Coverage Metrics for Requirements-Based Testing: Evialoaif
Effectiveness

Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl
University of Minnesota
[staats,whalen,heimdahl]@cs.umn.edu

Ajitha Rajan
Laboratoire d’Informatique de Grenoble
arajan@cs.umn.edu

Abstract

In black-box testing, the tester creates a set of tests tiwisrea system under test without re-
gard to the internal structure of the system. Generally, lsjeative metric is used to measure the
adequacy of black-box tests. In recent work, we have prapttseerequirements coverage metrjcs
allowing testers to objectively measure the adequacy ofiekbbox test suite with respect to a set
of requirements formalized as Linear Temporal Logic (LTkdmerties. In this report, we evaluate
the effectiveness of these coverage metrics with respdatitofinding. Specifically, we conduct an
empirical study to investigate two questions: (D test suites satisfying a requirements coverage
metric provide better fault finding than randomly generatest suites of approximately the same
size? and (2)do test suites satisfying a more rigorous requirements rageemetric provide better
fault finding than test suites satisfying a less rigorousuisgments coverage metric?

Our results indicate (1) only one coverage metric proposddigue First Cause (UFC) coverage—
is sufficiently rigorous to ensure test suites satisfyirgyrtetric outperform randomly generated test
suites of similar size and (2) that test suites satisfyingemigorous coverage metrics provide better
fault finding than test suites satisfying less rigorous cage metrics.

1 Introduction

When validating a system under test (SUT), the creation dhekbbox test suite—a set of tests that
exercise the behavior of the model without regard to thermatdestructure of the model under test—
is often desirable. Generally, no objective standard isl diee determining the adequacy of test suite
with respect to a set of requirements. Instead, the adequfasych suites is inferred by examining
different coverage metrics on the executable artifact tefithe SUT, such as source code. However,
given formalized software requirements it is possible ttindemeaningful coverage metrickrectly

on the structure of the requirement®f interest here is previous work in which we adopted stnadt
code coverage metrics to define three increasingly rigoregsirements coverage metrics over Linear
Temporal Logic (LTL) requirementsrequirements coverage, antecedent coverayel Unique First
Cause (UFC) coveragd9]. The relationship between the criteria formgaar subsumption hierarchy
as test suites satisfying more rigorous coverage metrecgaaranteed to satisfy less rigorous coverage
metrics.

In this work we empirically evaluate the fault finding ahilivf test suites satisfying these require-
ments coverage metrics. Specifically, we investigate ifr(fjeneral a test suite satisfying a requirements
coverage metric provides greater fault finding than a radggmenerated test suite of the same size and
(2) the linear subsumption hierarchy between metrics risfldae relative fault finding of test suites sat-
isfying these requirements coverage metrics. Our studgnslucted using four commercial examples
drawn from the civil avionics domain. For each case exampkegenerate 600 mutants, a test suite

*This work has been partially supported by NASA Ames Rese@efiter Cooperative Agreement NNAO6CB21A, NASA
IV&V Facility Contract NNG-05CB16C, and the L-3 Titan Group

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 161

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

satisfying each requirements coverage metric, and 1,0@fbra tests. We resample these sets to create
25 sets of 200 mutants and 25 reduced test suites for eachagevmetric. For each reduced test suite,
we create a random test suite of approximately the same wimshmpling from the set of 1,000 random
tests. We explore fault finding using each set of mutants anl &st suite. In total, we examine the
fault finding of 15,000 combinations of case examples, @S, and mutant sets.

From our results we draw the following observations. Fitlsg relative rigor of the requirements
coverage metrics reflects the fault finding ability of testesisatisfying them. Second, the structure
of requirements significantly impacts the fault finding ddtteuites satisfying the coverage metrics, an
observation previously made in relation to other coveragérios [16]. Finally, test suites satisfying
the UFC coverage criterion often provide greater fault figdihan randomly generated test suites of
equal size, while test suites satisfying the other coveragiics do not. This indicates that of the three
coverage metrics evaluated, only UFC coverage is a consisteasure of the adequacy of test suites—
the intuition behind the other metrics may be useful, buy thee not rigorous enough to be used as
an objective measure of test suite adequacy. Our resultdidtity how this lack of rigor creates the
potential for test suites to “cheat” a coverage criteriorntdnhnicallysatisfying the criterion, but doing
S0 in an uninteresting or non-representative manner. $tparticularly a problem when using automatic
test generation tools, as these tools generally have napbot realistic tests and tend to generate the
simplest possible tests satisfying a coverage criterion.

