Infectious Disease Risk Associated With Space Flight

Human Exploration

Duane L. Pierson Ph.D.
NASA Johnson Space Center
April 2010
SORRY, JUST BECAUSE YOU HAVE 20 MILLION MILES ON YOUR ODOMETER AND A FEW LOOSE TILES ON YOUR '74 VEHICLE, IT DOESN'T MAKE YOU ELIGIBLE FOR THE CASH FOR CLUNKERS PROGRAM.
Shuttle Has Been
Moved To VAB And
And Will Be Attached
To External Tank
MICROBIOLOGICAL RISKS

<table>
<thead>
<tr>
<th>Sources</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crewmembers</td>
<td>Preflight screening, quarantine, vaccination, antimicrobials, antivirals</td>
</tr>
<tr>
<td>Water</td>
<td>Preflight/inflight monitoring, biocides</td>
</tr>
<tr>
<td>Food</td>
<td>Preflight analyses</td>
</tr>
<tr>
<td>Air</td>
<td>Preflight/inflight monitoring, filtration</td>
</tr>
<tr>
<td>Surfaces</td>
<td>Preflight/inflight monitoring, disinfection</td>
</tr>
<tr>
<td>Payloads</td>
<td>Preflight cleaning, biosafety assessment, disinfection</td>
</tr>
</tbody>
</table>
FACTORS INCREASING DISEASE RISK

- Crowded living conditions
- Closed-loop environment (water/air)
- Reduced capability for personal hygiene
- Limited clean-up and disinfection capability
- Inability to isolate contagious crewmember
- Limited treatment capability and crew return
- Altered immune response
SPACEFLIGHT FACTORS AFFECTING INFECTIOUS DISEASE RISK

Positive Factors

• Healthy well-conditioned crew
• Preflight exams & restricted access
• No exposure to many public health pathogens
• Diagnostic/treatment on board
• Earth to orbit medical consult

Negative Factors

• Isolated/enclosed environment
• Recycled air/water (urine, humidity condensate)
• Limited diagnostics/treatment on board
• Remote location/limited return pathogens (e.g. TB, HIV, Hep A/B/C)
• Uniquely stressful environment
• Diminished Immunity
• Increased virulence in bacteria
ADAPTATION TO SPACEFLIGHT

Psychological/Behavioral adaptations
Performance issues
Taste and odor sensitivity
Gastrointestinal alterations
Fluid shifts, hematological changes
Muscle loss
Pro-sensory adaptations
Cardiovascular adaptations
Sleep and circadian rhythm disturbances
Bone loss
Immune changes
ENVIRONMENTAL FACTORS AFFECTING IMMUNITY

Anxiety
Confinement
Isolation
Physical
Psychosocial
Sleep deprivation
Microgravity
Acceleration
Radiation

STRESS

CONTAMINANTS

Microorganisms
Mold spores
Chemicals
Dust mites
Allergens
Insects

IMMUNITY
HUMAN SPACE FLIGHT IMMUNOLOGY

- White blood cell count: Increased (neutrophils)
- Lymphocyte proliferative responses: Decreased
- Cell mediated immunity: Decreased
- Cytokine production: Increased/Decreased
- Humoral factors: No Change
- Specific antibody response: No Change
- Neutrophil/Monocyte functions: Decreased
- NK cell cytotoxicity: Decreased
- Latent virus reactivation: Increased
INFECTIOUS DISEASES IN ASTRONAUTS
STS-1 Through STS-108

- Fungal infections
- Flu-like syndrome
- Urinary tract infections
- Aphthous stomatitis
- Viral gastrointestinal disease
- Subcutaneous skin infections
- Viral reactivation
- URI (common cold, sore throat)
- Sty

IMMUNE SYMPTOMS

- Allergic rhinitis
- Hypersensitivity
- Coughing/Sneezing
- Rashes/Skin disorders
- Infectious of cuts
- Delayed wound healing

Source: Medical Informatics & Health Care Systems Branch Epidemiology Section; July 2002
Stress Immune Response

SAM
Sympathetic Adrenal Medullary System

SYSTEM STRESSORS

HPA Axis
Hypothalamus Pituitary Adrenal Axis

When the system is stressed, the Hypothalamus releases CRH to the Pituitary Gland

The Pituitary Gland releases ACTH into the bloodstream, where it travels to the Adrenal Cortex

The Adrenal Cortex releases Corticosteroids (stress hormones) into the bloodstream

The Adrenal Medulla releases Catecholamines (stress hormones) into the bloodstream

Stress hormones contribute to immune dysregulation

- Increased reactivation of herpes virus
- Allergies
- Others
Why Herpes viruses?

