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Abstract   1 

 2 

Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a 3 

key variable in weather and climate models.  Here we assimilate LST retrievals from the 4 

International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) 5 

land surface models using an ensemble-based, off-line land data assimilation system.  LST is 6 

described very differently in the two models.  A priori scaling and dynamic bias estimation 7 

approaches are applied because satellite and model LST typically exhibit different mean values 8 

and variability.  Performance is measured against 27 months of in situ measurements from the 9 

Coordinated Energy and Water Cycle Observations Project at 48 stations.  LST estimates from 10 

Noah and CLSM without data assimilation ("open loop") are comparable to each other and 11 

superior to that of ISCCP retrievals.  For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), 12 

and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 13 

0.52 (ISCCP).   Assimilation of ISCCP retrievals provides modest yet statistically significant 14 

improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R.  The skill of 15 

surface turbulent flux estimates from the assimilation integrations is essentially identical to the 16 

corresponding open loop skill.  Noah assimilation estimates of ground heat flux, however, can be 17 

significantly worse than open loop estimates.  Provided the assimilation system is properly 18 

adapted to each land model, the benefits from the assimilation of LST retrievals are comparable 19 

for both models.       20 

21 



 

 2 

1.  Introduction 22 

Land surface conditions are intimately connected with the global climate system and have been 23 

associated, through different pathways, with atmospheric predictability.  Land surface 24 

temperature (LST) lies at the heart of the surface energy balance and is therefore a key variable 25 

in weather and climate models.  LST influences the latent and sensible heat fluxes to the 26 

atmosphere through which it affects the planetary boundary layer and atmospheric convection.  27 

LST also plays an important role in the assimilation of atmospheric remote sensing observations 28 

because atmospheric retrieval algorithms (or forward radiative transfer modeling) for surface-29 

sensitive (window) channels require information about land surface conditions.  Accurate LST 30 

specification is therefore critical to improving estimates of the surface water, energy, and 31 

radiation balance as well as atmospheric quantities, which in turn are all critical to improving 32 

weather and climate forecast accuracy.  33 

 34 

Satellite retrievals of LST (also referred to as "skin temperature") are available from a variety of 35 

polar orbiting and geostationary platforms carrying infrared and microwave sensors (Aires et al. 36 

2004, Jin 2004, Minnis and Khaiyer 2000, Pinheiro et al. 2004, Rossow and Schiffer 1991, 1999, 37 

Trigo and Viterbo 2003, Wan and Li 1997).  Land surface models (driven by observed 38 

meteorological forcing data or coupled to an atmospheric model) offer estimates of global land 39 

surface conditions, including LST.  Errors in the forcing fields, however, along with the 40 

imperfect parameterization of land-atmosphere interactions can lead to considerable drifts in 41 

modeled land surface states.  Land data assimilation systems combine the complementary 42 

information from modeled and observed land surface fields and produce dynamically consistent, 43 

spatially complete and temporally continuous estimates of global land surface conditions.  44 
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Assimilating LST retrievals into a land surface model should, in concept, improve model 45 

estimates of land surface conditions.   46 

 47 

There has been considerable progress in the methodological development and application of land 48 

data assimilation algorithms (Andreadis and Lettenmaier 2005, Balsamo et al. 2007, Crow and 49 

Wood 2003, Drusch 2007, Dunne and Entekhabi 2006, Mahfouf et al. 2009, Margulis et al. 2002, 50 

Pan and Wood 2006, Reichle et al. 2009, Seuffert et al. 2003, Slater and Clark 2006, Walker et 51 

al. 2001, Zaitchik and Rodell 2009, Zhou et al. 2006), with ensemble-based Kalman filtering and 52 

smoothing algorithms emerging as a common and promising method for land data assimilation.  53 

Development and applications of land data assimilation, however, have largely focused on 54 

assimilating observations of surface soil moisture, snow cover, and snow water equivalent, with 55 

less effort devoted to LST assimilation. 56 

 57 

The goal of this study is to investigate the potential for assimilating satellite retrievals of LST 58 

within a state-of-the-art land surface data assimilation system.  Specifically, LST retrievals from 59 

the International Satellite Cloud Climatology Project (ISCCP) are assimilated into the NASA 60 

Catchment land surface model (CLSM; Koster et al. 2000) and into the Noah land surface model 61 

(Ek et al. 2003) with the ensemble Kalman filter (EnKF) developed at the NASA Global 62 

Modeling and Assimilation Office (Reichle et al. 2009). For validation of the assimilation 63 

products we use in situ observations from the Coordinated Energy and Water Cycle Observations 64 

Project (CEOP).  We pay particular attention to bias between observed and modeled LST and 65 

have fitted the EnKF with several bias estimation algorithms designed specifically to address 66 

LST biases.  It will be shown that the assimilation algorithm must be customized for the model-67 

specific representation of LST.  68 
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2.  Background 69 

LST can be retrieved from infrared and microwave sensors on geostationary and polar-orbiting 70 

platforms, including the NOAA Geostationary and Polar-orbiting Operational Environmental 71 

Satellite series dating back to the early 1980’s.  Given the extensive global and multi-decadal 72 

record of satellite-based LST retrievals, and given the importance of accurate LST estimation in 73 

particular for global atmospheric data assimilation systems, it is telling that the challenge of 74 

operational LST assimilation has been largely unmet. 75 

 76 

The difficulties of LST data assimilation are rooted in the nature of LST retrievals and modeling.  77 

LST data from retrievals and land surface models typically exhibit strong biases that depend on 78 

observation time and location and that have been well documented (see, for instance, Jin et al. 79 

1997, Trigo and Viterbo 2003, Jin 2004; see also section 6 for examples).  Biases arise for a 80 

variety of reasons.  For instance, LST modeling is fraught with numerical stability problems 81 

because in nature the effective heat capacity associated with LST is very small.  Land modelers 82 

are thus forced to approximate the corresponding heat capacity as zero or to use a surface 83 

temperature prognostic variable that represents more than just a very thin layer.  The first 84 

approach, used for example in Noah, derives LST as a diagnostic variable from the surface 85 

energy balance.  The second approach, used for example in CLSM, lumps the vegetation and top 86 

few centimeters of soil matter into a single model prognostic variable with a small but non-zero 87 

heat capacity.  The latter approach is obviously at odds with satellite retrievals of LST, which 88 

describe the temperature in a much shallower layer at the land-atmosphere interface (vegetation 89 

or soil, as viewed from the satellite sensor).  On the other hand, the zero-heat capacity approach 90 

requires an additional connection between the diagnostic model LST variable and a model 91 
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prognostic variable to which data assimilation increments can be applied (so that they can alter 92 

the model forecast).  Additional discrepancies between the LST observed by the satellite and that 93 

computed by the land model stem from the inability of global land models to resolve the land 94 

surface at the same fine horizontal resolution as infrared satellite sensors. 95 

 96 

Satellite-based LST retrievals suffer from their own set of disadvantages and problems.  Infrared 97 

LST retrievals are only available under clear-sky conditions and are notoriously prone to cloud 98 

contamination (Jin 2004).  Microwave LST retrievals are available under cloudy conditions 99 

(Aires et al. 2004) but depend on uncertain estimates of microwave land surface emissivity.  100 

Both infrared and microwave LST retrievals depend on knowledge of atmospheric conditions 101 

above the LST footprint.  LST retrievals also depend on the look-angle, which is particularly 102 

important for retrievals at high viewing angles (Minnis and Khaiyer 2000, Pinheiro et al. 2004).  103 

The benefit of having a great variety and long record of different platforms from which LST can 104 

be retrieved is partly negated by the corresponding variety of sensor characteristics and sensor-105 

specific LST retrieval algorithms that make it difficult to achieve a homogeneous satellite LST 106 

record.  107 

 108 

Additional complications arise when model and satellite LST are combined in a data assimilation 109 

system.  The strong seasonal and diurnal cycles of LST must be considered because error 110 

characteristics may depend on time-of-day and season.  Moreover, obvious problems result when 111 

(clear-sky) LST retrievals are assimilated into a model at a time and location for which the model 112 

state or forcing indicate cloudy conditions.  Because the infrared and microwave emissivities of 113 

the land surface are not well known, it is difficult to compare the radiometric temperature 114 
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observed by the satellite with the physical temperature of the land model.  Last but not least, the 115 

dearth of validating in situ observations of LST and land surface fluxes is a severe impediment to 116 

the validation of data products from satellite observations, modeling, and data assimilation.  117 