2 Related Work

In [19], we formally defined the requirements coverage roststudied in this paper and outlined our
rationale for each. As detailed in [19], these metrics afated to work by Beer et al., Kupferman
et al.,, and Chockler et al. omacuity checkingand coverage metricfor temporal logics [2, 4, 10].
More recently, we examined the fault finding effectivenebsest suites satisfying UFC coverage of
the requirements on a system and MC/DC (Modified Conditiecifion Coverage) over the system
itself [16]. We determined that test suites satisfying MC/Benerally outperform test suites satisfying
UFC coverage (though fault finding was often close). Thishgthhowever, did not investigate the fault
finding effectiveness of requirements and antecedent ageess compared to UFC.

Fraser and Gargantini [5] and Fraser and Wotawa [6] explawdmatic test generation using
NuSMV for a number of coverage criteria, including UFC andation coverage. Neither of these works
compare the effectiveness of test suites satisfying UF@reg@e to randomly generated tests suites of
equal size or perform any analysis that considering thedfiftee test suite.

3 Requirements Coverage Metrics

Previously, we defined three requirements coverage metggsirements coveragantecedent cover-
age andUnique First Cause (UFCgoverage [19]. Each requirements coverage metric is detwed
formalized requirements expressed as Linear TemporalcL@diL) properties [15]. These coverage
metrics provide different levels of rigor for measuringtt@dequacy and form a linear subsumption hier-
archy, with requirements coverage as the weakest and UF€age as the strongest.

Requirements Coverage:To satisfyrequirements coverage test suite must contain at least one test
per requirement that—when executed—causes the requitemer met. Consider the following nat-
ural language requiremenritThe onside Flight Director cues shall be displayed when Auwto-Pilot is
engaged.” A test derived from this requirement might examine the feit@y scenario: (1) Engage the
Auto-Pilot, and (2) Verify that the Onside Flight Directasroes on. Alternatively, the test might simply
leave the Auto-Pilot turned off. Technically, this test risene requirement, albeit in a way that is not
particularly illuminating.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 162

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

Antecedent Coverage:Requirements, such as the previous example, are oftencatipins, formally
G(A — B). Aon the left hand side of> is referred to as thantecedentandB on the right hand side as
theconsequentTo satisfy antecedent coverage, a test suite must contigiasi one test case per require-
ment that, when executed, causes the requirement to be thedases the antecedent to evaluateue

Unique First Cause (UFC) Coverage:Requirements are often more complex than the simple exam-
ple given previously. For such complex requirements (aneino$imple ones), it is desirable to have a
rigorous coverage metric that requires tests to demoedtnateffect of each atomic condition in the re-
quirement; this ensures that every atomic condition is s&smy and can affect the outcome of the prop-
erty. Requirements and antecedent coverage cannot doTthesefore, we defined a coverage metric
calledUnique First Cause (UFCoverage over LTL requirements. It is adapted from the MCdite-
rion [3, 9], a structural coverage metric designed to dermatesthe independent effect of basic Boolean
conditions (i.e., subexpressions with no logical opegton each Boolean decision (expression) within
source code.

A test suite satisfies UFC coverage over a set of LTL requirgsnié executing the test cases in the
test suite will guarantee that (1) every basic conditioraicheformula has taken on all possible outcomes
at least once and (2) each basic condition in each formuld&as shown to independently affect the
formula’s outcome.

4 Study

Based on the subsumption hierarchy between these mettlzseduin the previous section we expect that
test suites satisfying UFC coverage will provide betteiftfinding than test suites satisfying the other
requirements coverage metrics, and we expect that teessitisfying antecedent coverage will provide
better fault finding than test suites satisfying requiretm@overage. Furthermore, we expect that a test
suite satisfying a coverage metric will provide better fdinding than a randomly generated test suite
of equal size since a test suite satisfying a requiremenisrage metric is designed to systematically
exercise the system.
We conducted an experiment to evaluate the following hygsxh:

Hypothesis 1 {;): A test suite satisfying a requirements coverage metricigesvgreater
fault finding than a randomly generated test suite of appnately equal size.
Hypothesis 2 H): A test suite satisfying a requirements coverage metricigesvgreater
fault finding than a test suite satisfying a less rigorousuisgments coverage metric.

