U.S. Air Force Research Laboratory’s Need for Flow Physics and Control with Applications Involving Aero-Optics and Weapon Bay Cavities

23 Aug 09

Dr. Ryan Schmit
Aerospace Engineer
RBAI
Air Force Research Laboratory

Approved for Public Release; distribution unlimited. Public Release Number 88ABW-2009-3664
When the Calculations say it should work sometime the Physics doesn’t listen
Consequence

• Store Motion
 — Deploys Properly
 — Becomes unstable in flight
 — Strike aircraft

• Flow Physics
 — Damage to Aircraft, Equipment and Store
 • Mainly from Acoustic levels
Flow Control

- Geometry Modification
 - Fences, Spoilers, Rod-in-Cross Flow

- Open Loop Control
 - Pulsed Blowing, Suction, Plasma

- Closed Loop Control
 - Feedback Flow Control with Pulsed Blowing

- You name it, it has been tried
 - The shot gun approach
Flow Physics

- Trisonic Gasdynamic Facility
 - PIV
 - Seeding Methods
 - CO₂
 - ViCount Fluid
 - Optic Nozzle Blocks
 - Seedless PIV
 - PSP

- Advance Diagnostic Development Inside a Cavity (ADDICT)
 - Examine how flow control effects the flow physics at 10% scales cavity
Near Field Aero Optics Flow Control

Click to play animation
filename: 03Light Sheet.mwv
Background on Aero Optics

Optical Path Length

\[OPL = \int_{y_1}^{y_2} n(x_o, y) dy \]

Integration of index over path length

Optical Path Difference

\[OPD(x_o) = OPL(x_o) - \bar{OPL} \]

The difference between mean and instantaneous OPL

Emerging Distorted Wavefront

Original Planar Wavefront
Aero-Optic Interactions

- Turbulence
- Vibrations
- Aircraft Motion
- Laser Emitter

Aircraft Boundary Layer
- Shear Layer
- Wake
- Shocks
- Flow Control

Near Field
- Aero Optic Distortions

Reduce Density Fluctuations to Increase Energy on Target

Approved for Public Release; distribution unlimited. Public Release Number 88ABW-2009-3664
Flow Control for Aero-Optics

- Used Shot Gun Approach for Flow Control
 - Pulse Blow, Pins, Combustions, etc.
- One of the best but not yet completely proven methods
 - Closed Loop Control using Split POD.
 - Split POD was developed by Chris Camphouse
 - Separate baseline from control flow field properties to produce proper actuation characteristics for Closed Loop Flow Control
- Provides Flow Physics Knowledge to the Flow Control Device
Closed Loop Flow Control for Near Field Aero-Optics

Pressure Time Series

Pressure Autocorrelation

Approved for Public Release; distribution unlimited. Public Release Number 88ABW-2009-3664
Conclusions

• To develop New Flow Control Techniques
 – Knowledge of the Flow Physics with and without control
 – How does Flow Control Effect Flow Physics
 • What Works to Optimize the Design?
 – Energy or Work Efficiency of the Control Technique
 • Cost - Risk - Benefit Analysis
 – Supportability, e.g. (size of equipment, computational power, power supply)
 • Allows Designer to include Flow Control in Plans