 118 

One major development path is to assimilate LST retrievals into a simple representation of the 119 

land surface energy balance using an adjoint-based variational assimilation approach (Castelli et 120 

al. 1999; Boni et al. 2001; Caparrini et al. 2004; Sini et al. 2008).  This elegant method requires 121 

only a minimal amount of ancillary data and provides robust estimates of evaporative fraction.  It 122 

is not, however, easily applicable to existing global atmospheric or land data assimilation 123 

systems because it is very difficult to develop and maintain adjoint models for the complex land 124 

surface model components in such systems.  Recently, Meng et al. (2009) developed the adjoint 125 

model of just the surface energy balance component of the Common Land Model.  Using the 126 

variational method, the authors assimilated in situ LST observations from four AmeriFlux sites 127 

for up to 20 days and report improvements in evapotranspiration estimates when verified against 128 

coincident in situ observations.   129 

 130 

Other off-line surface temperature assimilation studies used filtering techniques.  Kumar and 131 

Kaleita (2003) used the Extended Kalman filter to assimilate in situ observations of surface soil 132 

temperature from a single site for one month into a soil heat transfer model based on the 133 

discretized diffusion equation.  Lakshmi (2000) merged one year of satellite retrievals of LST 134 

over the Red-Arkansas basin into a simple two-layer model of the surface water and energy 135 

balance. 136 

 137 
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A few attempts have been made to adjust terms in the surface energy balance of atmospheric 138 

models in response to satellite LST retrievals.  McNider et al. (1994) describe a technique to 139 

assimilate satellite LST into the surface energy budget of a regional-scale atmospheric model.  140 

Their method assumes that surface soil moisture is the least known parameter in the early-141 

morning surface energy budget.  Van den Hurk et al. (2002) assimilated satellite LST and near-142 

surface relative humidity measurements into a regional weather forecast model.  By adjusting the 143 

root zone soil moisture and the roughness length for heat the authors find small improvements in 144 

the surface energy balance.  Garand (2003) outlines a variational method for a unified land and 145 

ocean surface skin temperature analysis, including a linear a priori bias correction of the 146 

assimilated radiances.   147 

 148 

Bosilovich et al. (2007) developed an algorithm for LST assimilation into a global model that 149 

introduces an incremental bias correction term into the model’s surface energy budget.  In 150 

contrast to the McNider et al. (1994) approach, all temperature-dependent terms in the surface 151 

energy budget respond directly to the LST retrievals.  In its simplest form, the Bosilovich et al. 152 

(2007) algorithm estimates and corrects a constant time mean bias for each grid point; additional 153 

benefits are attained with a refined version of the algorithm that allows for a correction of the 154 

mean diurnal cycle.  The results of Bosilovich et al. (2007) indicate that LST assimilation 155 

improves estimates of 2m air temperature, both in mean and variability, in a coupled land-156 

atmosphere model.  Neglecting the diurnal cycle of the LST bias causes degradation of the 157 

diurnal amplitude of background model air temperature in many regions.  In situ measurements 158 

of energy fluxes at several locations were used to inspect the surface energy budget more closely.  159 

LST assimilation generally improves the sensible heat flux and, in some cases, it improves the 160 
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Bowen ratio.  At many stations, however, LST assimilation increases slightly the bias in the 161 

monthly latent heat flux.  A critical limitation of the method of Bosilovich et al. (2007) is the 162 

assumption of unbiased LST retrievals.   163 

 164 

In this paper, we restrict ourselves to uncoupled land data assimilation and test several variants 165 

of the bias estimation strategy of Bosilovich et al. (2007).  We also explore an alternative 166 

strategy of scaling the LST retrievals into the climatology of the modeled LST.  As we will show 167 

in section 6, not scaling the LST retrievals prior to (uncoupled land) data assimilation can create 168 

serious imbalances in the model-generated mass and energy fluxes and can lead to entirely 169 

unrealistic land surface fluxes.  We test these approaches with two land surface models that 170 

represent LST very differently: CLSM and Noah (section 4).  Our results are directly linked to 171 

weather and climate prediction applications because these two land models are used in the 172 

atmospheric data assimilation systems of the NASA Global Modeling and Assimilation Office 173 

(GMAO) and the NOAA National Centers for Environmental Prediction (NCEP), respectively.  174 

175 
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3.  Data 176 

In this study, we assimilate LST retrievals from ISCCP (http://isccp.giss.nasa.gov; Rossow and 177 

Schiffer 1991, 1999).  The ISCCP archive contains satellite-based estimates of global cloud 178 

cover and radiative properties from 1983 through the present (recent data are added with a 179 

latency of about 1 year), and is based on observations from an international network of 180 

meteorological satellites.  Specifically, the ISCCP 30 km Pixel Level Cloud Product (DX) 181 

includes global, 3-hourly, clear-sky LST retrievals from infrared radiances.  For this study, we 182 

extracted LST retrievals from the DX archive for the geostationary platforms and aggregated the 183 

data to a global latitude-longitude grid with 1 degree resolution for assimilation into our system. 184 

 185 

The availability of validating land surface temperature and flux data is very limited.  In this 186 

study, we use the comparably large collection of such data provided by CEOP 187 

(http://www.ceop.net) to validate the data assimilation products.  Specifically, we obtained 188 

hourly data from the network of CEOP Reference Sites from 1 October 2002 through 31 189 

December 2004 (Figure 1, Table 1).  Sufficient data for validation are available at 48 distinct 190 

sites, of which 19 sites have LST data, 30 have latent heat (LH) and sensible heat (SH) flux data, 191 

and 20 sites have ground heat (GH) flux data.  Only 4 stations have LST as well as LH, SH, and 192 

GH observations sufficient for validation (Cabauw, Bondville, Lindenberg Falkenberg, and 193 

Lindenberg Forest).  The hourly CEOP data were aggregated to 3-hourly averages for 194 

comparison with the 3-hourly retrieval, model, and assimilation products. 195 

 196 

The surface meteorological forcing data for the two land models are from the Global Land Data 197 

Assimilation Systems (GLDAS) project (Rodell et al. 2003; http://ldas.gsfc.nasa.gov) and were 198 
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provided at 3-hourly time steps and at 2º and 2.5º resolution in latitude and longitude, 199 

respectively.  The GLDAS data stream is based on output from the global atmospheric data 200 

assimilation system at the NASA Global Modeling and Assimilation Office (Bloom et al. 2005) 201 

adjusted with pentad precipitation observations from the Climate Prediction Center Merged 202 

Analysis of Precipitation (CMAP; http://www.cdc.noaa.gov/cdc/data.cmap.html) and daily 203 

estimates of surface radiation from the Air Force Weather Agency (AFWA) Agricultural 204 

Meteorology (AGRMET) system.  The observation-based corrections ensure that the forcing data 205 

and hence the land model output are as close to reality as is possible (without the benefit of 206 

assimilating the LST retrievals).  207 

208 
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4.  Data assimilation system 209 

4.a.  The Catchment and Noah land surface models 210 

Modeled LST and land surface fluxes are from integrations of CLSM (Koster et al. 2000) and 211 

Noah (Ek et al. 2003).  Again, these two models are the land model components of the 212 

atmospheric data assimilation and forecasting systems at NASA GMAO and NOAA NCEP, 213 

respectively.  Both models dynamically predict land surface water and energy fluxes in response 214 

to surface meteorological forcing but follow markedly different approaches to modeling soil 215 

moisture and LST.   216 

 217 

CLSM’s basic computational unit is the hydrological catchment (or watershed).  The global land 218 

surface is divided into catchments (excluding inland water and ice-covered areas) with a mean 219 

linear scale of around 50 km (ranging from a few km to 250 km).  Unlike traditional, layer-based 220 

models, CLSM includes an explicit treatment of the spatial variation of soil water and water table 221 

depth within each hydrological catchment based on the statistics of the catchment topography.  222 

The surface energy balance is computed separately for the (dynamically varying) saturated, 223 

transpiring, and wilting sub-areas of each catchment.  In each of these three sub-areas, the bulk 224 

temperature of the vegetation canopy and the top 5 cm of the soil column is modeled with a 225 

"surface temperature" (TSURF) prognostic variable that is specific to the soil moisture regime.  226 

The three TSURF prognostic variables interact with an underlying heat diffusion model for soil 227 

temperature (consisting of six layers with depths equal to about 10, 20, 40, 75, 150, 1000 cm 228 

from top to bottom) that is common to the three sub-areas (see Figure 5 of Koster et al. 2000).  In 229 

the absence of snow, the area-weighted average of the three prognostic TSURF variables 230 