We used four industrial systems in our experiment. For eask example, we performed the following
steps:

1. Generated a test suite for each coverage metricWWe generated three suites providing UFC,
antecedent, and requirements coverage. (Section 4.2.)

2. Generated random tests:We generated random inputs for 1,000 random tests. (SetBn

. Generated mutants: We generated 600 single-fault mutants (Section 4.4.)

4. Ran test suites with mutants and case exampleWe ran each mutant and the original case
example using the three generated test suites and the raiedbsuite.

5. Generated reduced requirements coverage test suite€ach requirements coverage test suite
was naively generated and thus highly redundant. We gexe2a reduced test suites that maintain
the original coverage from each full test suite. (Secti¢h)4.

6. Generated random test suitesfor each reduced requirements coverage test suite, wemindo
generated a random test suite approximately the same sthe asduced requirements coverage
test suite by sampling the 1,000 random tests previouslgrgéed. (Section 4.3.)

w

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 163

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

7. Generated mutants setsWe randomly generated 25 sets of 200 mutants by resampbingtfie
600 mutants. (Section 4.4.)

8. Assessed fault finding ability of each reduced test suité=or each test suite and each mutant set,
we determined how many mutants were detected by the test suit

In the remainder of this section, we describe in detail oyeeixnental approach.

4.1 Case Examples

In our experiment, we use four industrial avionics appilaa from displays and flight guidance systems.
All four systems were modeled using the Simulink notatianfrMathworks Inc. [12] and were trans-
lated to the Lustre synchronous programming language [Bk®advantage of existing automation [13].
For more information on these systems, see [16].

4.2 Requirement Test Suite Generation and Reduction

We have used an automated approach to generate test cames rinodel of the system behavior. This
model represents the knowledge of the desired system letamdomain expert might possess. Using
this technique, we can generate the large number of testgr@ddfor our experiments. Furthermore,
the approach tends to generate the shortest, simplestheastsatisfy obligations, and, thus, the tests
generated are unlikely to be unusually effective (and mafaah be unusually poor), a phenomenon
previous observed in [16].

Several research efforts have developed automatic testajén techniques based on formal models
and model checkers [7, 18]. The technique we use is outlmEBj] and operates by generating NuSMV
counterexamples through trap properties. Using this igclen we can create test suites achieving the
maximum achievable coverage for a specified coverage metric

A test suite generated using this approach will be highlyneldnt, as a single test case will often
satisfy several obligations. Such a test suite is not reptative of the coverage metric, as it may
contain far more tests than are needed and may thereforéhigidest suite’s fault finding ability. We
therefore reduce each test suite using a greedy algoritinst, We randomly select a test case from the
generated test suite, determine which obligations arsfatiby the test and add it to a reduced test suite.
We continue by randomly choosing another test case from ¢hergted test suite, determining if any
obligations not satisfied by the reduced test suite arefigatisy the test case selected, and if so adding
the test case to the reduced test suite. This process yietsdamly reduced test suite achieving the
same requirements coverage as the the original test sugegevierated 25 reduced test suites for each
coverage metric and each case example to avoid threatsddydue to a small sample size.

4.3 Random Test Suite Generation and Reduction

We generated a single set of 1,000 random tests for each xas®lke. Each individual test contains
between 2-10 steps with the number of tests of each testhatigfributed evenly in each set of tests.
For each reduced requirements coverage test suite we erestdom test suite with the same number of
steps (or slightly more) by randomly sampling from the set, 000 random tests generated. As a result,
each set of reduced requirements coverage test suitdyisatia coverage metric has a corresponding set
of random test suites of approximately the same size. Thébauof steps was used as a measurement
of size rather than the number of tests as this avoids ceatinndom test suite with significantly longer
or shorter tests on average than the corresponding redaeqattaments coverage test suite.

