Automated Assume-Guarantee Reasoning for Omega-Regular
Systems and Specifications

Sagar Chaki Arie Gurfinkel
Software Engineering Institute, Carnegie Mellon University

Abstract

We develop a learning-based automated Assume-Guaran@®eréAsoning framework for ver-
ifying w-regular properties of concurrent systems. We study thécatility of non-circular AG-
NC) and circular AG-C) AG proof rules in the context of systems with infinite belasi In particu-
lar, we show tha®G-NC is incomplete when assumptions are restricted to strioflgite behaviors,
while AG-C remains complete. We present a general formalizationed¢dlAG, of the learning
based automated AG paradigm. We show how existing appredohautomated AG reasoning are
special instances of LAG. We develop two learning algorglion a class of systems, calledregular
systems, that combine finite and infinite behaviors. We shrawfor co-regular systems, bothG-
NC andAG-C are sound and complete. Finally, we show how to instanti&@ ko do automated
AG reasoning fore-regular, andw-regular, systems using bo#G-NC andAG-C as proof rules.

1 Introduction

Compositional reasoning [8, 13] is a widely used technique for tacklingttitespace explosigroblem
while verifying concurrent systems. Assume-Guarantee (AG) is oneeahtst well-studied paradigms
for compositional reasoning [19, 14]. In AG-style analysis, we infebgl@roperties of a system from
the results of local analysis on its components. Typically, to analyze a systeqponent locally, we
use an appropriate “assumption”, a model of the rest of the system tleatse¢he behavior expected by
C from its environment in order to operate correctly. The goal of the lotalyses is then to establish
that every assumption made is also “guaranteed” — hence Assume-@&egaran

Since its inception [18, 16], the AG paradigm has been explored in deliszations. However, a
major challenge in automating AG reasoning is constructing appropriate assusag-or realistic sys-
tems, such assumptions are often complicated, and, therefore, congtthetimmanually is impractical.
In this context, Cobleigh et al. [9] proposed the use of learning to autoriatomastruct appropriate
assumptions to verify a system composed of finite automata against a finite sart@pecification (i.e.,
to verify safety properties). They used the following sound and compléteraof rule:

Mi||ACS MLCA
M [MzC S

whereM1,M,, A andS are finite automata| is a parallel composition, arid denotes language contain-
ment. The essential idea is to use thealgorithm [2] to learn an assumptidnthat satisfies the premises
of the rule, and implement the minimally adequate teacher requiréd bija model-checking.

The learning-based automated AG paradigm has been extended il deeeteons [6, 1, 21]. How-
ever, the question of whether this paradigm is applicable to verifggnrggular properties (i.e., liveness
and safety) of reactive systems is open. In this paper, we answer #dsiguin the affirmative. An
automated AG framework requires: (i) an algorithm that uses queriesaamderexamples to learn an
appropriate assumption, and (ii) a set of sound and complete AG ruleenfRe@ learning algorithm
for w-regular languages has been proposed by Farzan et al. [10]. vidovie our knowledge, the AG
proof rules have not been extendeddaegular properties. This is the problem we address in this paper.

First, we study the applicability of non-circulaAG-NC) and circular AG-C) AG proof rules in the
context of systems with infinite behaviors. We assume that processdgagize on shared events and
proceeding asynchronously otherwise, i.e., as in CSP [15]. We pratgiththis contextAG-NC is
sound buincompletenvhen restricted to languages with strictly infinite behaviors (evgregular). This
is surprising and interesting. In contrast, we show #@atC is both sound and complete farregular
languagesSecondwe extend our AG proof rules to systems and specifications expressiblesigular

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 57

Automated Assume-Guarantee Reasoning for Omega-Regular Systemgeaifec&tions

languages (i.e., unions of regular aadregular languages). We show that b&@-C and AG-NC

are sound and complete in this case. To the best of our knowledge, thewiness and completeness
results are new. We develop two learning algorithmsdaegular languages — one using a learning algo-
rithm for w-regular languages (see Theorem 8(a)) with an augmented alphathetather combining

a learning algorithm foro-regular languages with* (see Theorem 8(b)) without alphabet augmenta-
tion. Finally, we present a very general formalization, called LAG, of the learnisgdhautomated AG
paradigm. We show how existing approaches for automated AG reasarisgecial instances of LAG.
Furthermore, we show how to instantiate LAG to develop automated AG algorithmasregular, and
w-regular, languages using both AG-NC and AG-C as proof rules.

The rest of the paper is structured as follows. We present the negésskground in Section 2. In
Section 3, we review our model of concurrency. In Section 4, we stuglgdhndness and completeness
of AG rules, and present our LAG framework in Section 5. We concludg#per with an overview of
related work in Section 6.

2 Preliminaries

We write Z* and Z% for the set of all finite and infinite words over, respectively, and writ&* for
>*UZ%®. We use the standard notation of regular expressibrier empty word,a- b for concatenation,
a*, a’, anda® for finite, finite and non-empty, and infinite repetitionafrespectively. Whea € Z%, we
definea-b = a. These operations are extended to sets in the usual way{e¥g= {X-y| Xe XAy e Y}.