(hereinafter also referred to as the "surface temperature" in CLSM) is the most appropriate 231 
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quantity to compare to satellite-based LST retrievals (Figure 2).  CLSM integrations were 232 

conducted using the GMAO land data assimilation system (Reichle et al. 2009) with a model 233 

time step of 20 minutes.   234 

 235 

Noah is a more traditional, layer-based model.  Four soil layers of increasing thicknesses of 10, 236 

30, 60 and 100 cm are used to model soil temperature and moisture dynamics with layer-based 237 

formulations of the heat diffusion equation (for energy) and of the standard diffusion and gravity 238 

drainage equations (for unsaturated water flow).  LST in Noah is diagnosed from the surface 239 

energy balance equation and, unlike in CLSM, is not a prognostic variable and has no associated 240 

heat capacity (Figure 2).  In this study, we use Noah version 2.7.1 on a 0.5 degree grid with a 30 241 

minute time step.  Noah integrations were carried out with the Land Information System (Kumar 242 

et al. 2008) fitted with the GMAO ensemble data assimilation and bias estimation modules 243 

(Reichle et al. 2009).  244 

 245 

4.b.  Data assimilation method and parameters 246 

In a data assimilation system, the model-generated land surface estimates are corrected toward 247 

observational estimates, with the degree of correction determined by the levels of error 248 

associated with each. The assimilation system used here is based on the Ensemble Kalman filter 249 

(EnKF), which is well suited to the non-linear and intermittent character of land surface 250 

processes (Reichle et al. 2002a, 2002b).  The EnKF works sequentially by performing in turn a 251 

model forecast step and a filter update step.  Formally, the forecast step for ensemble member i 252 

can be written as 253 

 254 
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(1) xt,i
− = f(xt-1,i

+, qt,i) 255 

 256 

where xt,i
− and xt-1,i

+ are the forecast (denoted with – ) and analysis (denoted with +) state vectors 257 

at times t and t-1, respectively.  The model error (or perturbation vector) is denoted with qt,i and 258 

its covariance with Qt.  The filter update produces the analyzed state vector xt,i
+ at time t and can 259 

be written as 260 

 261 

(2) xt,i
+ = xt,i

− + Kx,t ( yt,i – Ht xt,i
− ) 262 

 263 

where yt,i denotes the observation vector (suitably perturbed) and Ht is the observation operator 264 

(which is written as if it were linear for ease of notation, but in practice the update is solved 265 

without explicitly computing Ht; Keppenne et al. 2000).  The Kalman gain matrix Kx,t is given by  266 

 267 

(3)  Kx,t = Px,t Ht
T ( Ht Px,t Ht

T + Rt)-1 268 

 269 

where Px,t is the state forecast error covariance (diagnosed from the ensemble xt,i
−), Rt is the 270 

observation error covariance, and superscript T denotes the matrix transpose.  Simply put, the 271 

Kalman gain Kx,t represents the relative weights given to the model forecast and the 272 

observations, based on their respective uncertainties and based on the error correlations between 273 

the elements of the state vector and the model prediction of the observed variable.  In this paper, 274 

we use 12 ensemble members with a "one-dimensional" (1d) EnKF that processes each location 275 

independently of all other locations (see, for example, Reichle and Koster (2003) for 1d versus 276 
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3d assimilation).  The key feature of the EnKF is that error estimates of the model-generated 277 

results are dynamically derived from an ensemble of non-linear model integrations.   278 

 279 

Perturbation fields were generated and applied to surface air temperature and radiation which 280 

represent the dominant forcing inputs for LST.  Perturbations were also applied to model 281 

prognostic variables (the Catchment surface temperature TSURF and the Noah top layer soil 282 

temperature TSOIL1), reflecting errors in the modeling of the surface energy balance.  283 

Collectively, the perturbations allow us to maintain an ensemble of land surface conditions that 284 

represents the uncertainty in modeled LST.  An overview of the perturbation parameters is given 285 

in Table 2.  Depending on the variable, normally distributed additive perturbations or log-286 

normally distributed multiplicative perturbations were applied.  The ensemble mean for all 287 

perturbations was constrained to zero for additive perturbations and to one for multiplicative 288 

perturbations.  Moreover, time series correlations were imposed via a first-order auto-regressive 289 

model (AR(1)) for all fields.  Since we used a one-dimensional EnKF in this study, the 290 

perturbation fields were not spatially correlated.  At hourly and daily time scales, the 291 

meteorological forcing fields are ultimately based on output from atmospheric modeling and 292 

analysis systems and not on direct observations of surface forcings.  We imposed error cross-293 

correlations that are motivated by the assumption that the atmospheric forcing fields represent a 294 

realistic balance between radiation, clouds, and air temperature.  Under that assumption, for 295 

example, a positive perturbation to the downward shortwave radiation tends to be associated with 296 

negative perturbations to the longwave radiation and with a positive perturbation to air 297 

temperature. 298 

 299 
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Model errors are difficult to quantify at the global scale. The parameter values listed in Table 2 300 

are largely based on experience and are partially supported by earlier studies (Reichle et al. 301 

2002b; Reichle and Koster 2003; Reichle et al. 2007).  The success of the assimilation presented 302 

here (section 6) suggests that these values are acceptable.  In any case, further calibration of the 303 

filter parameters would, in theory, only improve the assimilation results.  Clearly, more research 304 

is needed on the exact nature of the model and forcing errors.  Recently developed adaptive 305 

filtering methods for land assimilation may assist with error parameter estimation (Reichle et al. 306 

2008, Crow and Reichle 2008). 307 

 308 

The mapping of the satellite information from the observation space into the space of the model 309 

states is accomplished through the Kalman gain during the EnKF update step.  Equation (2) 310 

linearly relates "innovations" (observations minus corresponding model estimates before EnKF 311 

update, that is, yt,i – Ht xt,i
− ) to "increments" (model states after EnKF update minus same before 312 

EnKF update, that is, xt,i
+ – xt,i

− ).  In this study, we use CLSM’s area-average TSURF variable 313 

and Noah’s diagnostic TSKIN variable to compute the (observation-space) innovations (Figure 2 314 

and Section 4a).  The EnKF state vector for CLSM consists of the three TSURF prognostic 315 

variables (specific to each soil moisture regime, section 4a), while the EnKF state vector for 316 

Noah consists of the top layer soil temperature TSOIL1.  The key ingredients to the Kalman gain 317 

are the error correlations between the LST variables in observation space and the EnKF state 318 

variables (Reichle et al. 2002b).  For Noah, the relevant error correlation is between the 319 

diagnostic TSKIN variable (that has no associated heat capacity) and the temperature in the top 320 

10 cm soil layer.  Therefore, in the case of Noah the error correlation is affected by a small phase 321 

shift between the diurnal cycle of the diagnostic TSKIN and the top layer soil temperature 322 
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TSOIL1.  Observations are not assimilated when precipitation is falling or when the ground is 323 

covered with snow (as indicated by the land model integration). 324 

 325 

4.c.  Bias estimation 326 

For the reasons outlined in section 2 there are considerable differences between the temporal 327 

moments of the satellite and model LST (see section 6 for examples).  Such biases need to be 328 

addressed in the data assimilation system.  For this study, we implemented two different 329 

strategies.  The first strategy is to scale the satellite observations to the model’s climatology so 330 

that the first and second moments of the satellite LST and the model LST match.  This strategy is 331 

a simplified version of the cumulative distribution function matching (Reichle and Koster 2004) 332 

that has been used successfully for soil moisture assimilation (Reichle et al. 2009).  Because of 333 

the strong diurnal and seasonal cycles of LST, we estimated the multi-year LST mean and 334 

variance separately for each calendar month and for eight different times-of-day (0z, 3z, …, 335 

21z).  This strategy is very easy to implement through preprocessing of the LST retrievals and 336 

makes no assumptions regarding whether the model’s or the observations’ climatology is more 337 

correct.  Although the assimilation estimates are by design produced in the model’s climatology, 338 

they could be scaled back to the observational climatology if desired.  The scaling strategy can 339 

be applied to the assimilation of retrievals from a variety of satellite datasets with different 340 

climatologies.  An obvious disadvantage is the fact that the a priori scaling is static and cannot 341 

automatically adjust to dynamic changes in bias.  342 

 343 

The second strategy is to dynamically estimate bias parameters along the lines of the algorithm 344 

developed by Dee (2005), which was used for LST by Bosilovich et al. (2007) and for soil 345 



 

 17 

moisture by De Lannoy et al. (2007).  This dynamic bias estimation approach is based on a 346 

second Kalman filter for bias estimation (in addition to the Kalman filter for state estimation).  347 