4.4 Mutant Generation

We created 60nutantgfaulty implementations) for each case example by introdya single fault into
the correct implementation. Each fault was introduced heeiinserting a new operator into the system
or by replacing an operator or variable with a different eper or variable. The faults seeded include

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 164

Eval. of Coverage Metrics for Regs-Based Testing

Staat®|®¥vh Rajan, and Heimdahl

[RC

[RC-RAN |

AC

[ACRAN | UFC | UFC-RAN |

DWM _1

77.8%

78.7%

78.6%

78.7%

88.0%

81.6%

DWM _2

0.0%

1.60%

0.0%

1.29%

5.41%

9.42%

Latctl _Batch

17.1%

49.8%

59.0%

62.1%

85.2%

82.7%

Vertmax_Batch

22.4%

26.6%

46.9%

42.5%

81.5%

72.2%

| | ACRCImp | UFC:RCImp | UFCACImp [RC:RC-RANImp [AC:AC-RANImp [UFC:UFC-RANImp |

DWM _1 1.01% 13.1% 12.0% -1.0% -0.1% 7.8%
DWM _2 0.0% 00 00 -100% -100% -42.0%

Latctl _Batch 244.1% 396.9% 44.4% -65.0% -5.1% 3.0%
Vertmax_Batch 108.9% 262.4% 73.5% -15.0% 10.3% 12.9%

Table 1:Average and Relative Improvement in Fault Finding
Column HeaderX : Y) Denotes Relative Fault Finding Imp. Using Test Sitever Test Suit&/
RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size Size of a Reduced Test Suite SatisfyddCoverage

[UFC<AC [UFC<RC [AC<RC | UFC < UFC-RAN | AC <AC-RAN [RC < RC-RAN]

DWM _1 <0.001 <0.001 <0.001 <0.001 0.62 1.0
DWM _2 <0.001 <0.001 1.0 1.0 1.0 1.0
Latctl _Batch <0.001 <0.001 <0.001 <0.001 1.0 1.0
Vertmax_Batch <0.001 <0.001 <0.001 <0.001 1.0 1.0

Table 2:Statistical Analysis foH0; andHO,
RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size Size of a Reduced Test Suite Satisfydgoverage

arithmetic, relational, boolean, negation, delay intidahn, constant replacement, variable replacement
and parameter replacement and are described in more aeftbd]i

We generated 600 mutants for each case example. From theseusants, we generated 25 sets of
200 mutants. We generated multiple sets of mutants to abo@its to validity due to a small sample
size. Note that we did not check that generated mutants anargieally different from the original
implementation. This weakness in mutant generation doeaffext our results since we are interested
in the relative fault finding ability between test suites.

5 Results

To determine the fault finding of a test suiteand a mutant sé¥l for a case example we simply compare
the output values produced by the original case examplasigevery mutantn € M using every test
caset € T. The fault finding effectiveness of the test suite for theantiset is computed as the number
of mutants killed divided by the number of mutants in the ¥é. perform this analysis for each test suite
and mutant set for every case example yielding 7,500 fadirfinmeasurements per case example. We
use the information produced by this analysis to test oupthgses and infer the relationship between
coverage criteria and fault finding.

The complete analysis is too large to include in this répdfor each case example, we present in
Table 1 the average and relative improvement in fault finflingach coverage metric and for the random
test suites corresponding to each coverage metric. We tliraitiscussion in this section to statistical
analysis, a discussion of these results and their imptinatfollows in Section 6.

5.1 Statistical Analysis

To evaluate our hypotheses (from Section 4), we first evalaath hypothesis for each combination of
a case example and requirements coverage metri¢iifpor pairing of requirements coverage metrics
(for Hp). Using these results, we determine what conclusions cgeheralized across all systems.