Herpesviruses are:

1. The most readily recognized latent viruses.
2. Ubiquitous and represent important infectious disease risks with monogenic potential.
4. Diminished immunity results in reactivation & shedding of latent viruses

Specific Application:
May be used as an early predictor of impending medically significant changes in the immune response.
LATENT VIRAL REACTIVATION

Herpes Simplex
Gingivostomatitis
Mild pharyngitis fever

Varicella
Chicken pox

Primary Infection

Cold Sore

Zoster (shingles)

Stress
Recurrence

Latent virus

Virus transit up peripheral nerve
Sensory neuron in dorsal root ganglion

Virus transit down peripheral nerve
Spinal cord

Activation of virus in neuron
Herpes virus Infections

4 of 8 herpes viruses reactivate in response to spaceflight

- Herpes Simplex Virus (HSV-1 and HSV-2)
 - Ocular herpes, encephalitis
- Varicella-zoster virus (VZV)
 - Chicken pox, shingles
- Epstein-barr virus (EBV)
 - Mononucleosis, tumors
- Cytomegalovirus (CMV)
 - Mononucleosis, hepatitis
Space Analogs

Antarctica

Closed Chamber

Aquarius
The World’s Only Underwater Laboratory

Bed Rest
Antarctica: EBV

Subject 1

EBV DNA O.D.

Normal
Hypoergic
Anergic

CMI

Pre Isolation Post

Days in Isolation

Mehta et al., J. Medical Virology 2000
Space Shuttle EBV Copies

- **n = 32**
 - **Space Flights = 10**
 - **Frequency: 16%**
 - **EBV copies 417 ± 31**

- **EBV Frequency: 29%**
 - **EBV copies 40 ± 2**

- **EBV Frequency: 16%**
 - **EBV copies 44 ± 5**

Control
- **n = 18**
- **Frequency: 3%**
- **Copies: 40**

Pierson et al., Brain Behavior & Immunity, 2005
Fold Increase In EBV Copy Numbers

- NEEMO: n=12
- Antarctic: n=16
- Space Shuttle: n=32
- Mir: n=2

ISS: ?

Fold Increase in Viral Copies From Preflight
Summary of Nested RT-PCR Analysis of EBV Gene Expression in Healthy Young Adults

<table>
<thead>
<tr>
<th>Subject</th>
<th>Actin</th>
<th>EBER1</th>
<th>Latency I-III</th>
<th>IE/Ea Replicative</th>
<th>Late Replicative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qp</td>
<td>LMP2A</td>
<td>Cp/Wp</td>
</tr>
<tr>
<td>1</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Legend (+++ = highly expressed; ++ = moderately expressed; + = low expression); *E*Immediate early/early.
<table>
<thead>
<tr>
<th>Mission</th>
<th>Subject</th>
<th>Time</th>
<th>EBER1</th>
<th>Qp</th>
<th>LMP2A</th>
<th>Cp/Wp</th>
<th>LMP1</th>
<th>EBNA2</th>
<th>IE/E<sup>c</sup> Replicative</th>
<th>Late Replicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuttle</td>
<td>1</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>L-10</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISS</td>
<td>1</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>L-10</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>L-10</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>L-10</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R+0</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

*Legend (+++ = highly expressed; ++ = moderately expressed; + = low expression). Collection time: Launch minus 10-days (L-10); Recovery/landing day (R+0). Average Shuttle flight = 11 days; average ISS mission = 180 days; Immediate early/early.
Space Shuttle: CMV Frequency

- **Astronauts**: n = 71
- **Control**: n = 61
Incidence of Shingles and Post Herpetic Neuralgia (PHN)

Shingles: Reactivation of VZV producing blisters in dermatomal region
• Pain can be excruciating

PHN: Prolonged, sometimes incapacitating, lasting weeks, months, or years.

“In extreme cases, PHN can be worse than death.”