Assume that we have a bias estimate bt–1
+ at time t-1.   Furthermore, assume that this bias 348 

estimate can be propagated to time t with a simple bias evolution model 349 

 350 

(4) bt
–  = α bt–1

+ 351 

 352 

that relaxes the bias estimates to zero (0 < α < 1).  In our experiments, we chose α to correspond 353 

to an e-folding scale of 1 day.  The use of a relaxation factor is different from the implementation 354 

of Bosilovich et al. (2007) and is a prudent strategy for experiments that cover many seasons.  355 

Because observations may not be available for extended periods, relaxing the bias estimate to 356 

zero is safer than keeping the latest bias estimate through seasons for which it may not be 357 

appropriate.   358 

 359 

Next, we compute a bias-corrected model forecast 360 

 361 

(5) ξ t,i
− = xt,i

− – bt
– 362 

 363 

that is used in the state update equation (2) (instead of the biased model forecast xt,i
−).  From 364 

ensemble average innovations (computed as yt – Ht ξt
– ≡ E{yt,i – Ht ξt,i

−}, where E{·} is the 365 

ensemble mean operator), we can then update the bias via 366 

 367 

(6) bt
+ = bt

– – γ Kx,t (yt – Ht ξt
–) 368 
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 369 

A key assumption of this algorithm is that the bias error covariance Pb,t is a small fraction of the 370 

state error covariance, that is Pb,t   = γ Px,t, which implies that the gain for the bias (Kb,t) can be 371 

computed as a fraction of the gain for the state, which has already been computed.  Here, we use 372 

γ = 0.2 for Catchment and γ = 0.05 for Noah.  The difference in γ is motivated by the different 373 

surface layer thicknesses in the two models, but like the perturbations parameters that govern the 374 

model error, these bias parameters have not been optimized and are justified primarily by the 375 

success of the assimilation.  376 

 377 

As formulated above, the bias algorithm estimates a single bias parameter (per state and per 378 

location).  Here, we implemented a variant that estimates a separate bias parameter for eight 379 

different times-of-day (0z, 3z, …, 21z).  Because this requires the estimation of eight bias 380 

parameters per state and per location, we refer to this algorithm as "b8".  Additional variants of 381 

the dynamic bias algorithm are discussed in the appendix. 382 

 383 

Equation (6) implies that in practice, the bias estimates can be thought of as an exponential 384 

moving (time) average of the LST increments.  Unlike the scaling approach, the dynamic bias 385 

estimation strategy adapts to slow changes in bias over time.  A major disadvantage of this 386 

strategy is the implicit assumption that only the model is biased, which contradicts previous 387 

findings that retrievals from different sensors may be biased against each other (for example, 388 

Trigo and Viterbo 2003).  It is therefore critical that any bias between retrievals from different 389 

sensors is small compared to the bias between retrievals and the model estimates.  390 

 391 
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For this study we implemented the a priori scaling method and the dynamic bias estimation 392 

schemes independently.  The latter can be invoked with and without a priori scaling.  If invoked 393 

without a priori scaling, the dynamic bias estimation corrects for static (long-term) biases as well 394 

as shorter-term "bias" that results from transient differences between model and observational 395 

estimates.  If invoked after a priori scaling, the dynamic bias estimation mostly corrects for 396 

transient bias.  It can also be considered a tool for remembering assimilation increments that 397 

would otherwise be forgotten within a single model time step (because of the small heat capacity 398 

associated with LST).  This is particularly important for CLSM as section 6 will show. 399 

400 
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5. Experiment design and skill metrics 401 

The experiment domain consists of the catchments (or grid cells) that contain the CEOP station 402 

locations (Figure 1).  The land models were spun up by cycling 10 times through the 4-year 403 

period from 1 January 2001 to 1 January 2005.  The models were then integrated in ensemble 404 

mode (12 members; using the perturbations settings of Table 2) for the same 4-year period.  405 

These open loop integrations also recorded the LST innovations (without applying any 406 

increments) for the computation of the model and retrieval statistics that are required for the a 407 

priori scaling approach.  The (ensemble) assimilation integrations covered the same 4-year 408 

period and were validated against the 27 months of CEOP observations from 1 October 2002 409 

through 1 January 2005. 410 

 411 

For each land model, we conducted one open loop (no assimilation) ensemble integration and 412 

four different experiments in which ISCCP retrievals were assimilated assuming an observation 413 

error standard deviation of 2 K.  Two of the four assimilation integrations (per model) were 414 

performed with the (unscaled) ISCCP retrievals ("s0" for "no scaling"), the other two utilized 415 

ISCCP retrievals that were scaled to each model’s LST climatology prior to assimilation ("s1"; 416 

section 4c).  In each set of two assimilation integrations, one was done without bias correction 417 

("b0"), and the other used the dynamic bias algorithms ("b8"; section 4c).  For each model, we 418 

thus compare four assimilation integrations: "s0b0", "s0b8", "s1b0", and "s1b8". 419 

 420 

All integrations were analyzed by computing RMSE values (from raw time series) and anomaly 421 

correlation coefficients (R; from anomaly time series) for LST, LH, SH, and GH with respect to 422 

the available in situ CEOP observations.  These performance metrics were first computed 423 
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separately for each station from 3-hourly time series and then averaged over the available 424 

stations.  Anomaly time series were computed by subtracting the monthly mean seasonal and 425 

diurnal cycle (climatology) from the raw data.  The climatologies and metrics were computed 426 

only from data at times and locations where ISCCP retrievals were available so that only clear-427 

sky conditions are compared to the extent possible.  Mean values for a given calendar month and 428 

time-of-day are computed only if a minimum of 20 data points are available; mean monthly 429 

values are computed only if mean values are available for all eight times-of-day for the month in 430 

question; and performance metrics are based on at least 100 data points. 431 

 432 

We analyze two performance metrics, RMSE and anomaly R, to highlight the advantages and 433 

disadvantages of the various assimilation approaches.  Given the typically strong seasonal and 434 

diurnal cycles of LST and land surface fluxes, metrics based on raw data are dominated by errors 435 

in the climatology.  Metrics based on anomalies, by contrast, primarily capture day-to-day 436 

variations.  RMSE values measure how closely the data agree in their original units and are 437 

affected by a mean bias or a mean difference in the amplitude of variations.  R values, on the 438 

other hand, are not affected by such biases and only capture the phasing between the estimates 439 

and the validating observations.  The choice of metric depends on the application at hand 440 

(Entekhabi et al. 2010).  RMSE values are most relevant if absolute errors matter most.  In other 441 

cases, anomaly R values may be of most relevance, for example in model-based applications 442 

(such as Numerical Weather Prediction) that could correct for known biases in the mean and 443 

variance.  444 

445 



 

 22 

6. Results 446 

6.a. Aggregate performance 447 

The station-average RMSE and R metrics, evaluated against the CEOP in situ observations as 448 

discussed in the previous section, measure the aggregate performance of the satellite, model, and 449 

assimilation estimates.  In this section, we highlight the performance of select assimilation 450 

integrations in terms of select metrics (see appendix for a complete table of metrics and 451 

algorithms).  Before turning to the assimilation integrations, however, we first assess the skill of 452 

the satellite retrievals and of the model integrations without assimilation (open loop).  The top 453 

panel of Figure 3 illustrates the RMSE values computed from the raw LST estimates, which are 454 

4.9 K for CLSM (yellow bar), 5.6 K for Noah (light blue bar), and 7.6 K for ISCCP (black bar).  455 

The bottom panel shows corresponding RMSE values for model estimates of LH, SH, and GH, 456 

which range from 50 to 67 W m-2 and are within a factor of two of typical measurement errors 457 

(around 30 W m-2) for surface turbulent fluxes (Finkelstein and Sims 2001, Hollinger and 458 

Richardson 2005).  The first important results of Figure 3 are therefore that (i) the CLSM and 459 

Noah open loop integrations show similar skill when compared to CEOP in situ observations and 460 

that (ii) the model estimates of LST are significantly better than ISCCP retrievals.   461 

 462 

The situation is similar for the anomaly R metric, shown in Figure 4 for LST only.  The models 463 

show reasonable skill in terms of reproducing standardized anomalies, with anomaly R values of 464 

about 0.6.  Again, ISCCP retrievals are significantly less skillful than model estimates (anomaly 465 

R value of 0.52).  An analysis of sampling error reveals that 95 % confidence intervals for all R 466 

values discussed here are less than ±0.01.  For RMSE values, 95 % confidence intervals are less 467 

than ±0.1 K for LST and less than ±1 W m-2 for surface fluxes.  In the following, RMSE and 468 
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anomaly R values are rounded accordingly (skill difference values rounded after computing the 469 

difference). 470 

 471 

Obviously, the superior skill of the model LST estimates relative to the skill of the ISCCP 472 

retrievals limits the improvements that can be expected from assimilating the ISCCP data.  473 