10ur data can be retrieved Bttp://crisys.cs.umn.edu/public_datasets.html and is available to the research
community for additional analysis.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 165

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

[UFC>AC [UFC>RC | AC>RC [UFC>UFC-RAN [AC >AC-RAN [RC >RC-RAN |
[Supported | Supported | Unsupported] Unsupported | Unsupported | Unsupported |

Table 3:Conclusions for Hypotheses Across All 4 Case Examples
RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size Size of a Reduced Test Suite SatisfyddCoverage
Each columnX > Y) Denotes Hypothesis of “Test Suites SatisfyidHave Greater Fault Finding Than Test Suites Satisf¥ihg

Each of the individual hypotheses states that one set dfffading measurements should be in gen-
eral higher than another set of fault finding measurememiseXample, we hypothesize that fault finding
measurements for reduced test suites satisfying UFC ageerra better than fault finding measurements
for the set of comparably sized random test suites (for eamtledand case example). To evaluate our
hypotheses, we use a bootstrapped permutation test, aanamgtric statistical test that determines the
probability that two sets of data belong to the same popidtil], and explore 1,000,000 permutations
when calculating eacp-value. From a practical standpoint, we are only interegiestenarios where
test suites satisfying a requirements coverage metricedaipn random test suites and where test suites
satisfying a more rigorous coverage metric outperform s tiggorous coverage metric. Consequently,
we formulate our null hypotheses ase-tailedtests, restatingl; andH, as the null hypothesd4$0; and
HO,, respectively:

HO,: For case example CE, the data points for percentage of maitanight by test suites satisfying
coverage metric C are less than or equal to the data pointpércentage of mutants caught by
random test suites of approximately the same size.

HO,: For case example CE, the data points for percentage of matzanight by test suites satisfying
coverage metric Care less than or equal to the data points for percentage ofintatcaught by
test suites satisfying a less rigorous coverage metsic C

We evaluateH0; andHO, using 4 case examples and 3 coverage metrics or 3 pairingsvefage
metrics, respectively. We therefore produceptzalues each foHO; andHO,, listed in Table 2. These
p-values are used to generalize across our results.

We use the Bonferonni correction, a conservative methoddarding against erroneously rejecting
the null hypothesis when generalizing results. The Bomfiercorrection sets the alpha required for
each null hypothesis at/h times the alpha desired for the entire set, where the number of results
generalized; in this case, the alpha is setat10.05 = 0.0125 for each hypothesis. We present the
results in Table 3.

Given these results, we can evaluate our original hyposhese

Hypothesis 1 H1): A test suite satisfying a requirements coverage metricipesvgreater
fault finding than a randomly generated test suite of apprately equal size.
Hypothesis 2 H>): A test suite satisfying a requirements coverage metricigesvgreater
fault finding than a test suite satisfying a less rigorousuiegments coverage metric.

The majority of test suites satisfying a coverage metrizvigi®worse fault finding than random test
suites of similar size, and thu$; is not statistically supported. Furthermore, test suitdisfying an-
tecedent and requirements coverage provide similar l@fdéilt finding for theDWM_2 case example,
and thusH» is not statistically supported.

However, we note here several interesting results frometablnd 3, and explore them in Section 6.
First, H, fails only when test suites satisfying antecedent and remeénts coverage find no faults.
Second, test suites satisfying UFC coverage outperforrdorantest suites 75% of the time (3 of 4
case examples). Finally, random test suites always ouperfest suites satisfying requirements and

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 166

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

antecedent coveragdth statistical significancéderivation of this significance is not shown), indicating
that the random tests are not simply equivalent to the tesisrgted to satisfy a coverage metric, but
preferable. These results and our recommendations areregph Section 6.

5.2 Threats to Validity

External Validity: We only used four synchronous reactive critical systemsiénstudy. We believe,
however, that these systems are representative of theatsiistems in which we are interested and that
our results can therefore be generalized to other relatsdmg.

As our implementation language we used the synchronousgroging language Lustre [8] rather
than a more common language such as C or C++. Systems writteastre are similar in style to
traditional imperative code produced by code generatoheréfore, testing Lustre code is sufficiently
similar to testing reactive systems written in C or C++ toeyatize the results to such systems.

We have used automatically seeded faults to evaluate thiefifzding ability of tests suites. It is
possible the faults seeded are not representative. Nelest) previous work indicates fault seeding
methods similar to our own are representative of real fartountered in software development [1].

We only report results using test oracles based on outpiables. In pilot studies, we observed that
test oracles considering internal variables in additioatttput variables produced similar results.