Language. A language is a paifL,X) such thatz is an alphabet antd C Z*. The alphabet is an
integral part of a language. In particuléfa}, {a}) and({a},{a,b}) are different languages. However,
for simplicity, we often refer to a language asand mentionz separately. For instance, we write
“languagel over alphabek” to mean the languagé.,), andZ(L) to mean the alphabet &f Union
and intersection are defined as usual, but only for languages oveartteeaphabet. The complement
of L, denoted., is defined asL = Z(L)” \ L. A finitary language *-language) is a subset &f. An
infinitary languageX“-language) is a subset &f°. ForL C X, we writex(L) for the finitary language
LNZ* andw(L) for the infinitary languagé N Z%. Note thatz (L) = Z(x(L)) = Z(w(L)) = Z(L).
Transition Systems. A labeled transition system (LTS) is a 4-tupgle = (S, %, Init,d), whereSis a
finite set of statesy. is an alphabetinit C Sis the set of initial states, amiiC Sx Z x Sis a transition
relation. We writes - § for (s,a,s) € 8, and=(M) for £. M is deterministic if|Init| < 1, and
Vse S.Va € 3.|{s |s—}| < 1. Arunr over awordw = dp,Qs,...,< =(M)® is a sequence of states
0,1,..., such that/i > 0.5 —— s.1. We writeFirst(r), Last(r), andInf(r) to denote the first state
of r, the last state of (assuming € S°), and states that occur infinitely ofteniiassuming € S»),
respectively. We writ&un(w, M) for the set of runs oivon M.

Automata. A Finite Automaton (FA) is a 5-tupl& = (S %, Init, 8, F), where(S %, Init, §) is an LTS and

F C Sis a set of accepting states. The language accepted 1%/(A), is the set of all wordsv € ~*
s.t. there exists a runof w on A, with First(r) € Init ALastr) € F. A BlchiAutomaton (BA) is a
5-tupleB = (S %, Init,d,F), where(S Z,Init,d) is an LTS and~ C Sis a set of accepting states. The
language accepted B, .Z(B), is the set of all wordsv € X s.t. there exists a runof w on A with
First(r) € Init AInf(r)NF # 0. ABA or FA is deterministic if its underlying LTS is deterministic.
Regularity. A language is regularaf-regular) iff it is accepted by a FA (BA). A languageC 2% is
co-regular iff x(L) is regular andw(L) is w-regular. Deterministic FA (DFA) and non-deterministic FA
(NFA) are equally expressive. Deterministic BA are strictly less expressan non-deterministic BA.

Learning. A learning algorithm for a regular language is any algorithm that learnsh&nawn, but
fixed, languag&) over a known alphabé&l. Such an algorithm is callealctiveif it works by querying a
Minimally Adequate Teacher (MAT). The MAT can answer “Yes/No” to twoagmf queries abolit :

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 58

Sagar Chaki and Arie Gurfinkel

Membership Query Given a wordw, iswe U?

Candidate Query Given an automatoB, is . (B) =U? If the answer is “No”, the MAT returns a
counterexampleGE), which is a word such th&lE € .Z(B) U, whereXaY = (X\Y)U(Y \ X).

An active learning algorithm begins by asking membership queries of the MAI it constructs a
candidate, with which it make a candidate query. If the candidate queryccessful, the algorithm
terminates; otherwise it uses tl returned by the MAT to construct additional membership queries.
The family of active learning algorithms was originated by Angluin via[2] for learning a minimal
DFA that accepts an unknown regular langudgewas further optimized by Rivest and Schapire [20].
The problem of learning eminimalautomaton which accept an unknowmregular language is still
open. Itis known [17] that for any langualgeone can learn in the limit an automaton that accéjpisa
theidentification by enumeratioapproach proposed by Gold [12]. However, the automaton learned via
enumeration may, in the worst case, be exponentially larger than the minimaiatotoacceptingy .
Furthermore, there may be multiple minimal automata [17] acceftiniylaler et al. [17] have shown
thatL* can be extended to learn a minimal§Nér) automaton for a fragment o$-regular languages.
Farzan et al. [10] show how to learn @é&hi automaton for am-regular languagl. Specifically,
they usel * to learn the languagés = {u$v | u-v® € U}, where $ is a fresh letter not in the alphabet
of U. The languag&Jg was shown to be regular by Calbrix et al. [4]. In the sequel, we referiso th
algorithm asL.®. The complexity ofL? is exponential in the minimal BA fod. Our LAG framework
can use any active algorithm for learningregular languages. In particular? is an existing candidate.

3 Model of Concurrency

Let w be a word and an arbitrary alphabet. We writw | = for the projection ofw onto > defined
recursively as follows (recall that denotes the empty word):

AlS=2 (a'u)JZ:{a'(uJZ) |faez.
ulx otherwise

Clearly, both>* andZ® are closed under projection, bff is not. For examplgia* - b® | {a}) = a*, and
a* consists only of finite words. Projection preservers regularity. if a regular ¢-regular) language
andZ is any alphabet, theln| Z is also regulard-regular).

