doors are closed on launch
 • Machined vents are needed