Finally, we used automatic test generation rather than aadoexpert when creating test suites.
Clearly, the tests produced by an automated tool differ ftests likely to be produced by a domain
expert, particularly in the case of requirements coverdggvertheless, we are interested in evaluating
the coverage metricsnot domain experts, and thus view the worst-case test gemerprovided by
the tools to be preferable—these tools tend to highlightcaefties in coverage metrics, and thus our
evaluation is not influenced by the skill of a domain expert.

Conclusion Validity: For each case example, we have performed resampling usemgdam test
suite containing 1,000 tests and a set of 600 mutants. Tladgesvare chosen to yield a reasonable cost
for the study. It is possible that sampling from larger randest suites may yield different results, or
that the number of mutants is too low. Based on past experjdrawever, we have found results using
200 mutants to be representative [17, 16], and thus beli@@erv@utants to sufficient.

For each case example, we have generated 25 reduced testfewieach coverage metric, a cor-
responding set of 25 random test suites for each coveragécaatd 25 sets of 200 mutants. These
numbers were chosen to keep the cost of resampling reasonhik possible that the fault finding
measurements that result do not accurately represent tlod gessible results. Nevertheless, the low
variance in fault finding measurements observed in the $¢é¢stosuites and mutants—coupled with the
consistency of our results across case examples—indicatesonclusions are accurate.

6 Discussion

In Section 5, we showed that neither hypothesis was statistisupported. Nevertheless, the results lead
to several worthwhile observations. First, despite thé& lafcstatistical significance, the subsumption
hierarchy between coverage metrics generally reflectselaéve fault finding of test suites satisfying a
coverage metric; the more rigorous the coverage metriomihie effective the corresponding test suite
will be. This indicates a useful tradeoff in test suite rigomd test suite size exists.

This observation, however, is rendered largely moot by ffeciveness of random testing. For
both requirements and antecedent coverage, random tés$ guovide greater fault finding than test
suites satisfying these coverage metrics, often withssiedi significance. Furthermore, for tB&VM 2
system, test suites satisfying UFC coverage do not outperfandomly generated test suites. The
former result highlights problems with using automatid generation tools to generate tests satisfying a
coverage criterion. The latter result highlights how tlmadture of requirements can affect the usefulness
of a coverage metric.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 167

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

In the remainder of this section, we will discuss the imglmas of these results and recommenda-
tions concerning requirements coverage metrics.

6.1 Pitfalls of Automatic Test Generation

As mentioned in Section 4.2, automatic test generationstémg@roduce tests that satisfy coverage obli-
gations using minimal effort. Tests generated tend to fatly use the default inputs (e.g., all signals set
to false), and may in that way technically satisfy obligatiavhile not exercising useful or representative
scenarios. Consequently, a test suite generated to meeeeage criterion might do mostly nothing,
while a random test suite of equal size will generally do sining (albeit something arbitrary). This
accounts for the relatively good fault finding achieved hyd@m test suites.

The degree to which this is a problem depends on the complekihe coverage obligations. For
example, the coverage obligations produced using reqeingsncoverage for thBWM_ 2 system are
very simple, and consequently every test generated islgthetsame; therefore, one test satisfies every
obligation. Conversely, the coverage obligations producging UFC coverage for théertmaxBatch
system are quite complex, requiring over 10 times as many tesneeded to satisfy requirements or
antecedent coverage for the same system. When using cowolgigations, automatic test generation
must generate tests meeting a wide variety of constraimtsding specific sequences of events, and
consequently the test cases produced tend to be moreiceatigtmore effective.

6.2 Pitfalls of Requirements Structure

For the DWM_2 system, the randomly generated test suites outperformesitestiites satisfying UFC
coverage. We have observed similar issues in previous wdkwWhere we noted the requirements for
this particular system are structured such that the UF@rwit is rendered ineffective as compared to
our other case exampfes

LTLSPEC G(var_a > (LTLSPEC G(var_a > (
case case
foo : 0 ; foo & baz : 0 + 2 ;
bar : 1 ; foo & bpr : 0 + 3 ;
esac + bar & baz : 1 + 2 ;
case bar & bpr : 1 + 3 ;
baz : 2 ; esac
bpr : 3 ;)
esac
)5
Figure 1: Original LTL Requirement Figure 2: Restructured LTL Requirement

We note that many of the requirements for D&/M_2 system were of the form (formalized as
SMV [14]) in Figure 1. Although this idiom may seem unfamili¢his use of case expressions is not
uncommon when specifying properties in NuSMV. Informathe sample requirement states that_a
is always greater than the sum of the outcomes of the two egsessions. Generating UFC obligations
for the above requirement yields very simple test obligetisince there are no complex decisions — we
simply need to find tests where the top-level relational esgion and each atomic condition has taken
on the values true and false.