CDC

• One million cases of shingles per year
• Risk of shingles increases >10-fold with age
• Lifetime risk of developing zoster: 25-30%
• 100,000 to 200,000 cases of PHN per year
Childhood chicken pox becomes dormant in the nervous system.

- Hair shaft: Initial stage consists of burning pain and sensitive skin.
- Weakened immune system reawakens virus.
- Dormant Varicella virus.
- Nerve fiber.
- Skin surface: Blisters develop resembling chicken pox and fill with pus.
- Blisters eventually burst, crust over, and heal.
- Nerve damage can cause postherpetic neuralgia.

Primary Disease (Chicken Pox)

Reactivation (Shingles)

Stress on the immune system allows the latent virus to reactivate as shingles.

Shingles outbreak.
First Report Of
VZV DNA In Astronauts’ Saliva

Mehta et al., J Medical Virology, 2004

Real Time PCR
Nested PCR

of VZV Positive Samples

Preflight Inflight Postflight

n = 8
of Spaceflights = 3

In-flight samples Pre and Post flight samples
Clinical Significance?

Is the Virus shed in Saliva Infectious?
Salivary VZV In Shingles Patients & Astronauts

VZV copies in saliva of a 21 yr old patients with symptoms of Shingles.

Mehta et al., 2008; Journal of Infectious Diseases
Change in Pain Index vs. Change VZV Copies After One Week of Treatment in Shingles Patients.

\[\log_{10} \text{Change in VZV Copies in Shingles Patients} \]

Note in almost every case, data points fell in quadrant C (both decreased)
NFkB in Astronauts

% of NF-kB nuclear positive cells (Mean +/- SE)

- All (N=10)
- Shedders (N=7)
- Non-Shedders (N=3)
- Control (N=7)

Time Points:
- L-10
- R+0
- R+14
- Baseline
Cytokines

Graphs by ished

cytokine concentration (log10 pg/ml)

IL10

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IL6

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EBV in International Space Station

EBV copies/ml saliva

Pre Flight | In Flight | Post

-240 -200 -160 -120 -80 -40 0 40 80 120 160 30
CONCLUSIONS

- Space flight is a unique stress model.
- Antarctic Science Stations model many aspects of space flight.
- Stress associated with space flight results in increased reactivation of EBV, CMV, and VZV.
- Viral reactivation in astronauts appears to be linked to duration in space (stress/microgravity?).
- Space flight-associated stress manifested through the HPA-axis result in increased stress hormones, reduced CMI, and increased viral reactivation.
- Viral reactivation may be used as an early predictor of impending medically significant changes in the immune response.

VZV can reactivate subclinically in healthy individuals after acute stress.
Changes in Microbial Pathogen Characteristics
Collaborative Studies
PI: Dr. Cheryl Nickerson, Arizona State University

Salmonella typhimurium

Salmonella grown in spaceflight analogues displayed increased virulence

Salmonella grown in spaceflight analogues altered their gene and protein expression
Classic virulence genes down-regulated
Ion response genes/pathways

Salmonella grown in spaceflight analogues altered their response to environmental stresses
Macrophage, acid, thermal, osmotic, oxidative

Rotating Wall Vessel bioreactor reproduces aspects of microgravity (Low fluid shear, low mass diffusion)

MICROBE
Shuttle Atlantis, STS-115, launch Sept 9, 2006
Salmonella enterica Typhimurium experimental design and results

Salmonella grown during spaceflight displayed increased virulence in rich media
Killed mice faster and killed mice at lower doses than identical bacterial cultures grown on the ground
Virulence change dependent on the growth media

Salmonella grown during spaceflight altered their gene expression
167 genes differentially regulated
Ion response genes/pathways
Identification of the global molecular regulator, hfg, (“master switch”) of spaceflight induced cellular responses

Salmonella grown during spaceflight showed the presence of a material resembling a biofilm
Biofilms are important in disease causing potential and vehicle system failure

Synchronous ground controls maintained under identical conditions as those on-board Shuttle - ground and in-flight hardware loaded with same sample.

MDRV
Shuttle Endeavour, STS-123, launch March 11, 2008
Experimental design and results

Confirmed the effect of spaceflight on
Salmonella virulence observed in MICROBE
Demonstrated a “spaceflight response” regardless of culture media

Established a link between the spaceflight
response and media composition
Ion levels can be modulated to control spaceflight-associated
virulence response of *Salmonella*
Phosphate ion sufficient to alter related pathogenesis responses in
spaceflight analogue model.