A process is modeled by a language of all of its behaviors (or computatiBaggllel composition
() of two processes/languages synchronizes on common actions whilgtiagelocal actions asyn-
chronously. For languagéks,>;) and(Ly,2>), L1||L2 is the language over; U, defined as follows:

L1 H L, = {WG (ZlUZZ)m ’WJ 21 €L1AwW] 2 € Lz} (def OfH)

Intuitively, L1 ||L2 consists of all permutations of words frdm andL, that have a common synchroniza-
tion sequence. For exampl@; -a-b*)||(c*-a-c*) is (b+c)*-a- (b+c)*. Note that wher, andL; share
an alphabet, the composition is their intersection; when their alphabets aiatdigje composition is
their language shuffle. The setX5f, %, andX* languages are all closed under parallel composition.

Theorem 1. The|| operator is associative, commutative, distributive over union and intersedtios
also monotone, i.e., for any two languagas Ly, and Lg: Lo C L3 = (L1||L2) C (L1||L3).

LetL; andL, be two languages such thatlL,) O Z(L,). We say that; is subsumed by, written
L1 < Ly, if L1] Z(Lp) C Ly. LetLs be the language of a specificati&handLy be the language of a
systemM. Then,M satisfiesS, writtenM = S, iff Ly < Ls.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 59

Automated Assume-Guarantee Reasoning for Omega-Regular Systemgeaifec&tions

4 Proof Rules for Assume-Guarantee Reasoning

In this section, we study the applicability of a non-circular and a circular d&to proving properties of
processes with infinite behaviors (e.g., reactive systems that neither teemaraleadlock). These rules
were shown to be sound and complete for systems with finite (i.E*)ibehaviors by Barringer et al. [3].
In Section 4.1, we show that the non-circular AG rule is sound for B&tand>% behaviors. However,
it is complete only when the assumptions are allowed to conmtitiefinite and infinite behaviors (i.e.,
in Z%). In Section 4.2, we show that the circular AG rule is sound and complek’fand>* behaviors.

4.1 Non-Circular Assume-Guarantee Rule
The non-circular AG proof ruleAG-NC for short) is stated as follows:

(Li[La)<Ls Lo<La
(L1 L2) X Ls

wherely, Ly, Ls, andLa are languages with the alphab&ts >, Xs, Za, respectivelyzs C (2, UZy),
and>a = (Z1UZs)NZ,. AG-NC is known to be sound and complete Brlanguages. Intuitively, it says
that if there exists an assumptibp such that: (a).; composed with_, is contained irLs, and (b)L; is
contained irLa, then the composition df; with L is contained inLg as well. Note that the alphabEg

is the smallest alphabet containing: (a) actions at the interface betweserdL,, i.e., actions common
to the alphabets df; andL,, and (b) external actions &b, i.e., actions common to the alphabetd gf
andLs. Any smaller alphabet makes the rule trivially incomplete; any larger alpledpetses internal
(i.e., non-external) actions &f. It is not surprising thaBRG-NC remains sound even when applied to
languages with infinite words. HoweveéX(-NC is incompletevhenLa is restricted t&“-languages:

Theorem 2. There exists {,L2,Ls C X“ such that(L1||L2) < Ls, but there does not exists an assumption
La C 2% that satisfies all of the premisesAG-NC.

Proof. By example. Let 1, Lo, Ls, and their alphabets be defined as follows:
i={ab} Z={ac} Is={ab} Li=(a+b)® Ly=a'c® Ls=(a+b)'b?

The conclusion oAG-NC rule is satisfied sincé||Ly) | Zs= (a+b)*b® = Ls. The alphabek of La
is (X1UXs) N2y = {a}. SinceLa C X%, it can only bea® or 0. The only way to satisfy the first premise
of AG-NC is to letLa = 0, but this is too strong to satisfy the second premise. O

Note that the proof of Theorem 2 shows tl&-NC is incomplete even for-regular languages.

Remark 1. One may conjecture that th&G-NC rule becomes complete faf if subsumption is rede-
fined to only consider infinite words. That is, by redefining subsumpsiphiax Ly < w(L1 | Z(Ly)) C
L,. However, under this interpretatio®G-NC is no longer sound. For example, let the languages L
L,, Ls, and their alphabets be defined as follows:

s1={ab} s, ={a,c} Ss={ab} L; = (a+b)? Lo =a*c® Ls=b®

Then, the conclusion &G-NC does not holdw((L1||L2) | Zs) = (a+b)*b® Z b®. But Ly = 0 satisfies
both premises(L1||La) = b®, andw(L2 | {a}) = La.

Remark 2. AG-NC is complete if the alphabé&i, is redefined to b&; UZ,. However, in this case the
rule is no longer “compositional” since the assumption tan be as expressive as the component L

Intuitively, AG-NC is incomplete forz® because® is not closed under projection. However, we
show that the rule is complete faf° — the smallest projection-closed extensiox8f We first show that
for any languagek; andLs, there always exists a unique weakest assumptigsuch that ;||La < Ls.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 60

Sagar Chaki and Arie Gurfinkel

Theorem 3. Let Ly and Ls be two languages, anB, be any alphabet s.&(L1) UXa = 2(L1) UZ(Lg).
Then, la = {we 23 | (L1|[{w}) < Ls} satisfies k||La < Ls, and is the weakest such assumption.

