The International Space Station: Systems & Science

Timothy W. Giblin
United Space Alliance
NASA Johnson Space Center
ISS Program Mission

Safely build, operate, and utilize a permanent human outpost in space through an international partnership of government, industry, and academia to advance exploration of the solar system, conduct scientific research, and enable commerce in space.
ISS Introduction

- International collaboration for the long-term exploration of space

<table>
<thead>
<tr>
<th>United States</th>
<th>Russia</th>
<th>Canada</th>
<th>Japan</th>
<th>Europe</th>
</tr>
</thead>
</table>

- Orbital inclination 51.6°
- Orbital altitude 370-460 km
- Mass ~419,000 kg
- 1200 m³
- 108.4 m (truss) × 74 m
- 110 kW power output, (30 kW payload)
Assembly Complete Configuration

10+ yrs Assembly Timeline
Post Node-3 & Cupola Install Configuration
ISS Cupola Install
Crew of 6

Current crew onboard ISS
Visiting Vehicles

Soyuz – crew
Progress - cargo
Operations

Mission Control Center – NASA Johnson Space Center, Houston, TX

FCR-1
24/7
ISS Core Systems

- Command & Data Handling (CDH)
- Communication & Tracking (C&T)
- Electrical Power System (EPS)
- Thermal Control System (TCS)
- Motion Control System (MCS)
- Environmental Control & Life Support System (ECLSS)
- Robotics
- Extravehicular Activity (EVA)
- Payload Systems
Avionics System

- Provides hardware and software used to collect data from onboard core systems and payloads.
- Command and control to onboard core systems.

- 1553B communications protocol
- Total of 44 MDMs onboard
- Tiered architecture

Tier 1 – Command & Control (C&C) MDM
Tier 2 – 6 system-specific MDMs
Tier 3 – subsystem MDMs connect to sensors & effectors
Emergency, Warning & Caution system (EWC)

- managed by the Primary C&C MDM
- bits set at subsystem level for trigger criteria
- alarm annunciation throughout ISS
- Caution & Warning Panels

Payload Network (PL)

- Tier 2 Payload MDMs
- Fiber-optic network
- Ethernet network

CDH interfaces with the Russian Segment & IP modules
Communication & Tracking System

- Provides near continuous communication with the ground (MCC-H)
- Crew & vehicle safety, disseminate science data
- Flight controller commanding from the ground

S-Band

- voice, commands, telemetry, & files
- 2.025-2.2110 GHz downlink
- 2.2-2.29 GHz uplink
- 2 strings (S1 truss, P1 truss)
Redundant S-Band strings
Communication & Tracking System (con’t)

Ku-Band

- payload data, video downlink, 2-way telecon
- 10.7-12.2 GHz downlink
- 14.0-14.5 uplink

Z1 truss & Ku-Band antenna
Communication & Tracking System (con’t)

TDRSS

LEGEND
TDRS - Tracking and Data Relay System
WSC - White Sands Complex

Note:
The size of the Zone of Exclusion (ZOE) is dependant upon altitude (inversely proportional)
Electrical Power System

Solar Energy (photons) → Electrical Energy

• Provide continuous power to ISS during insolation and eclipse

Photovoltaic Modules (PVM)

• 2 power channels
• generate primary power (150-160 V DC)
• Si solar cells series (81 panels/blacket) (~262,000 cells)
• sequential shunt unit – set pt voltage 160 V
Electrical Power System (con’t)
Primary power storage – NiH₂ batteries (0-10 °C)

- 3 pairs per power channel
- each pair controlled by a Battery Charge-Discharge Unit (BCDU)
Electrical Power System (con’t)

Direct Current Switching Unit – routes power to one of 4 Main Bus Switching Units (MBSUs) located on the S0 truss.

Direct Current Direct Current Control Units (DDCUs) – step down transformer (~124 V DC) routes secondary power to downstream user loads (called Remote Power Control Modules).
Solar Alpha Rotary Joint (SARJ)
Thermal Control System

Maintain ISS equipment & payloads at optimum nominal operating temperature range

Passive thermal control

- MLI (Multi-Layer Insulation) blanket
 - 3.2-6.4 mm
 - single aluminized outer layer (O₂ & MMOD protection)
- surface coatings – anodized coatings & paint w/varing emissivity and absorbtivity
- heaters – electrically powered (>300 on ISS)
- heat pipes – latent heat of vaporization (NH₃ fluid)
Thermal Control System (con’t)
Active thermal control