Nevertheless, as will be shown, modest yet statistically significant improvements can be 474 

achieved through the assimilation of ISCCP LST retrievals.  We expect that the use of a priori 475 

scaling produces better anomaly estimates, whereas omitting a priori scaling should yield better 476 

improvements in terms of absolute numbers (that is, raw data) due to likely biases in model 477 

climatology.  Thus, for RMSE computed from raw data (Figure 3), we focus on assimilation 478 

without a priori scaling (s0b0, s0b8).  The CLSM assimilation integration without dynamic bias 479 

correction (s0b0; orange bars) is characterized by only minor improvements in LST (0.2 K for 480 

RMSE) and virtually no changes in the land surface flux estimates (when compared to the open 481 

loop skill).  Recall that CLSM’s prognostic "surface temperature" represents the canopy and top 482 

5 cm of soil and is associated with a very small heat capacity.  Consequently, without dynamic 483 

bias estimation and correction, increments from the assimilation of ISCCP retrievals dissipate 484 

quickly and have little impact on the model state in CLSM.  Increments applied to the Noah 485 

model’s top layer (10 cm) soil temperature, on the other hand, have a somewhat more noticeable 486 

effect on the model state.  For assimilation without a priori scaling and without dynamic bias 487 

correction (s0b0), the RMSE for Noah LST estimates is improved by 0.5 K (medium blue bar in 488 

Figure 3).  As for CLSM, the Noah assimilation estimates for the latent and sensible heat fluxes 489 

are comparable to the open loop estimates.  However, the RMSE value for Noah s0b0 estimates 490 

of GH increases by 11 W m-2 (more on this later).   491 

 492 
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Next, we analyze the skill of the assimilation integrations with dynamic bias estimation and 493 

correction (s0b8), also illustrated in Figure 3.  For CLSM, adding dynamic bias estimation (red 494 

bar) enhances the LST improvements (over the open loop) to 0.7 K in terms of RMSE.  Using a 495 

bias-corrected model forecast at every model time step (equation (5)) enhances the impact of 496 

LST increments in the CLSM assimilation integrations and thereby yields enhanced 497 

improvements from the assimilation of the ISCCP retrievals (relative to not using the dynamic 498 

bias algorithm).  For Noah, using the dynamic bias algorithm (s0b8; dark blue bar in Figure 3) 499 

yields only slightly better LST than the s0b0 assimilation integration without dynamic bias 500 

correction (RMSE now reduced by 0.6 K over the open loop).  At the same time, however, the 501 

deterioration of the GH estimates is exacerbated in s0b8.  The RMSE value for assimilation 502 

estimates of GH increases by 28 W m-2 when compared with the open loop RMSE.   LH and SH 503 

estimates from s0b8 are again comparable to open loop estimates. 504 

 505 

For the analysis of assimilation integrations with a priori scaling (s1b0, s1b8) we focus on the 506 

anomaly R metric, shown in Figure 4.  Qualitatively, the results for these integrations are similar 507 

to those obtained without a priori scaling.  In CLSM, a priori scaling alone (s1b0) yields only 508 

small improvements in LST (anomaly R increases by 0.02).  Most of the impact is realized 509 

through dynamic bias estimation (anomaly R for LST increases by 0.05 over the open loop).  For 510 

Noah, on the other hand, the anomaly R for LST already increases by 0.04 (over the open loop) 511 

when only a priori scaling is applied.  The estimates get only slightly better when dynamic bias 512 

correction is added (increase of 0.05 in anomaly R for LST).  There is also a deterioration in the 513 

Noah GH estimates (relative to the open loop) when a priori scaling is used (with or without bias 514 

correction), but generally the loss of skill in GH is mitigated through a priori scaling (not shown, 515 

see appendix).  Noah assimilation estimates of LH and SH have marginally better anomaly R 516 



 

 25 

values than open loop estimates (not shown), but these improvements are so small that we do not 517 

consider them to be relevant.  518 

 519 

In summary, using dynamic bias estimation for CLSM (s0b8, s1b8) provides the best 520 

assimilation estimates and enables modest LST improvements (over the open loop) of up to 0.7 521 

K in terms of RMSE and up to 0.05 in terms of anomaly R.  Flux estimates from these CLSM 522 

assimilation integrations are essentially identical to open loop estimates – assimilation of LST 523 

does not lead to improved flux estimation.  For Noah, assimilation without a priori scaling and 524 

without dynamic bias estimation (s0b0) already yields most of the benefit of assimilating the 525 

satellite retrievals.  Using a priori scaling and/or dynamic bias estimation yields only small 526 

additional improvements.  For Noah, LST improvements (over the open loop) are similar to 527 

those for CLSM:  up to 0.6 K for RMSE and up to 0.05 in terms of anomaly R.  Noah 528 

assimilation estimates of SH and LH are similar to the open loop estimates, but the assimilation 529 

estimates of GH are considerably worse than the open loop estimates (up to 28 W m-2 increase in 530 

RMSE), with lesser degradation seen when a priori scaling is used.  Without a priori scaling, the 531 

worsening of the GH estimates in Noah may well outweigh the benefits of the LST 532 

improvements.  533 

 534 

As shown in Figure 1 and Table 1, most CEOP stations either have LST and GH measurements 535 

or have LH and SH measurements.  Only four stations measure LST and all three fluxes.  The 536 

results in this section must be interpreted with this caveat in mind.  Conceivably, if a large 537 

number of stations were able to provide LST, LH, and SH measurements together, and if our 538 

analyses were limited to that set of stations, we might indeed be able to show that improved LST 539 

estimates from assimilation correspond to improved estimates of the turbulent fluxes.  Given the 540 
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limitations of the available in situ measurements, we cannot know for sure.  Note, however, that 541 

15 out of the 19 stations that have LST measurements also have GH measurements, suggesting 542 

that for Noah the LST improvements from assimilation are connected to the worsening of GH 543 

estimates. 544 

 545 

As discussed in section 5, the RMSE and anomaly R values shown here are based on 3-h average 546 

data, including nighttime and wintertime when fluxes are small and noise may overwhelm the 547 

signal.   In a separate analysis (not shown) we also computed the performance metrics from daily 548 

average data.  While RMSE values are generally lower when based on daily averages (as can be 549 

expected from increased averaging) and R values are also somewhat different in overall 550 

magnitude, the relative performance is similar regardless of whether metrics are computed from 551 

daily or 3-h average data, and the main conclusions of this section thus remain unchanged.   552 

In a second separate analysis (not shown), we assessed the performance based strictly on 553 

summertime data and again find that our conclusions remain the same. 554 

 555 

6.b. Seasonal and diurnal cycles 556 

Estimates of the mean seasonal and diurnal cycles provide additional insights into the modeling 557 

and assimilation of LST.  Figure 5 (left panels) shows the mean seasonal cycle of LST at two 558 

locations, Bondville in the US Midwest and BJ-SAWS3 in Tibet.  At both locations, the seasonal 559 

cycle estimates of the CLSM and Noah open loop integrations agree fairly closely with each 560 

other (to within 2 K), primarily because both models are driven with the same surface 561 

meteorological forcing data.  At Bondville, the open loop estimates of the seasonal cycle also 562 

agree closely with the in situ CEOP observations.  At the Tibetan station, however, the open loop 563 

estimates are biased low by about 5 K (relative to the in situ observations).  In contrast, ISCCP 564 



 

 27 

estimates of the seasonal cycle are biased high by about 3 K at BJ-SAWS3 and differ by up to 5 565 

K in the first half of the year at Bondville. 566 

 567 

By construction, the seasonal and diurnal cycle estimates of assimilation integrations with a 568 

priori scaling closely match those of the open loop integration (not shown).  Figure 5 also shows 569 

the seasonal climatology of assimilation integrations without a priori scaling and with dynamic 570 

bias estimation and correction (s0b8).  As expected, the s0b8 assimilation integrations draw more 571 

closely to the ISCCP retrievals (when compared to the open loop).  At BJ-SAWS3, this 572 

fortuitously brings the assimilation estimates of the seasonal cycle into better agreement with the 573 

in situ observations than either the ISCCP or the open loop estimates.   574 

 575 

Figure 5 (right panels) also illustrates the mean August diurnal cycle estimates at Bondville and 576 