Proof. Let us writeX;, ¥s and X1s to meanX(L;), ¥(Ls) andX(L1) U X(Ls) respectively. To show
that La is a valid assumption, pick any € L | La. Thenw | Za € La. This implies thatw | 25 €
(L1 | {w] Za}) | ZsC Ls. Sincewis any word inLy || La, we havel; || La < Ls. To show thata is the
weakest assumption, lef, C >3 be any language such that || L, < Ls and letw be any word inL}.
Then, (L1 || {w}) C (L1 || L4) < Ls. But this implies thatv € La, and, thereforel,, C La. O

Note that>3 subsumes both finite}) and infinite £3)) words. Thus, ifLa is aX3 weakest assump-
tion, thenx(La) andw(La) are the weakest; andZy assumptions, respectively.

Theorem 4. Let Ly, L, Ls, and Ly be inZ”. Then, theAG-NC rule is sound and complete.

Proof. The proof of soundness is trivial and is omitted. For the proof of compdstewe only show
the key step. Assume thag||L, < Ls, and letLa be the weakest assumption such thgtLa < Ls.
By Theorem 3L is well-defined and satisfies the first premiseA®@-NC. The second premise holds
becausé; | 24 C 2%, andLp is the weakesEy assumption (see Theorem 3). O

Theorem 4 implies tha®G-NC is sound for any fragment &®. Of course, this is not true for
completeness of the rule. For practical purposes, we would like to knawhibaule remains complete
when its languages are restricted to the regular subset. We show that this/isisowing that under the
assumption thdt; andLs are regular, the weakest assumption is regular as well.

Theorem 5. Let Ly and Lg be two languages, anBa be any alphabet such that(L;) UZa = 2(L1) U
Z(Ls). Then, la C 23 is the weakest assumption such thgflla < Lsiff La = (L1 || Ls) | Za.

Proof. Letus writeX1, ZsandZisto mear(L1), Z(Ls) andx(L1) UZ(Ls), respectively. Foranyw e Z3:

we (L1 || Ls) | Za iff YW € Z{5.{W} g {w} = W & (L1 || Lg)
iff v eZis.{w}=s{w} = ({W}&£LV{w}<Ls)
iff wwWeZis.({Wls{wir{w} <L) = {W}<Ls
iff v eZis.({wW} < (L1|[{w})) = {W} xLsiff L1| {w}=<Ls

Together with Theorem 3, this completes the proof. O

Theorem 5 implieAG-NC is complete for any class of languages closed under complementation
and projection, e.g., regular anrgregular languages. In addition, Theorem 5 implies that learning-
based automated AG reasoning is effective for any class of langudgpseweakest assumptions fall in
a “learnable” fragment. In particular, this holds for regutarregular ando-regular languages.

4.2 Circular Assume-Guarantee Rule
The Circular Assume-Guarantee proof rid&(C for short) is stated as follows:

(L1 La1) <Ls (Lo|lLa2) <Ls (La1l|La2) <Ls
(L1|lL2) < Ls

wherel, Lo, andLs are languages over alphabéts 2,, Zs, respectively>s C 21 U 25, andLa; and
Laz share a common alphabEt = (23 N %) UZs. AG-C is known to be sound and complete -
languages. Note that in comparison WiB-NC, there are two assumptioha; andLa, over a larger
alphabetza. Informally, the rule is sound for the following reason. letbe a word inL;||L2, and
U=W]|Za. Thenu € Lag, oru € Lay, oru € LagULa2 = (La1||La2). If U € Las then the first premise
implies that{w} < Li|[{u} < Ls; if u€ La2 then the second premise implies that} < Lo|[{u} < Ls;
otherwise, the third premise implies tHat} < {u} < Ls.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 61

Automated Assume-Guarantee Reasoning for Omega-Regular Systemgeaifec&tions

Remark 3. Note that the assumption alphabet #®G-C is larger thanAG-NC. In fact, usingza; =
(Z1UZs)NZp andZap = (U Zs) N2 makesAG-C incomplete. Indeed, letjl= {aa} with Z; = {a},
L, = {bb} with £, = {b} and Ls = {aab abbab}. Note that L||L; < Ls. We show that no 4, and
La, can satisfy the three premises AG-C. Premise 1= b & La, = b € Lp,. Similarly, premise 2
= a¢ La, = ac€ La,. Butthen abe Lay||La,, violating premise 3.

In this section, we show tha&G-C is sound and complete for bolf’ and =* languages. First,
we illustrate an application of the rule to the example from the proof of The@rebetL,, Lo, andLg
be Z® languages as defined in the proof of Theorem 2. In this case, the alfals {a,b}. Letting
La1 = (a+b)*b®, andLaz = (a+ b)® satisfies all three premises of the rule.

Theorem 6. Let Ly, Ly, Ls, Laz, and Laz be inZ® or Z*. Then, theAG-C rule is sound and complete.