This requirement can be restructured without changing teanimg as shown in Figure 2. Achieving
UFC coverage over this restructured requirement will negqaiore obligations than before since the
boolean conditions in the case expression are more comptewa must demonstrate independence of
each condition in the more complex decisions. Thus, thetsire of the requirements has a significant
impact on the number and complexity of UFC obligations regplii For this experiment, we did not
restructure any requirements. Consequently, the UFCatimigs for theDWM_2 do not have as complex

2This discussion is partially adopted from [16] as we encerett the same phenomenon in that investigation.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 168

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

of a structure as those for the other three systems, and atitotest generation (as with requirements
and antecedent coverage) produces poor tests.

6.3 Recommendations

The goal of using a coverage criterion is to infer the efficalcg test suite. By verifying that a test suite
satisfies a coverage criterion, one hopes to provide evaddrat the test suite is “good” and is likely to
uncover faults. While no objective standard for “good” fafihding exists, at a minimum a test suite
satisfying a useful coverage criterion should providedsd#ult finding than a randomly generated test
suite of similar size; otherwise, little confidence in thealify of a test suite is gained by showing it
satisfies the coverage criterion.

The test suites generated by automatic test generationisfysa@quirements and antecedent cover-
age are in some sense “worst-case” test cases, and it ig dkddbmain expert using these metrics as a
guide would produce far better tests. We are, however, rajtiating our coverage metrics as guidelines
for developing tests, but as objective measure of blackibsksuite adequacy, and our results clearly
demonstrate that it is easy to satisfy requirements or ad&t coverage using inadequate test suites.
We therefore conclude thegquirements and antecedent coverage are not sufficieigtyausto ensure
a test suite satisfying one of these metrics is better thama@dom test suite of equal size—the intuition
behind the metrics may be useful, but merely satisfying tb&imdoes not provide convincing evidence.

Conversely, the test suites generated to provide UFC cgeedespite also being “worst-case” test
cases, generally outperform random test suites of appaigisnthe same size. The caveat to this is
requirements structure—by breaking up complex requirgsiemo several less complex requirements,
the benefits of UFC coverage can be diminished. Neverthebessesults indicate that the adequacy
of black-box tests can be inferred using UFC coverage. Weftie conclude that UFC coverage is
sufficiently rigorous to ensure a test suite is better thaanglom test suite of equal size provided the
requirements are not structured to mask complexity. Adwiiyt this is a rather weak conclusion and
more research is needed to identify coverage criteria teanare effective and more robust with respect
to the structure of the requirements.

Thus, in practice, testers who wish to objectively infer Hukequacy of a black-box test suite with
respect to a set of requirements formalized as LTL propesi®uld use UFC coverage while noting the
pitfalls outlined above.

7 Conclusion

In [19], we defined coverage metrics over the structure afireqents formalized as Linear Temporal
Logic (LTL) properties. Such metrics are desirable becahsg provide objective, model-independent
measures of the adequacy of black-box testing activitiethis paper, we empirically demonstrated that
of the three coverage metrics explored, only the UFC coecaterion is rigorous enough to be a useful
measurement of test suite adequacy. We also noted that éfidness of the UFC coverage criterion
is influenced by the structure of the requirements. Consgltyeve conclude that testers who wish to
measure the adequacy of a test suite with respect to a setlofdguirements should use a coverage
criterion at least as strong as UFC coverage, but should héfatiof the structure of their requirements.

