Background
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith.

We present the initial findings from a high-resolution electron microscope study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil component and to examine Martian surface processes using elemental ratios and correlations.

Sample description
This thin section EETA79001,18 contains pools of non-crystalline impact melt glass up to several hundred microns across and mixed domains of thin section EETA79001,18 contains pools of non-crystalline impact melt glass. The lower right hand corner is a pool of pure melt. There are larger olivine grains on which quench crystals are nucleating and several small grains of S- and P-bearing minerals.

Analysis and approach
We conducted semi-quantitative EDS and quantitative WDS elemental mapping on the Cameca SX-100 electron microprobe at the CAMCOR facility in Eugene, Oregon. EDS datasets were generated for two areas of 2024 by 768 pixels at ~0.3 µm/pixel. WDS elemental datasets were generated with a focused beam (<1µm) operating at 12 keV and 50 nA. EDS data were processed using Thermo NSS software and WDS data were processed using the Probe for EPMA software package.

We are working to assess pre-impact compositions in the melt. Possible sources are: Lithology A (the host breccia), excess plagioclase from comminution of bedrock, and the Martian soil [1]. Martian soil contains excess Ni from olivine weathering [5,6] and salts and sulfate-species from hydrothermal fluids, volcanic aerosols, or evaporitic processes [3,4,7].

For example, if excess sulfur is contributed by molten soil, S might be expected to correlate positively with other elements rich in soil but poor in Lithology A, such as Ca and Ni. Conversely, if Si is correlated with elements like Fe, this may point to a host-rock source for the S, such as Lithology A sulfur.

WDS results
Figure 1 shows element maps and a backscatter electron (BSE) images for one area of the thin section. Magnesium and Fe are concentrated in areas of crystallization. Chlorine is relatively low throughout except for one area that corresponds to high K values. Most of the highest S occurs adjacent to Fe; apart from the highest concentrations, S shows complex gradients in the melt portions.

EVS results
Figure 2 contains EDS-derived element maps for a region dominated by olivine quench crystals in impact melt. The lower right hand corner is a pool of pure melt. There are larger olivine grains on which quench crystals are nucleating and several small grains of S- and P-bearing minerals.

Magnesium is concentrated in olivine. Calcium is concentrated around olivine crystals, where it is preferentially enriched by the removal of Mg, Fe, and Si from the melt. The Si map distinctly shows two largest non-silicate grains – both of which have high relative concentrations of Fe (not shown), S, and Cl and moderately high concentrations of P. Phosphorus occurs in this Fe-S-Cl group but is present in almost equal proportions as streaks in the impact melt. These high-phosphorus melt areas are also slightly elevated in Ca and depleted in Si; one zone runs along the crystalization front and the other is in the center of the melt pool. Sulfur occurs with Fe in a region cored in Figure 2. This includes both the above-mentioned grains and other apparent Fe-rich or Fe-sulfides. Additionally, S is concentrated in a number of other small grains or regions without any other determined elements – these may be sulfides or sulfates with undetermined cations or S-rich portions of interstitial melts. Chlorine occurs in detectable amounts at a low background level and in the Fe-S-Cl-Pi grains.

Data analysis
We exported EDS data for the area shown in Figure 2 into spreadsheets for statistical analysis in Excel and Statistica, including correlation and principal component analysis (PCA). Figure 3 contains a gray scale image of this region and the subregion of pure melt for which data was extracted for a second experiment.

PCA results
We show components with eigenvalues > 1.0. The total variance explained by these components is 53% and 46%, respectively. See Figure 3 for experimental regions. In both experiments, the first components have positive eigenvectors for Al and Ca and negative eigenvectors for Si and Mg. In the para-ally crystallized por-on, this component may represent excess plagioclase in the matrix. In both experiments, the second components have negative eigenvectors for Si and positive eigenvectors for Ca, Ti, and Fe. In the para-ally crystallized por-on, this component may represent excess plagioclase in the matrix. These components if 53% and 46%, respectively. See Figure 3 for experimental regions.

Preliminary conclusions
These PCA results cannot be uniquely interpreted, but they support the presence of excess plagioclase and a mobile (sulfide) addition to the pre-impact material.

In both experiments, the first components have positive eigenvectors for Al and Ca and negative eigenvectors for Fe and Mg. This suggests that the majority of the variance is controlled by an exchange of plagioclase composition for a mafic composition. Because iron is found in the pure melt and in the partially crystallized por-on, this component may represent excess plagioclase in the pre-impact material, supporting Rao et al. [1].

In both experiments, the second components have negative eigenvectors for Ca and positive for Ca, P, S, and Cl. This component corresponds to the zonation in the melt visible in Figure 2. The PCA suggests there is an accompanying S and possibly Cl enrichment apparent by visible inspection.

Component IV in experiment 1 and Component III in experiment 2 have strong positive eigenvectors for Fe and Mg and variably negative eigenvectors for Ti and Ni. The association of K with Cl is apparent from EDS maps (Figure 1) but not from EDS maps (Figure 2). Ni, K, and Cl are all enriched in Martian soil (S-7), while K and Cl are soluble and mobile. Ni is residual from weathered olivine. This suggests a separate input into the pre-impact material for mobile elements than for elements from in situ weathering. This indicates a likely soil component in the precursor to Lithology C as suggested by Rao et al. [1].