Proof. The proof of soundness is sketched in the above discussion. Forabkegircompleteness we
only show the key steps. Assume that|L, < Ls. LetLa andLaz be the weakest assumptions such
thatL;||La1 < Ls, andLy||La2 < Ls, respectively. By Theorem 3, botty; andLa, are well-defined
and satisfy the first and the second premise®\@fC, respectively. We prove the third premise by
contradiction. Sincéa; andLay have the same alphabébaz||Laz) = (Lar NLaz). Assume thatla N
La2) # Ls. Then, there exists a wom € (Las||La2) such thatw & Lag, andw & Lap, andw | Zs € Ls.

By the definition of weakest assumption (see TheorenLd)}{w} £ Ls andL,||{w} £ Ls. Pick any
wi € La|[{w} andws € Lo|[{w}. Letw; = wq | Z1 andw, = w; | 2. We know thaf{w/) }|[{w,} C L||L>.
Also,w e ({W} }|[{w,}) | Za. Now since{w; }||{w,} C L1||Lo, we havew € (L1||L2) | Za. SinceZs C Za,

w| Zs € (L1]|L2) | Zs. Butw| Xs & Ls, which contradictd.||L < Ls. O

The completeness part of the proof of Theorem 6 is based on the existighe weakest assumption.
We already know from Theorem 5, that the weakest assumption-je{)regular ifL,, Lo, andLs are
(c0-,w-)regular, respectively. Thug\G-C is complete for ¢-,w-)regular languages. Sin&&s-NC is
incomplete forw-regular languages, a learning algorithm toregular languages (such hS) cannot
be applied directly for AG reasoning feo-regular systems and specifications. In the next section, we
overcome this challenge by developing automated AG algorithms-fegular ando-regular languages.

5 Automated Assume-Guarantee Reasoning

In this section, we present our LAG framework, and its specific use$tdintes. LAG uses membership
oracles, learners, and checkers, which we describe first.

Definition 1 (Membership Oracle and Learne® membership oracle Q for a language U over alphabet
> is a procedure that takes as input a worg @™ and returnsd or 1 such that Qu) =1 <= uecU. We
say that Q= U. The set of all membership oracles is denote®bgcle. Let.</ be any set of automata.
We writeLearner, to denote the set of all learners of typé. Formally, a learner of type7 is a pair
(Cand,LearnCE) such that: (i)Cand : Oracle — </ is a procedure that takes a membership oracle as
input and outputs a candidate € <7, and (ii) LearnCE : Z* — Learner ., is a procedure that takes a
counterexample as input and returns a new learner of typeFor any learner P= (Cand, LearnCE)

we write PCand and PLearnCE to meanCand andLearnCE respectively.

Intuitively, a membership oracle is the fragment of a MAT that only answerslmeship queries,
while a learner encapsulates an active learning algorithm that is able trumircandidates via mem-
bership queries, and learn from counterexamples of candidate queries

Learning. LetU be any unknown languag@,be an oracle, anB be a learner. We say the®, Q) learns
U if the following holds: ifQ = U, then there does not exist an infinite sequence of leaRyePs, ... and
an infinite sequence of counterexamplts;, CE;, ... such that: (i =P, (ii) B =PR_;.LearnCE(CE)

fori > 0, and (i) CE € #(R_1.Cand(Q)) &U fori > 0.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 62

Sagar Chaki and Arie Gurfinkel

Input: Py...P:Learner,; Q,...,Qk: Oracle; V : Checker,,
forever do
fori=1tokdoC:=R.Cand(Q;)
R:=V(Cy,...,C)
if (R= (FEEDBACK,i,CE)) then B := RB.LearnCE(CE) else returnR

Figure 1: Algorithm for overall LAG procedure.

Definition 2 (Checker) Let &/ be a set of automata, and k be an integer denoting the number of
candidates. A checker of tyges, k) is a procedure that takes as input k elements. A, A of o/

and returns either (i)SUCCESS or (ii) a pair (FAILURE ,CE) such that CE= X%, or (iii) a triple
(FEEDBACK ,i,CE) such thatl <i < k and CEe =*. We writeChecker,, \, to mean the set of all
checkers of typé«, k).

Intuitively, a checker generalizes the fragment of a MAT that respdodsandidate queries by
handling multiple (specificallyk) candidates. This generalization is important for circular proof
rules. The checker has three possible outputsSUICCESSIf the overall verification succeeds; (ii)
(FAILURE ,CE) whereCE is a real counterexample; (iilFEEDBACK ,i,CE) whereCE is a coun-
terexample for thé-th candidate.

5.1 LAG Procedure

Our overall LAG procedure is presented in Fig. 1. We wKteT to mean that X is of typeT”. LAG
accepts a set & membership oracleg,learners, and a checker, and repeats the following steps:

1. Constructs candidate autom@ta. .., Cy using the learners and oracles.

2. Invokes the checker with the candidates constructed in Step 1 above.

3. If the checker returnSUCCESSor (FAILURE ,CE), then exits with this result. Otherwise,
updates the appropriate learner with the feedback and repeats frorh. Step

Theorem 7. LAG terminates if there exists languages U. ,Ui such that: (i) Q = U; for 1 <i <Kk, (ii)
(R, Q) learns U for 1 <i <k, and (iii) if V(Cy,...,Ck) = (FEEDBACK,i,CE), then CEc .Z(Ci) © U;.