Furthermore, our work highlights the difference betweeimgigoverage metrics as guidelines for
developing test suites, and using coverage metrics astivgi@aceasurements of test suite adequacy. We
demonstrate how using an insufficiently rigorous coverageron for inferring test suite adequacy can
lead to incorrectly concluding a test suite that technjcaikets the criterion is adequate, when the test
suite is no better than a randomly generated test suite obaippately the same size. We believe this
has implications in domains such as avionics and criticsilesys, where test coverage metrics are used
by regulatory agencies to infer the efficacy of a testing @ssand thus the quality of a software system.
We hope to investigate this problem in depth in future work.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 169

Eval. of Coverage Metrics for Regs-Based Testing Staatsl&dh Rajan, and Heimdahl

References

[1] J.H. Andrews, L.C. Briand, and Y. Labiche. Is Mutation Appropriate Tool for Testing Experiments?
Proceedings of the 27th International Conference on Soé\Eagineering (ICSE)pages 402—-411, 2005.

[2] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficieateattion of vacuity in ACTL formulas. IRormal
Methods in System Desigmages 141-162, 2001.

[3] J.J. Chilenski and S. P. Miller. Applicability of ModifieCondition/Decision Coverage to Software Testing.
Software Engineering Journgbages 193—-200, September 1994.

[4] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage netfor formal verification. Irl2th Advanced Re-
search Working Conference on Correct Hardware Design aniid&tion Methods, volume 2860 of Lecture
Notes in Computer Sciengeages 111-125. Springer-Verlag, October 2003.

[5] G. Fraser, A. Gargantini, and V. Marconi. An evaluatidhneodel checkers for specification based test
case generation. IRroceedings of the 2009 International Conference on Soé&wasting Verification and
Validation pages 41-50. IEEE Computer Society Washington, DC, USB920

[6] G. Fraser and F. Wotawa. Complementary criteria folingstemporal logic properties. IRroceedings of
the 3rd International Conference on Tests and Prppége 73. Springer, 2009.

[7]1 Angelo Gargantini and Constance Heitmeyer. Using mathelcking to generate tests from requirements
specificationsSoftware Engineering Note24(6):146—162, November 1999.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The®&ymous Dataflow Programming Language
Lustre. Proceedings of the IEEF9(9):1305-1320, September 1991.

[9] K.J. Hayhurst, D.S. Veerhusen, and L.K. Rierson. A gcattutorial on modified condition/decision cover-
age. Technical Report TM-2001-210876, NASA, 2001.

[10] O. Kupferman and M. Y. Vardi. Vacuity detection in termpbmodel checking.Journal on Software Tools
for Technology Transfer(2), February 2003.

[11] P.H. Kvam and B. VidakovidNonparametric Statistics with Applications to Science Bndineering Wiley-
Interscience, 2007.

[12] Mathworks Inc. Simulink product web site. http://wwmathworks.com/products/simulink.

[13] S. Miller, E. Anderson, L. Wagner, M. Whalen, and M. Helahl. Formal verification of flight critical
software. InProceedings of the AIAA Guidance, Navigation and Contrahféence and ExhihitAugust
2005.

[14] The NuSMV Toolset, 2005. Available at
http://nusmv.irst.itc.it/.

[15] A. Pnueli. Applications of temporal logic to specificat and verification of reactive systems: A survey of
current trendsLecture Notes in Computer Science Number, 224es 510-584, 1986.

[16] A. Rajan, M. Whalen, M. Staats, and M.P. Heimdahl. Regmients coverage as an adequacy measure for
conformance testing. IRroceedings of the 10th International Conference on Forkethods and Software
Engineering pages 86—104. Springer, 2008.

[17] A. Rajan, M.W. Whalen, and M.P.E. Heimdahl. The effetcpmgram and model structure on MC/DC test
adequacy coverage. Proc. of the 30th Int'l Conference on Software engineerimgges 161-170. ACM
New York, NY, USA, 2008.

[18] Sanjai Rayadurgam and Mats P.E. Heimdahl. Coveragedbtest-case generation using model checkers.
In Proc. of the 8th IEEE Int'l. Conf. and Workshop on the Engiimepof Computer Based Systenpages
83-91. IEEE Computer Society, April 2001.

[19] M.W Whalen, A. Rajan, and M.P.E. Heimdahl. Coverageringtfor requirements-based testing. Rro-
ceedings of International Symposium on Software Testidgharalysis pages 25—-36, July 2006.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 170