In combination with MICROBE results,
MDRV is showing a common conserved
response in many microorganisms
MICROBE and MDRV also evaluating organisms, such as
Pseudomonas aeruginosa and *Candida albicans*

* Synchronous ground controls maintained under identical conditions as those on-board Shuttle - ground and in-flight hardware loaded with same sample.

Wilson et al., 2008, PLOS One 3(12): e3923
Overview

Increased Stress
Increased Stress

Increased Stress Hormones

Decreased Immunity

Increased Viral Reactivation

- **n = 32**
- **Space Flights = 10**
- **EBV Frequency:** 29%
- **EBV copies:** 40 ± 2

EBV Frequency: 16%

EBV copies: 417 ± 31

- **Control n=18**
- **Frequency:** 3%
- **Copies:** 40

EBV Frequency: 16%

EBV copies: 44 ± 5
Increased Stress

Increased Stress Hormones

Decreased Immunity

EBV DNA O.D.

Increased Viral Reactivation

Disease Risks
- Shingles
- Ocular Herpes
- Hepatitis
- Tumors
- Mononucleosis
- Skin Lesions
Increased Stress

Increased Stress
Hormones

Decreased Immunity

EBV DNA O.D.

Subject 1

Normal

Hypoergic

Anergic

Increased Viral
Reactivation

Cases of Shingles/1000/year

Shingles
Ocular Herpes
Hepatitis
Tumors
Mononucleosis
Skin Lesions

Source: New England Journal of Medicine
Collaborators

- Microbiology Laboratory, JSC-NASA, Houston, TX
- Stephen K. Tyring, M.D., Ph.D., UTHSC, Houston, TX
- Don Gilden, M.D., UCHS, Denver, CO
- Randall J. Cohrs, Ph.D., UCHS, Denver, CO
- Ronald Glaser, Ph.D., Ohio State University, Columbus, OH
- Mark Laudenslager, Ph.D., UCHS, Denver, CO
- Desmond J. Lugg, M.D., Australian Antarctic Division, Hobart, Australia
- Raymond P. Stowe, Ph.D., UTMB, Galveston, TX
- Janet S. Butel, Ph.D., NSBRI/Baylor College of Medicine, Houston, TX
- Indresh Kaur, Ph.D., M.D. Anderson, Houston, TX
- Alan Feiveson, JSC-NASA, Houston, TX
Questions?
IMPACT OF STRESS

STRESS LEVELS AND MISSION IMPACT

Space Shuttle ISS Mir Moon Mars
Figure 1: NF-κB activation in the PBMC of astronauts at different time points. Cells from astronauts at different time points were collected were analyzed for nuclear p65 as described in Materials and Methods.

In the cytoplasm (that is; in normal conditions), NF-κB consists of a heterotrimer of p50, p65, and IκBα. When it gets activated, that is; under stressed or diseased conditions IκBα undergo phosphorylation and separated from the p65-p50 complex. Then the p65-p50 subunit translocated to the nucleus, attach to specific regions of DNA (that is; the promoters of some genes) and initiates gene transcription that are involved in inflammation and cancer. In this figure black arrow represents inactivated form of NF-κB (in the cytoplasm), white arrow represents nuclear translocation of NF-κB (p65-p50 complex) and red arrow represents hematoxyline staining in the nucleus of the cells that have inactivated form of NF-κB.
CMV In Space Shuttle And International Space Station Crewmembers

<table>
<thead>
<tr>
<th></th>
<th># of Space Shuttle crewmembers shed CMV</th>
<th># of International Space Station crewmembers shed CMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 d before Launch</td>
<td>0/7</td>
<td>0/5</td>
</tr>
<tr>
<td>45 d before Launch</td>
<td>0/7</td>
<td>0/5</td>
</tr>
<tr>
<td>10 d before Launch</td>
<td>3/7</td>
<td>not done</td>
</tr>
<tr>
<td>After flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At Landing</td>
<td>4/7</td>
<td>4/5</td>
</tr>
<tr>
<td>14 d after landing</td>
<td>4/7</td>
<td>not done</td>
</tr>
<tr>
<td>30 d after Landing</td>
<td>not done</td>
<td>4/5</td>
</tr>
<tr>
<td>Overall</td>
<td>4/7</td>
<td>4/5</td>
</tr>
</tbody>
</table>
Conclusions

1. Four of the eight herpes viruses reactivate in response to short term shuttle and long term ISS flights.

2. Reactivation and shedding of EBV, CMV, and VZV on ISS was more pronounced and shed for longer time post flight than short duration shuttle flights.