- **Internal Thermal Cooling System (ITCS)**
 - Working fluid = H₂O with teflon/Ti lines
 - Heat collection: cold plates & heat exchangers
 - Pump Package Assembly
 - Moderate Temperature Loop (MTL): 17°C
 - Low Temperature Loop (LTL): 4°C

- **External Thermal Cooling System (ETCS)**
 - Working fluid – NH₃
 - Heat collection: interface heat exchangers
 - Two loops: Loop A (S1 truss) & Loop B (P1 truss)
 - Heat rejection: Thermal Radiators
Thermal Control System (con’t)
Motion Control System

- Determines ISS state vector
 - Position \((x, y, z)\) and velocity \((v_x, v_y, v_z)\) at a given time
- Determines ISS attitude
 - Rotational angles (yaw, pitch, roll) and the rate at which these angles are changing
- Provides attitude and translation control
 - Provides attitude hold
 - Maintains a microgravity environment
 - Performs reboosts via SM or Progress
- Provides state vector and attitude information to other ISS core systems
USOS Attitude Control

Control Moment Gyros (CMGs)

- 600 lbs each
- 6600 rpm
- 4880 N-m-s

CMGs (Z1 truss)
Motion Control System (con’t)

Translational Control (Reboost)
Robotics System

International collaboration:
NASA, CSA, & JAXA

Functions:
• ISS assembly and maintenance
• EVA support and payload handling

Systems:
• Mobile Servicing System (MSS)
• Japanese Experiment Module Remote Manipulator System (JEM-RMS)
Robotics System (con’t)

Mobile Servicing System (MSS)

(17 m, 7 joints, “walk-off”)

Special Purpose Dextereous Manipulator (SPDM)

Space Station Remote Manipulator System (SSRMS)

Mobile Remote Servicer Base System (MBS)

Mobile Transporter (MT)

MSS External Components

Robotic Workstation (RWS)

(2.54 cm/sec)
Robotics System (con’t)
Robotics System (con’t)

Robonaut (R2)

http://robonaut.jsc.nasa.gov/
Extravehicular Activity

Over 600 tasks must be successfully completed for ISS assembly, requiring more than 540 hours of EVA.

Extravehicular Mobility Unit (EMU)

- pressurized to 4.3 psid
- 7 hrs (15 min to egress A/L, 30 min to ingress A/L, 30 min reserve)
- secondary oxygen pack (30 min)
- UHF comm
Extravehicular Activity (con’t)

“Quest” Joint Airlock

High pressure gas ORUs (two O₂ and two N₂)

Equipment Lock

Crew Lock

Starboard

Nadir

EVA hatch

EVA tool boxes
Extravehicular Activity (con’t)
Payloads

Payload operations: Marshall Space Flight Center, Huntsville, AL

Payload components onboard ISS:

- U. S. Laboratory (“Destiny” Lab) – 24 rack locations
- Facility Class payloads – long-term or permanent payloads

- EXPRESS RACK System
- Advanced Human Support Technology (AHST)
- Human Research Facility (HRF)
- Minus Eighty Degree Laboratory Freezer ISS (MELFI)
- Materials Science Research Facility
- Microgravity Science Glovebox
- Fluids and Combustion Facility
- X-Ray Crystallography Facility
- Biotechnology Facility
Payloads (con’t)
Payloads (con’t)

• Attached payloads – located externally on the truss or the JEM Exposed Facility

 4 locations on S3 truss segment
 2 locations on P3 truss segment
 10 locations on the JEM EF
2005 NASA Authorization Act designated the U.S segment of the ISS as a national laboratory and directed NASA to develop a plan to "increase the utilization of the ISS by other Federal entities and the private sector…”

- Technology Development
- Physical Sciences
- Biological Sciences
- Human Sciences
- Earth Observation
- Space Science
EVC – Earth Viewing Camera

CEO – Crew Earth Observations

HREP-RAIDS – Remote Atmospheric and Ionic Detection System
http://www.nasa.gov/mission_pages/station/science/experiments/HREP-RAIDS.html#images

SOLSPEC – Solar

SOVIM – Solar Variable and Irradiance Monitor

MAXI – Monitor of All-sky X-Ray image
http://www.nasa.gov/mission_pages/station/science/experiments/MAXI.html#images
Alpha Magnetic Spectrometer

- High-energy particle physics detector under DOE sponsorship
- International partnerships: 16 countries & 56 institutions
- Led by Nobel Laureate Samuel Ting (MIT)
Alpha Magnetic Spectrometer (con’t)

• Specifically searching for detection of Anti-Matter & Dark Matter (TeV energies)

Questions?