BJ-SAWS3.  At Bondville, the Noah open loop estimates have a slightly higher diurnal 577 

amplitude than the CLSM estimates (because LST for Noah exceeds that of CLSM by up to 2 K 578 

during the day and by less than 1K during the night).  At BJ-SAWS3, the open loop integrations 579 

agree closely with each other.  Similar to the seasonal cycle estimates, the open loop estimates at 580 

Bondville are in reasonable agreement with the in situ observations but are biased low (by about 581 

5 K) at BJ-SAWS3.  ISCCP retrievals, on the other hand, exhibit a weaker diurnal amplitude at 582 

Bondville than model or in situ observations.  At BJ-SAWS3, ISCCP retrievals are biased high 583 

(compared to the in situ observations) in the morning and mid-day but biased low in the evening 584 

and at nighttime.   585 

 586 

Again, the LST diurnal cycle estimates of the CLSM s0b8 assimilation integrations draw towards 587 

the ISCCP retrievals by construction (Figure 5, right panels).  This brings them closer to the in 588 
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situ observations at BJ-SAWS3 but makes CLSM nighttime estimates at Bondville worse when 589 

compared to the open loop.  By contrast, LST from the Noah s0b8 assimilation integration is 590 

similar to the open loop integration during daytime.  Only during the evening hours (at Bondville 591 

and BJ-SAWS3) are the Noah s0b8 LST estimates noticeably closer to the ISCCP retrievals.  592 

The delayed impact of the LST assimilation is probably a result of the phase lag between the 593 

diagnostic LST (observations space) and the top layer soil temperature (state space) in Noah.  594 

 595 

6.c. Filter diagnostics 596 

Internal filter diagnostics offer further clues about the performance of the assimilation 597 

algorithms.  For a filter that operates according to its underlying assumptions (that various 598 

linearizations hold, that model and observation errors are unbiased, uncorrelated and normally 599 

distributed), the time average of the (ensemble mean) innovations sequence (yt – Ht xt
−) equals 600 

zero.  Moreover, the standard deviation of the "normalized" innovations (yt – Ht xt
−)·( Ht Px,t Ht

T 601 

+ Rt)-0.5 equals one (Reichle et al. 2002a).  The latter diagnostic compares the actual spread in the 602 

innovations to what the filter expects.  A simple interpretation is that the assumed error bars of a 603 

model forecast and its corresponding observation must have an appropriate overlap.  604 

 605 

Figure 6 displays the distribution of these two internal filter diagnostics across the CEOP stations 606 

listed in Table 1.  The top panel indicates that without a priori scaling of the ISCCP observations 607 

and without dynamic bias estimation (s0b0), biases of several Kelvin typically persist in the 608 

model forecast and are reflected in the mean of the innovations.  (The innovations statistics of 609 

the open loop integrations are essentially the same as those of the s0b0 integrations and are not 610 

shown in the figure.)  A very modest reduction of the bias can be achieved with the "b8" 611 

dynamic bias estimation algorithm.  If in addition to dynamic bias estimation the observations 612 
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are also scaled prior to data assimilation (s1b8), the innovations mean at all stations is, by 613 

construction, much closer to zero.  These results hold for assimilation into both land models, 614 

CLSM and Noah.   615 

 616 

The standard deviation of the normalized innovations, shown in the bottom panel of Figure 6, 617 

exceeds the target value of one at almost all stations and for almost all algorithms.  This indicates 618 

that the model and/or the observation error standard deviations were underestimated.  Like for 619 

the innovations mean, a priori scaling brings the standard deviation of the normalized 620 

innovations much closer to its expected value of one.  This implies that a large part of the 621 

mismatch between the actual spread in the innovations and the expected spread is simply due to 622 

bias.  Finally, the fact that the innovations diagnostics are comparable for the CLSM and Noah 623 

assimilation integrations indicates that the assimilation performance (relative to its unknown 624 

optimum) is comparable for the two models, which lends further support to the broad 625 

conclusions reached in this paper.  In summary, a priori scaling in combination with dynamic 626 

bias estimation exhibits the best performance in terms of the innovations diagnostics, 627 

independent of the land model used.  628 

 629 

6.d. Impact of bias in data assimilation 630 

Estimates from a properly designed assimilation system should be no worse than open loop 631 

estimates.  The example in Figure 7 further illustrates the potentially serious detrimental impact 632 

of not addressing bias properly in data assimilation. The figure shows LST and land surface flux 633 

time series from select Noah integrations for a few days in August of 2003 at the MGS station in 634 

Mongolia.  At this location, LST and GH estimates from the open loop integrations agree fairly 635 

well with CEOP in situ observations.  The daytime peak LST estimates from ISCCP, however, 636 
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are warmer by as much as 30 K.  This extreme bias may be due to one or more of the reasons 637 

discussed in section 2.    638 

 639 

At any rate, when the unscaled ISCCP retrievals are assimilated without a priori scaling (s0b0, 640 

s0b8), LST assimilation estimates are drawn toward the extreme temperatures in the ISCCP 641 

retrievals (Figure 7).  However, since Noah is not designed to accommodate such extreme 642 

temperatures, and because the surface meteorological forcing remains unchanged in the system, 643 

the Noah assimilation integrations without a priori scaling respond with unrealistic and excessive 644 

estimates of sensible and ground heat flux, most notably on 13 August 2003.  Because the impact 645 

on LST of assimilating unscaled ISCCP retrievals without bias correction (s0b0) is more limited, 646 

the corresponding flux estimates are less pathological than in the s0b8 case with dynamic bias 647 

correction.  For reference, Figure 7 also shows an assimilation integration with a priori scaling 648 

and dynamic bias correction (s1b8), which does not produce such unrealistic flux estimates.   649 

 650 

The situation is similar for LST from CLSM assimilation integrations for the same location and 651 

time period (not shown), but for CLSM we obtain unrealistic estimates of the latent heat flux for 652 

select assimilation integrations without a priori scaling.  To summarize, Figure 7 illustrates the 653 

pitfalls of assimilating LST retrievals that are severely biased against model LST.  While the 654 

assimilation can be designed to produce LST estimates that are closer to the satellite retrievals, 655 

there may be unintended and undesirable side effects in terms of the land surface fluxes and the 656 

surface energy balance.  657 

658 
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7. Summary and conclusions 659 

An ensemble-based data assimilation method, the EnKF, was used with and without a priori 660 

scaling of observations and/or dynamic bias estimation methods to assimilate satellite retrievals 661 

of LST into two different land surface models at 48 CEOP sites scattered around the globe.  The 662 

two land models, CLSM and Noah, follow distinct modeling approaches for land surface 663 

temperature.  CLSM has model prognostic "surface temperature" variables, whereas Noah 664 

diagnoses the surface temperature from the surface energy balance. The LST, sensible, latent, 665 

and ground heat flux estimates from the data assimilation integrations were validated against 27 666 

months of CEOP in situ observations. 667 

 668 

The main conclusions from the experiments are as follows.   669 

(1) There are strong biases between LST estimates from in situ observations, land modeling, and 670 

satellite retrievals that vary with season and time-of-day.  Biases of a few Kelvin are typical, 671 

with larger values exceeding 10 K. 672 

(2) The skill of LST estimates from the CLSM and Noah land model integrations is superior to 673 

that of the ISCCP satellite retrievals. 674 

(3) Assimilation of ISCCP LST retrievals into the land surface models can improve LST 675 

estimates by up to 0.7 K for RMSE and by up to 0.05 for anomaly R, while not making surface 676 

turbulent fluxes worse.  677 

(4) Gross errors in surface flux estimates can result if biases are not taken into account properly, 678 

with a combination of a priori scaling and dynamic bias estimation methods yielding the best 679 

overall results.   680 
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(5) Assimilation diagnostics for integrations without a priori scaling strongly reflect the 681 

underlying biases, indicating that without a priori scaling the assimilation system is far from 682 

operating in accordance with its underlying assumptions. 683 

(6) Provided the assimilation system is properly configured for each land model, the benefits 684 

from the assimilation of LST retrievals are comparable for both land models.       685 