3. Effects of stressors associated with spaceflight are mediated through the HPA axis and the SAM axis resulting in diminished cellular immunity.

4. Changes on circadian rhythms of cortisol and DHEA occur both ISS and SS crewmembers.

5. Spaceflight developed PCR technology has been transferred to Physicians’ laboratories for diagnosis of Shingles and post herpetic neuralgia.
<table>
<thead>
<tr>
<th>Subject</th>
<th>EBER-1</th>
<th>Qp</th>
<th>Cp/Wp</th>
<th>LMP-1</th>
<th>EBNA-2</th>
<th>BZLF-1</th>
<th>SM</th>
<th>Fp</th>
<th>gp220</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>5</td>
<td>+++</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>7</td>
<td>+++</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>9</td>
<td>+++</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>11</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: accumulated data for multiple (2-3) timepoints for each elderly subject.

* Legend (+++ = highly expressed; ++ = moderately expressed; + = low expression)
 * + = EBV DNA present
CURRENT FOCUS: ON VZV

Unlike other neurotropic alphaherpesviruses in which primary infection is often asymptomatic, VZV (chickenpox) is characterized by malaise, fever, and an extensive vesicular rash.

The occurrence of VZV 2 days before space flight in a 47 year-old healthy astronaut from a pool of 81 physically fit astronauts prompted our search for subclinical VZV reactivation during times of stress.
NFkB in 10 astronauts before and after space flight

Mean +/- SE

% of NF-kB nuclear positive cells (Mean +/- SE)

- Non Shedders (N = 3)
- Shredders (N = 7)
- Control (N = 7)
Public Health

* Mycobacterium tuberculosis
* Helicobacter pyogenes
* Staphylococcus aureus (MRSA)
* Meningitis
* STD’s
* Salmonella spp
* Childhood diseases (e.g., measles)
* Escherichia coli 0157: H7
* HIV
* HAV, HBV, HCV
* Herpes viruses
* Influenza (respiratory viruses)

Space Flight

* MRSA
* Streptococci
* Escherichia coli
* Pseudomonas aeruginosa
* Legionella pneumophila
* Salmonella
* Herpes viruses
* Norovirus
* Aspergillus
* Penicillium
* Candida
* Giardia
* Cryptosporidium
PREVENTIVE MEASURES

- Crew Physical Examinations
- Immunization
- Health Stabilization Program
- Quarantine
- Preflight Food Testing
- Payload Biosafety Evaluation
- Establishment of Acceptability Limits
- Systems Design
- Environmental Monitoring
- In-Flight Housekeeping
- In-Flight Diagnostic Capabilities
- Antimicrobials
Circadian rhythm of Salivary Cortisol in 27 healthy adults

Space Shuttle

<table>
<thead>
<tr>
<th>PRE-FLIGHT</th>
<th>FLIGHT</th>
<th>POST-FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 180</td>
<td>- 45</td>
<td>- 10</td>
</tr>
</tbody>
</table>

International Space Station

<table>
<thead>
<tr>
<th>PRE-FLIGHT</th>
<th>FLIGHT</th>
<th>POST-FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 180</td>
<td>- 45</td>
<td>- 10</td>
</tr>
</tbody>
</table>
The decline in CMI to VZV associated with zoster led to the hypothesis that infectious VZV would also be present in the saliva of astronauts subjected to stress of spaceflight. Herein, not only was the detection of salivary VZV DNA associated with spaceflight validated, but also infectious virus was also detected in saliva. This is the first demonstration of shed of infectious VZV in the absence of disease.

Recovery of infectious VZV from astronaut saliva. Human lung fibroblast cells cultures were inoculated with saliva from astronauts obtained on day 2 after landing. Typical herpes virus plaques were seen in cultures inoculated with saliva from subjects 1 and 2, but not with saliva from subject 3. The plaques stained with anti-VZV antibody but not with anti-HSV-1 antibody (not shown). magnification bar = 0.2 mm.