Proof. By contradiction. If LAG does not terminate there exists sdrsich thal.LearnCE is called
infinitely often. This, together with assumptions (i) and (iii), contradicts (ii), (®,Q;) learnsU;. O

5.2 Oracle, Learner, and Checker Instantiations

We now describe various implementations of oracles, learners and ched¥e start with the notion of
an oracle for weakest assumptions.

Oracle for Weakest Assumption. Let L1, Ls be any languages arX be any alphabet. We write
Q(Ly,Ls, %) to denote the oracle such th@fLy,Ls, %) = (L1 || Ls) | Z. Q(Ly,Ls,) is typically imple-
mented via model checking since, by Theorems 3 a@[b;,Ls,>)(u) =1 <= ue 2* ALy || {u} X Ls.
Learner Instantiations. In general, a learnd?(L) is derived from an active learning algorithimas
follows: P(L) = (Cand,LearnCE) s.t. Cand = part ofL that constructs a candidate using membership
gueries, and.earnCE = part ofL that learns from a counterexample to a candidate query.

Non-circular Checker. Let o7 be a type of automata, arld, L, andLg be any languages. Then
Wne(Li, Lo, Ls) is the checker of typéer, 1) defined in Fig. 2. Note thatyc(L1, Lo, Ls) is based on the
AG-NC proof rule. The following proposition aboMc(L1,L2,Ls) will be used later.

Proposition 1. If Vnc(Li,L2,Ls)(A) returns SUCCESS then L || L < Ls. Otherwise, if
Wnec(Li, Lo, Ls)(A) returns (FAILURE ,CE), then CE is a valid counterexample t@ LL, < Ls. Fi-

nally, if Wc(L1,L2,Ls)(A) returns(FEEDBACK , 1,CE), then CEc £ (A) & (L1 || Ls) | Z.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 63

Automated Assume-Guarantee Reasoning for Omega-Regular Systemgeaifec&tions

Checker: Vnc(L1,Lz,Ls) | Checker: Ve (L1, L2, Ls)
Input: A: of Input: Ag,Ar: o/
if (L1 -Z(A)) < Lsthen fori=1,2do
if Lo < .Z(A) then return SUCCESS if Li || £ (A) £ Lsthen
else letwbe a CEXtd || Z(A) < Ls
letwbe a CEX toLy < Z(A) return (FEEDBACK ,i,w|Za)
if L || {w} < Lsthen if Z(A1) || Z(A2) < Lsthen return SUCCESS
return (FEEDBACK,1,w|X(A)) | else
else letwbe a CEX taZ(Ay) || Z(A2) < Ls
let w be a CEX toLq || {W} <Ls fori= 12 do
return (FAILURE ,w') if Li || {w} < Lsthen
else return (FEEDBACK ,i,w| Za)
letwbe a CEXto(Ly || £(A)) < Ls else letw; be a CEX to; || {w} < Ls
return (FEEDBACK,1,w|Z(A)) pick W € {wi} || {wz}
return (FAILURE ,w/)

Figure 2:Vnc — a checker based &kG-NC; \c — a checker based &G-C.

Circular Checker. Let.o7 be atype of automata, ahg, L, andLs be any languages. Th&g(L1,L2,Ls)
is the checker of typésr, 2) defined in Fig. 2. Note thaiz (L1, Ly, Ls) is based on th&G-C proof rule.
The following proposition aboutc (L1, Ly, Ls) will be used later.

Proposition 2. If Vc(L1,Lo,Ls)(A1,A2) returns SUCCESS then L || L < Ls. Otherwise, if
Ve(Li, L2, Ls)(A1,Az) returns (FAILURE ,CE), then CE is a valid counterexample tq || L, < Ls.

Finally, if Vc(L1,L2,Ls) (A1, A) returns(FEEDBACK ,i, CE), then CEc Z(A) © (L || Ls) | Z.

5.3 LAG Instantiations

In this section, we present several instantiations of LAG for chedkind-, < Ls. Our approach extends
to systems with finitely many components, as for example in [9, 3].

Existing Work as LAG Instances: Regular Trace Containment.Table 1 instantiates LAG for existing
learning-based algorithms for AG reasoning. The first row corredptmthe work of Cobleigh et al. [9];
its termination and correctness follow from Theorem 7, Proposition 1, @&faththat P, Q1) learns the

languagdL, || Ls) | Z. The second row corresponds to Barringer et al. [3]; its terminatiocamdctness
follow from Theorem 7, Proposition 2, and the fact ttlatQ;) learns(L; || Ls) | Z fori € {1,2}.

New Contribution: Learning Infinite Behavior. LetL® be any active learning algorithm fas-regular
languages (e.gL,®). SinceAG-NC is incomplete forw-regular languages,® is not applicable directly

in this context. On the other hand, bof>-NC and AG-C are sound and complete fer-regular
languages. Therefore, a learning algorithm deregular languages yields LAG instances for systems
with infinite behavior. We now present two such algorithms. The first ($&®fem 8 (a)) usds® only,

but augments the assumption alphabet. The second (see Theoreno&{biesL “ andL *, but leaves
the assumption alphabet unchanged. We present both schemes sineeiseitfiectively superior.