Thank you

Timothy.W.Giblin@nasa.gov
The International Space Station: Systems & Science

Timothy W. Giblin
United Space Alliance
NASA Johnson Space Center
ISS Program Mission

Safely build, operate, and utilize a permanent human outpost in space through an international partnership of government, industry, and academia to advance exploration of the solar system, conduct scientific research, and enable commerce in space.
ISS Introduction

- International collaboration for the long-term exploration of space

United States Russia Canada Japan Europe

- Orbital inclination 51.6°
- Orbital altitude 370-460 km
- Mass ~419,000 kg
- 1200 m³
- 108.4 m (truss) × 74 m
- 110 kW power output, (30 kW payload)
Assembly Complete Configuration

10+ yrs Assembly Timeline
Post Node-3 & Cupola Install Configuration
ISS Cupola Install
Crew of 6

Current crew onboard ISS
Visiting Vehicles

Soyuz – crew
Progress - cargo
Operations

Mission Control Center – NASA Johnson Space Center, Houston, TX

FCR-1
24/7
ISS Core Systems

- Command & Data Handling (CDH)
- Communication & Tracking (C&T)
- Electrical Power System (EPS)
- Thermal Control System (TCS)
- Motion Control System (MCS)
- Environmental Control & Life Support System (ECLSS)
- Robotics
- Extravehicular Activity (EVA)
- Payload Systems
Avionics System

- Provides hardware and software used to collect data from onboard core systems and payloads.
- Command and control to onboard core systems.

- 1553B communications protocol
- Total of 44 MDMs onboard
- Tiered architecture

Tier 1 – Command & Control (C&C) MDM
Tier 2 – 6 system-specific MDMs
Tier 3 – subsystem MDMs connect to sensors & effectors
Command & Data Handling System (con’t)

Emergency, Warning & Caution system (EWC)

- managed by the Primary C&C MDM
- bits set at subsystem level for trigger criteria
- alarm annunciation throughout ISS
- Caution & Warning Panels

Payload Network (PL)

- Tier 2 Payload MDMs
- Fiber-optic network
- Ethernet network

CDH interfaces with the Russian Segment & IP modules
Communication & Tracking System

- Provides near continuous communication with the ground (MCC-H)
- Crew & vehicle safety, disseminate science data
- Flight controller commanding from the ground

S-Band

- voice, commands, telemetry, & files
- 2.025-2.2110 GHz downlink
- 2.2-2.29 GHz uplink
- 2 strings (S1 truss, P1 truss)
Redundant S-Band strings
Ku-Band

- payload data, video downlink, 2-way telecon
- 10.7-12.2 GHz downlink
- 14.0-14.5 uplink

Z1 truss & Ku-Band antenna
Communication & Tracking System (con’t)

TDRSS

LEGEND
TDRS - Tracking and Data Relay System
WSC - White Sands Complex

Note:
The size of the Zone of Exclusion (ZOE) is dependant upon altitude (inversely proportional)
Electrical Power System

Solar Energy (photons) → Electrical Energy

- Provide continuous power to ISS during insolation and eclipse

Photovoltaic Modules (PVM)

- 2 power channels
- generate primary power (150-160 V DC)
- Si solar cells series (81 panels/blanket) (~262,000 cells)
- sequential shunt unit – set pt voltage 160 V
Electrical Power System (con’t)
Primary power storage – NiH$_2$ batteries (0-10 $^\circ$C)

- 3 pairs per power channel
- each pair controlled by a Battery Charge-Discharge Unit (BCDU)
Direct Current Switching Unit – routes power to one of 4 Main Bus Switching Units (MBSUs) located on the S0 truss.

Direct Current Direct Current Control Units (DDCUs) – step down transformer (~124 V DC) routes secondary power to downstream user loads (called Remote Power Control Modules).
Electrical Power System (con’t)

Solar Alpha Rotary Joint (SARJ)
Thermal Control System

Maintain ISS equipment & payloads at optimum nominal operating temperature range

Passive thermal control

- MLI (Multi-Layer Insulation) blanket
 - 3.2-6.4 mm
 - single aluminized outer layer (O₂ & MMOD protection)
- surface coatings – anodized coatings & paint w/varying emissivity and absorbtivity
- heaters – electrically powered (>300 on ISS)
- heat pipes – latent heat of vaporization (NH₃ fluid)
Thermal Control System (con’t)

- MLI
- Anodized coating
- Heaters (bonded to the inside of the lab pressure cell)
Active thermal control

- Internal Thermal Cooling System (ITCS)
 - Working fluid = H$_2$O with teflon/Ti lines
 - Heat collection: cold plates & heat exchangers
 - Pump Package Assembly
 - Moderate Temperature Loop (MTL): 17°C
 - Low Temperature Loop (LTL): 4°C