 686 

There are many reasons why the improvements from the assimilation of satellite LST, while 687 

statistically significant, turn out to be modest.  First and foremost, the skill of the satellite data is 688 

modest and much lower than that of the model to begin with.  The information gained by 689 

assimilating the satellite data into the model is therefore naturally limited.  In the present study, 690 

the parameters of the assimilation system, including the perturbations (or model error) 691 

parameters and the parameters of the bias algorithm (α, γ) were not optimized.  Additional 692 

calibration may further improve the results and may also reveal differences in what can be 693 

achieved with a given land model structure.  Finally, even if the assimilation estimates were 694 

perfect, the performance metrics would not show it because of errors in the in situ data and 695 

because of the mismatch of the spatial and temporal characteristics of the satellite, model, and in 696 

situ data sets. 697 

 698 

By design, the present study was limited to LST (state) estimation in an uncoupled land 699 

modeling system.  Ideally, the land model parameters would be calibrated to minimize LST 700 

biases prior to data assimilation, or perhaps even dynamically within the data assimilation 701 

system.  Such a calibration could rely on sophisticated parameter estimation methods (Vrugt et 702 

al. 2003).  Perhaps more importantly, though, is that the surface meteorological forcings in the 703 
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present experiments were fixed.  In other words, LST increments did not feed back onto the 704 

atmospheric state.  Future experiments will explore LST assimilation into a coupled land-705 

atmosphere model with the methods proposed here.  The relative performance of the algorithms 706 

may very well change in the coupled environment.  707 

 708 

Another path for future research is to investigate further the role of specific aspects of LST 709 

modeling.  In the present paper, Noah was integrated in its default configuration, including a 10 710 

cm thick surface layer, which implied a small phase shift between the Noah diagnostic LST 711 

(used in the computations of the innovations) and the Noah top soil temperature (to which the 712 

increments were applied).  Use of a thinner soil layer may alleviate the problems related to the 713 

phase shift in Noah between LST (observation space) and the top layer soil temperature (state 714 

space).   715 

 716 

Even if the assimilation manages to improve LST only modestly and fluxes not at all, the impact 717 

may be significant because minor improvements in LST may already increase the number of 718 

atmospheric retrievals that can be assimilated in coupled systems, thereby possibly providing 719 

substantial indirect benefits.  Obviously, the present study only scratches the surface of a very 720 

complex problem that has been a challenge for many years.  Nevertheless, given the relative 721 

abundance of LST observations from satellites and the importance of accurate LST estimates, in 722 

particular in the context of atmospheric data assimilation, the results of the present study offer an 723 

encouraging step forward in land data assimilation.  724 

 725 

726 
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Appendix 727 

In addition to the dynamic bias algorithm "b8" discussed in section 4c we also tested additional 728 

variants of the algorithm used by Bosilovich et al. (2007).  Specifically, we tested the simplest 729 

possible variant that estimates a single, "mean" bias estimation parameter per state and per 730 

location, here referred to as "b1".  Bosilovich et al. (2007) also introduced a bias 731 

parameterization with sine and cosine functions that accounts for variations in the diurnal cycle 732 

of the bias.  Here we implemented two variants: a "diurnal" bias parameterization (constant term 733 

plus sine and cosine waves with a period of one day) and a "semi-diurnal" bias parameterization 734 

("diurnal" terms plus sine and cosine waves with a period of one half day).  The "diurnal" and 735 

"semi-diurnal" algorithms estimate three and five bias parameters, respectively, per state and 736 

location, and are referred to as "b3" and "b5".   737 

 738 

For the "b8" integrations discussed in the main text we always applied both the state increments 739 

(equation (2)) and the bias increments (equation (6)).  More generally, though, any assimilation 740 

integration that uses dynamic bias estimation can also be done without applying the state 741 

increments (as, in fact, implemented by Bosilovich et al. (2007)).  We also tested these variants.  742 

Per model, we therefore tested a total of 18 different assimilation integrations, listed in Table 3.  743 

 744 

A close examination of Table 3 reveals that generally, the assimilation integrations show more 745 

skill when more bias parameters are used.  Reductions in RMSE values for LST are greater by up 746 

to 0.4 K for CLSM and by up to 0.2 K for Noah when comparing "b8" and "b1"integrations.   747 

Corresponding differences in anomaly R values for LST are up to 0.03, respectively, for both 748 

models.  As can be expected, these differences across bias estimation algorithms of varying 749 
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complexity tend to be greater without a priori scaling.   Also in line with expectations, taking 750 

into account the diurnal cycle of the bias (as in "b3", "b5", and "b8", as opposed to "b1") has the 751 

biggest impact. 752 

 753 

Finally, applying the state increments in addition to the bias increments contributes only a small 754 

amount of skill, typically less than 0.1 K in terms of RMSE reduction (or 0.01 in terms of R 755 

increase) for LST estimates.  In the case of Noah, applying the state increments contributes 756 

commensurately to the worsening of the GH estimates.    757 

 758 

To summarize, as long as the dynamic bias algorithm takes the diurnal cycle into account, the 759 

differences that result from the exact number of bias parameters used or that result from not 760 

applying the state increments are much smaller than the assimilation improvements over the 761 

open loop.  In other words, the lessons learned in the main text about assimilation of LST 762 

retrievals in general and about using a priori scaling and/or dynamic bias correction are 763 

insensitive to the details of the dynamic bias estimation algorithm, provided the algorithm 764 

considers the diurnal cycle of the bias.  765 

766 
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Table captions 927 

 928 

Table 1.  CEOP stations with sufficient in situ LST, LH, SH, or GH observations for validation 929 

(CSE=Continental-Scale Experiment). 930 

  931 

Table 2.   Parameters for perturbations to meteorological forcing inputs and model prognostic 932 

variables. 933 

  934 

Table 3.  Skill of model and assimilation integrations versus CEOP in situ observations.  935 

Integrations shown in bold face are those discussed in the main text.   Anomaly R for LST from 936 

ISCCP is 0.52, RMSE is 7.6 K. 937 

 938 
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Figure captions 940 

 941 

Fig. 1.  Location of CEOP stations.  Stations suitable for validation are indicated with circles 942 

(SH, LH, 30 stations), plus signs (GH, 20 stations), and crosses (LST, 19 stations). 943 

 944 

Fig. 2.  LST is described in (left) CLSM with a prognostic variable ("TSURF") and in (right) 945 

Noah with a diagnostic variable ("TSKIN").  LST increments are applied to "TSURF" in CLSM 946 

and to "TSOIL1" in Noah (section 4.b.).  947 

 948 

Fig. 3.  RMSE versus CEOP in situ observations for (top) LST and (bottom) flux estimates from 949 

ISCCP retrievals (LST only), model integrations, and select assimilation integrations without a 950 

priori scaling.   951 

 952 

Fig. 4.  R versus CEOP in situ observations for LST anomalies from ISCCP retrievals, model 953 

integrations, and select assimilation integrations with a priori scaling.   954 

 955 

Fig. 5.  LST (left) annual seasonal and (right) August diurnal cycle at (top) Bondville and 956 

(bottom) BJ-SAWS3 for CEOP, ISCCP, model, and assimilation data.  957 

 958 

Fig. 6.  (Top) Mean of innovations [K] and (bottom) standard deviation of normalized 959 

innovations [dimensionless] for (C) Catchment and (N) Noah assimilation integrations.  The box 960 

plots indicate the average, standard deviation, minimum and maximum of the respective 961 

innovations diagnostic across the stations listed in Table 1. 962 
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 963 

Fig. 7.  (Top) LST, (upper middle) LH, (lower middle) SH, and (bottom) GH for Noah 964 