Theorem 8. We can learn ao-regular language U using a MAT for U in two ways: (a) using ob
but with alphabet augmentation, and (b) without alphabet augmentatidruyding both_*andL ©.

Proof. Part(a): LetZ be the alphabet df). We useL ® to learn anw-regular languag&’ over the
alphabett! = XU {1} such thatl’ |2 =U, andt ¢ Z. LetU’ =U -1®. We assume that the MAT
X for U accepts membership queries of the foflh, M) € DFA x BA, and returns “Yes” ifU =
Z(M1) U.Z(My), and aCE otherwise. Then, a MAT fol)’ is implemented using as follows: (i)
Membership: ue U’ iff ue Z*-1®Au|Z € U, whereu| Z € U is decided using; (ii) Candidate

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 64

Sagar Chaki and Arie Gurfinkel

Conformance Rule o Learner(s) Oracle(s) Checker
Regular Trace | AG-NC DFA PL=P(L*) | Q1 =Q(L1,Ls,2nc) | Vnc(Ly, Lo, Ls)
Containment [9]
Regular Trace | AG-C DFA Pb=P= | Qu1=Q(L1,Ls,2c) | Vc(Ls, Lo Ls)
Containment [3] P(L") Q2 =Q(La,Ls, 3c)

oo-regular Trace] AG-NC | DFA x BA | PL=P(L) | Q1 =Q(Ly,Ls,Enc) | Wne(Ly, Lo, Ls)
Containment

wo-regular Trace] AG-C | DFAXBA | PL=R = | Q1 =Q(L1,Ls 2c) | Ve(Ly, Lo L)
Containment P(L) Q2=0Q(L2,Ls,2¢)

w-regular Trace| AG-NC | DFA x BA PL= P(L) Q= Q(Ll7 Ls, ZNC) VNc(L]_, Lo, Ls)
Containment

w-regular Trace] AG-C BA PP=P= | Q=0Q(L1,Ls,3c) | Vc(L1,La,Ls)
Containment P(L®) Q2=Q(Lz,Ls,2¢)

Table 1: Existing learning-based AG algorithms as instances of A@G;= (X(L1) UZ(Ls)) NZ(L2);
>c = (Z(L1)NnZ(L2)) UZ(Ls); L is a learning algorithm from Theorem 8.

withC’: If £(C') € 2*- 1%, returnCE € .Z(C')\ Z*- 1%. Otherwise, make a candidate querytavith
(Mz,My) such thatZ(M;) = %(C' |) and.Z (M) = w(C' | Z), and turn anyCE to CE' = CE- 1.

Part(b): We usé.* to learnx(U) andL to learnw(U). We assume that the MAX for U accepts
membership queries of the forfivl;, M2) € DFA x BA, and returns “Yes” iU = .2 (M) U.Z (M), and
aCE otherwise. We ruh.* andL ® concurrently, and iterate the two next steps: (1) answer membership
gueries withX until we get candidateM; andM, from L* andL % respectively; (2) make candidate
query (M1, Mz) to X; return any finite (infinite)CE back toL* (L ¢); repeat from Step 1. O

LAG instances for co-regular Trace Containment. Suppose thalt;,L, andLs arec-regular and we
wish to verifyL; || L2 < Ls. The third row of Table 1 show how to instantiate LAG to solve this problem
usingAG-NC. This instance of LAG terminates with the correct result due to TheoremoppRition 1,

and the fact thatPy, Q;) learns(L; || Ls) | Z. The fourth row of Table 1 show how to instantiate LAG to
solve this problem usingG-C. This instance of LAG terminates correctly due to Theorem 7, Proposi-
tion 2, and becaus@®, Q) learns(L; || Ls) | Z fori € {1,2}.

LAG instances for w-regular Trace Containment. Suppose thalt1,L, andLs are w-regular and we
wish to checkL; || Ly < Ls. When usingAG-NC, restricting assumptions t@-regular languages is
incomplete (cf. Theorem 2). Hence, the situation is the same as-fegular languages (cf. row 5

of Table 1). When using\G-C, restricting assumptions to lze-regular is complete (cf. Theorem 6).
Hence, we usk “ without augmenting the assumption alphabet, as summarized in row 6 of Taliles1. T
is a specific benefit of the restriction te-regular languages. This instance terminates with the correct
result due to Theorem 7, Proposition 2, and bec#Bs@;) learns(L; || Ls) | < fori € {1,2}.

6 Related Work and Conclusion

Automated AG reasoning with automata-based learning was pioneered wygbatt al. [9] for checking
safety properties of finite state systems. In this context, Barringer et]ahv@stigate the soundness
and completeness of a number of decomposition proof rules, and Wahgrffi®sed a framework for
automatic derivation of sound decomposition rules. Here, we extend theeA§dming paradigm to
arbitrary w-regular properties (i.e., both safety and liveness) using both nonlaiirand circular rules.