- External Thermal Cooling System (ETCS)
 - Working fluid – NH$_3$
 - Heat collection: interface heat exchangers
 - Two loops: Loop A (S1 truss) & Loop B (P1 truss)
 - Heat rejection: Thermal Radiators
Thermal Control System (con’t)
Motion Control System

- Determines ISS state vector
 - Position \((x, y, z) \) and velocity \((v_x, v_y, v_z) \) at a given time
- Determines ISS attitude
 - Rotational angles (yaw, pitch, roll) and the rate at which these angles are changing
- Provides attitude and translation control
 - Provides attitude hold
 - Maintains a microgravity environment
 - Performs reboosts via SM or Progress
- Provides state vector and attitude information to other ISS core systems

Mean Vernal Equinox J2000

LVLH
Control Moment Gyros (CMGs)

- 600 lbs each
- 6600 rpm
- 4880 N-m-s
Motion Control System (con’t)

Translational Control (Reboost)
International collaboration:

NASA, CSA, & JAXA

Functions:

• ISS assembly and maintenance
• EVA support and payload handling

Systems:

• Mobile Servicing System (MSS)
• Japanese Experiment Module
 Remote Manipulator System
 (JEM-RMS)
Robotics System (con’t)

Mobile Servicing System (MSS)

(17 m, 7 joints, “walk-off”)

Special Purpose Dexterous Manipulator (SPDM)

Space Station Remote Manipulator System (SSRMS)

Mobile Remote Servicer Base System (MBS)

Mobile Transporter (MT)

MSS External Components

Robotic Workstation (RWS)

(2.54 cm/sec)
Robonaut (R2)

http://robonaut.jsc.nasa.gov/
Over 600 tasks must be successfully completed for ISS assembly, requiring more than **540** hours of EVA.

Extravehicular Mobility Unit (EMU)

- pressurized to 4.3 psid
- 7 hrs (15 min to egress A/L, 30 min to ingress A/L, 30 min reserve)
- secondary oxygen pack (30 min)
- UHF comm
Extravehicular Activity (con’t)

“Quest” Joint Airlock

Equipment Lock

Crew Lock

High pressure gas ORUs
(two O₂ and two N₂)

Starboard

EVA tool boxes

Nadir

EVA hatch
Extravehicular Activity (con’t)
Payload operations: Marshall Space Flight Center, Huntsville, AL

Payload components onboard ISS:

- U. S. Laboratory ("Destiny" Lab) – 24 rack locations
- Facility Class payloads – long-term or permanent payloads

- EXPRESS RACK System
- Advanced Human Support Technology (AHST)
- Human Research Facility (HRF)
- Minus Eighty Degree Laboratory Freezer ISS (MELFI)
- Materials Science Research Facility
- Microgravity Science Glovebox
- Fluids and Combustion Facility
- X-Ray Crystallography Facility
- Biotechnology Facility
Payloads (con’t)

Express Rack

Payloads (8 Middeck Lockers, 2 ISS Drawers)

EXPRESS Rack Secondary Structure Subsystems

ISPR
Payloads (con’t)

- Attached payloads – located externally on the truss or the JEM Exposed Facility

 4 locations on S3 truss segment
 2 locations on P3 truss segment
 10 locations on the JEM EF
ISS USOS National Laboratory

2005 NASA Authorization Act designated the U.S segment of the ISS as a national laboratory and directed NASA to develop a plan to "increase the utilization of the ISS by other Federal entities and the private sector..."

- Technology Development
- Physical Sciences
- Biological Sciences
- Human Sciences
- Earth Observation
- Space Science
Earth & Space Science

EVC – Earth Viewing Camera

CEO – Crew Earth Observations

HREP-RAIDS – Remote Atmospheric and Ionic Detection System
http://www.nasa.gov/mission_pages/station/science/experiments/HREP-RAIDS.html#images

SOLSPEC – Solar

SOVIM – Solar Variable and Irradiance Monitor

MAXI – Monitor of All-sky X-Ray image
http://www.nasa.gov/mission_pages/station/science/experiments/MAXI.html#images
Alpha Magnetic Spectrometer

- High-energy particle physics detector under DOE sponsorship
- International partnerships: 16 countries & 56 institutions
- Led by Nobel Laureate Samuel Ting (MIT)
Alpha Magnetic Spectrometer (con’t)

- Specifically searching for detection of Anti-Matter & Dark Matter (TeV energies)

Questions?

Thank you

Timothy.W.Giblin@nasa.gov