integrations, ISCCP retrievals, and CEOP observations at the MGS station.   965 

966 
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CSE  Reference Site  Station  Lat  Lon  LST  LH+SH  GH
BALTEX  Cabauw  Cabauw 51.97 4.93  yes  yes  yes
BALTEX  Lindenberg  Falkenberg 52.17 14.12  yes  yes  yes
BALTEX  Lindenberg  Forest 52.18 13.95  yes  yes  yes
CAMP  ChaoPhrayaRiver  Lampang 18.40 99.47  no  no  yes
CAMP  Himalayas  Pyramid 27.96 86.81  no  no  yes
CAMP  Mongolia  BTS 46.78 107.14  yes  no  yes
CAMP  Mongolia  DGS 46.13 106.37  yes  no  yes
CAMP  Mongolia  DRS 46.21 106.71  yes  no  yes
CAMP  Mongolia  MGS 45.74 106.26  yes  no  yes
CAMP  NorthEastThai  Nakhonrachasima 14.47 102.38  yes  no  yes
CAMP  Tibet  Amdo-Tower 32.24 91.62  no  no  yes
CAMP  Tibet  ANNI-AWS 31.25 92.17  yes  no  yes
CAMP  Tibet  BJ-SAWS1 31.37 91.90  yes  no  no
CAMP  Tibet  BJ-SAWS2 31.37 91.90  yes  no  no
CAMP  Tibet  BJ-SAWS3 31.37 91.90  yes  no  no
CAMP  Tibet  BJ-Tower 31.37 91.90  yes  no  yes
CAMP  Tibet  D105-AWS 33.06 91.94  yes  no  yes
CAMP  Tibet  D66-AWS 35.52 93.78  yes  no  no
CAMP  Tibet  Gaize 32.30 84.05  yes  no  yes
CAMP  Tibet  MS3478-AWS 31.93 91.71  yes  no  yes
CAMP  Tibet  MS3608-AWS 31.23 91.78  yes  no  no
CAMP  Tongyu  Cropland 44.42 122.87  no  yes  yes
CAMP  Tongyu  Grassland 44.42 122.87  no  yes  yes
GAPP  Bondville  Bondville 40.01 -88.29  yes  yes  yes
GAPP  SGP  E  1 Larned 38.20 -99.32  no  yes  no
GAPP  SGP  E  2 Hillsboro 38.31 -97.30  no  yes  no
GAPP  SGP  E  3 Le_Roy 38.20 -95.60  no  yes  no
GAPP  SGP  E  4 Plevna 37.95 -98.33  no  yes  no
GAPP  SGP  E  5 Halstead 38.11 -97.51  no  yes  no
GAPP  SGP  E  6 Towanda 37.84 -97.02  no  yes  no
GAPP  SGP  E  7 Elk_Falls 37.38 -96.18  no  yes  no
GAPP  SGP  E  8 Coldwater 37.33 -99.31  no  yes  no
GAPP  SGP  E  9 Ashton 37.13 -97.27  no  yes  no
GAPP  SGP  E 10 Tyro 37.07 -95.79  no  yes  no
GAPP  SGP  E 12 Pawhuska 36.84 -96.43  no  yes  no
GAPP  SGP  E 13 Lamont 36.60 -97.48  no  yes  no
GAPP  SGP  E 14 Lamont 36.61 -97.49  no  yes  no
GAPP  SGP  E 15 Ringwood 36.43 -98.28  no  yes  no
GAPP  SGP  E 16 Vici 36.06 -99.13  no  yes  no
GAPP  SGP  E 18 Morris 35.69 -95.86  no  yes  no
GAPP  SGP  E 19 El_Reno 35.55 -98.02  no  yes  no
GAPP  SGP  E 20 Meeker 35.56 -96.99  no  yes  no
GAPP  SGP  E 21 Okmulgee 35.62 -96.06  no  yes  no
GAPP  SGP  E 22 Cordell 35.35 -98.98  no  yes  no
GAPP  SGP  E 24 Cyril 34.88 -98.20  no  yes  no
GAPP  SGP  E 26 Cement 34.96 -98.08  no  yes  no
GAPP  SGP  E 27 Earlsboro 35.27 -96.74  no  yes  no
MDB  Tumbarumba  Tumbarumba -35.65 148.15  no  yes  yes

CEOP Identifier Coordinates Data Availability

 967 

Table 1.  CEOP stations with sufficient in situ LST, LH, SH, or GH observations for validation 968 

(CSE=Continental-Scale Experiment). 969 
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Perturbation Additive (A) 

or 

multiplicative 

(M)? 

Standard 

deviation 

AR(1) time 

series 

correlation 

scale 

Cross-correlation 

with perturbations in 

T2M SW LW 

Air temperature 

(T2M) 

A 1 K 1 day n/a 0.4 0.4 

Downward shortwave 

(SW) 

M 0.3 1 day 0.4 n/a -0.6 

Downward longwave 

(LW) 

A 20 W m-2 1 day 0.4 -0.6 n/a 

Soil temperature 

prognostic variables 

(Catchment: TSURF; 

Noah: TSOIL1) 

A 0.2 K 12 h 0 0 0 

 970 
Table 2.   Parameters for perturbations to meteorological forcing inputs and model prognostic 971 

variables. 972 
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LST LH SH GH LST LH SH GH LST LH SH GH LST LH SH GH

[ - ] [K] [ - ] [K]

no n/a n/a n/a 0.61 0.31 0.21 0.25 4.9 54 67 54 0.62 0.26 0.12 0.24 5.6 50 62 50

yes yes s0 b0 0.63 0.31 0.21 0.25 4.7 54 67 54 0.66 0.27 0.14 0.14 5.1 50 61 61

yes yes s0 b1 0.64 0.31 0.21 0.26 4.6 54 67 53 0.64 0.28 0.14 0.08 5.2 50 62 81

yes yes s0 b3 0.66 0.31 0.21 0.26 4.4 54 68 54 0.65 0.28 0.14 0.08 5.1 50 62 84

yes yes s0 b5 0.66 0.31 0.21 0.25 4.4 54 68 54 0.65 0.27 0.14 0.08 5.1 50 62 84

yes yes s0 b8 0.67 0.31 0.21 0.25 4.2 54 68 54 0.67 0.28 0.14 0.11 5.0 50 62 78

yes no s0 b1 0.63 0.31 0.21 0.26 4.7 54 67 53 0.63 0.28 0.13 0.10 5.3 50 63 77

yes no s0 b3 0.65 0.31 0.21 0.26 4.4 54 68 54 0.64 0.28 0.13 0.09 5.2 50 63 78

yes no s0 b5 0.66 0.31 0.21 0.26 4.4 54 68 54 0.65 0.28 0.13 0.09 5.1 50 63 78

yes no s0 b8 0.66 0.31 0.21 0.25 4.3 54 68 54 0.66 0.28 0.13 0.14 5.0 50 62 73

yes yes s1 b0 0.63 0.31 0.21 0.25 4.8 54 67 54 0.66 0.26 0.13 0.20 5.3 50 61 53

yes yes s1 b1 0.65 0.31 0.21 0.25 4.6 54 67 54 0.66 0.26 0.13 0.15 5.2 50 62 58

yes yes s1 b3 0.67 0.31 0.21 0.25 4.5 54 67 54 0.66 0.26 0.13 0.15 5.2 50 62 58

yes yes s1 b5 0.67 0.31 0.21 0.25 4.5 54 67 54 0.66 0.26 0.13 0.15 5.2 50 62 58

yes yes s1 b8 0.66 0.31 0.21 0.25 4.6 54 67 54 0.67 0.27 0.13 0.17 5.2 49 61 56

yes no s1 b1 0.64 0.31 0.21 0.25 4.6 54 67 54 0.65 0.26 0.13 0.15 5.2 50 62 57

yes no s1 b3 0.66 0.31 0.21 0.25 4.6 54 67 54 0.65 0.27 0.13 0.15 5.2 50 62 57

yes no s1 b5 0.66 0.31 0.21 0.25 4.5 54 67 54 0.66 0.27 0.13 0.15 5.2 50 62 57

yes no s1 b8 0.65 0.31 0.21 0.25 4.6 54 67 54 0.66 0.27 0.12 0.17 5.2 50 62 55
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Table 3.  Skill of model and assimilation integrations versus CEOP in situ observations.  974 

Integrations shown in bold face are those discussed in the main text.   Anomaly R for LST from 975 

ISCCP is 0.52, RMSE is 7.6 K. 976 

977 
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 978 

Fig. 1.  Location of CEOP stations.  Stations suitable for validation are indicated with circles 979 

(SH, LH, 30 stations), plus signs (GH, 20 stations), and crosses (LST, 19 stations). 980 
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 981 

Fig. 2.  LST is described in (left) CLSM with a prognostic variable ("TSURF") and in (right) 982 

Noah with a diagnostic variable ("TSKIN").  LST increments are applied to "TSURF" in CLSM 983 

and to "TSOIL1" in Noah (section 4.b.).  984 

985 
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986 

 987 

 988 

Fig. 3.  RMSE versus CEOP in situ observations for (top) LST and (bottom) flux estimates from 989 

ISCCP retrievals (LST only), model integrations, and select assimilation integrations without a 990 

priori scaling.   991 

992 
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 993 

Fig. 4.  R versus CEOP in situ observations for LST anomalies from ISCCP retrievals, model 994 

integrations, and select assimilation integrations with a priori scaling.   995 

996 
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 997 

Fig. 5.  LST (left) annual seasonal and (right) August diurnal cycle at (top) Bondville and 998 

(bottom) BJ-SAWS3 for CEOP, ISCCP, model, and assimilation data.  999 
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 1000 

Fig. 6.  (Top) Mean of innovations [K] and (bottom) standard deviation of normalized 1001 

innovations [dimensionless] for (C) Catchment and (N) Noah assimilation integrations.  The box 1002 

plots indicate the average, standard deviation, minimum and maximum of the respective 1003 

innovations diagnostic across the stations listed in Table 1. 1004 

1005 
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 1006 

Fig. 7.  (Top) LST, (upper middle) LH, (lower middle) SH, and (bottom) GH for Noah 1007 

integrations, ISCCP retrievals, and CEOP observations at the MGS station.   1008 
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