The idea behind (particular instances of) Theorem 5 is used implicitly in alml@tisting work on
automated assume-guarantee reasoning [9, 6, 7]. However, wetaware of an explicit closed-form
treatment of the weakest assumption in a general setting such as ours.

The learning-based automated AG reasoning paradigm has been eidieobeck simulation [5] and

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 65

Automated Assume-Guarantee Reasoning for Omega-Regular Systemgeaifec&tions

deadlock [6]. Alur et al. [1], and Sinha et al. [21], have investigatgdiwlic and lazy SAT-based im-
plementations, respectively. Tsay and Wang [22] show that verificafisafety properties ok-regular
systems is reducible the standard AG framework. In contrast, our foomstige verification of arbitrary
w-regular-properties od-regular-systems.

In summary, we present a very general formalization, called LAG, of émileg-based automated
AG paradigm. We instantiate LAG to verifgp-regular properties of reactive systems withregular
behavior. We also show how existing approaches for automated AGniagsare special instances of
LAG. In addition, we prove the soundness and completeness of cirawdaran-circular AG proof rules
in the context ofw-regular languages. Recently, techniques to reduce the number oégy(igr and
refine the assumption alphabet [11], have been proposed in the cohtesthg automated AG to verify
safety properties. We believe that these techniques are applicalbberémular-properties as well.

References

[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic Composaioverification by Learning Assumptions. In
Procs. of CAV '05volume 3576 oL NCS pages 548-562. Springer, July 2005.

[2] D. Angluin. Learning Regular Sets from Queries and Cewtamplesinf. Comput. 75(2):87-106, 1987.

[3] H. Barringer, D. Giannakopoulou, and C. Sareanu. Proof Rules for Automated Compositional Verifica-
tion Through Learning. IfProcs. of SAVCBS 'Q®ages 14-21, Sept. 2003.

[4] H. Calbrix, M. Nivat, and A. Podelski. Ultimately PerimdWords of Rationakv-Languages. IfProc. of
MPFS'93 1993.

[5] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automateskéme-Guarantee Reasoning for Simulation
Conformance. IProcs. of CAV '05volume 3576 oL NCS pages 534-547. Springer, July 2005.

[6] S. Chakiand N. Sinha. Assume-Guarantee Reasoning fadlbek. InProcs. of FMCAD '06
[7] S. Chakiand O. Strichman. Optimized L* for Assume-Gudea Reasoning. IRrocs. of TACAS '07
[8] E. Clarke, D. Long, and K. McMillan. Compositional Modéhecking. InProcs. of LICS '89

[9] J. M. Cobleigh, D. Giannakopoulou, and C. Sis&reanu. Learning Assumptions for Compositional Verifi-
cation. InProcs. of TACAS '03volume 2619 of NCS pages 331-346. Springer, Apr. 2003.

[10] A. Farzan, Y. Chen, E. Clarke, Y. Tsan, and B. Wang. Edien Automated Compositional Verification to
the Full Class of Omega-Regular LanguagesPiocs. of TACAS '08Springer, 2008.

[11] M. Gheorghiu, D. Giannakopoulou, and C. Ssteanu. Refining Interface Alphabets for Compositional
Verification. InProcs. of TACAS '0/A0lume 4424 of NCS pages 292-307. Springer, Mar. 2007.

[12] E. M. Gold. Language Identification in the Liminformation and Contrql10(5):447—-474, May 1967.
[13] O. Grumberg and D. Long. Model Checking and Modular fiegition. TOPLAS 16(3):843-871, May 1994.

[14] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. DecoingdRefinement Proofs Using Assume-Guarantee
Reasoning. IfProcs. of ICCAD '00 pages 245-252. IEEE, Nov. 2000.

[15] C. A. R. Hoare.Communicating Sequential ProcessBsentice Hall, 1985.

[16] C.B. Jones. Specification and Design of (Parallel) Paots. InProceedings of the 9th IFIP World Congress
volume 83 ofinformation Processingpages 321-332, September 1983.

[17] O. Maler and A. Pnueli. On the Learnability of InfinitaRegular Setslnf. Comput, 118(2):316—326, 1995.
[18] J. Misra and K. M. Chandy. Proofs of Networks of Proces3&E 7(4):417-426, July 1981.

[19] A. Pnueli. In Transition from Global to Modular TempbReasoning About Program&ogics and Models
of Concurrent System&3:123-144, 1985.

[20] R. Rivest and R. Schapire. Inference of Finite Automasing Homing Sequencemf. Comput, 103, 1993.
[21] N. Sinha and E. Clarke. SAT-based Compositional Vatfan Using Lazy Learning. IRrocs. of CAV '07

[22] Y.-K. Tsay and B.-Y. Wang. Automated Compositional Beaing of Intuitionistically Closed Regular Prop-
erties. InProcs. of CIAA'08 pages 3645, 2008.

[23] B.-Y. Wang. Automatic Derivation of Compositional Rslin Automated Compositional Reasoning. In
Procs. of CONCUR’'0O;7pages 303-316, 2007.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 66

