Some Issues Related to Integrating Active Flow Control with Flight Control

David Williams, Illinois Institute Technology
Tim Colonius, California Institute Technology
Gilead Tadmor, Northeastern University
Clancy Rowley, Princeton University

Minnowbrook VI
August 2009

Supported by AFOSR-MURI
Motivation

- Time varying control of C_L is necessary for integrating AFC and Flight Control
 - Gust load alleviation
 - Energy extraction maneuvers
- Lift response to actuation is usually only in the positive direction, so how can C_L be decreased?
- Quasi-steady models of aerodynamic & actuator response quickly become inaccurate ($k>0.1$) in unsteady flow.
- Lift response to actuation has significant time delays that must be accounted for in the controller. How does this affect controller bandwidth?
Unsteady flow wind tunnel experiments

• Unsteady wind tunnel used to obtain
 – Models of lift and actuator dynamics
 – Demonstrate gust suppression experiment

Semicircular Wing Model
Reₖ = 68,000
Pulsed-blowing actuation along leading edge

L(t)

U'

U₀

α is fixed

Lift vs. time, concept of experiment

Click to play animation

filename: 04fixed_alpha_shutter_view.AVI
Open-loop LEV control – steady state conditions

Continuous pulsed-blowing actuation concentrates vorticity at leading edge.

\[F^+ = \frac{f_c}{U} = 1.1 \]

\[C_\mu = .0074 \]

Steady lift enhancement with open-loop control
Gust suppression: quasi-static approach

- Internal micro valves have no proportional control (on/off)
- Need to vary lift (+ other forces/moments) via actuation
- Duty-cycle approach
 - Pulsation frequency: 50 Hz (0.02 s)
 - Actuation period: 0.3 seconds was chosen
- Feed forward compensator
 $$U = 5.25 + 0.25 \cos(\omega t) \text{ m/s}$$
 $$L' = \frac{\rho S}{2} \left[C_L' (U_o^2 + 2U_o U' + U'^2) + C_{L0}(2U_o U' + U'^2) \right]$$

$$C_L' = \frac{-2C_{L0}U'}{U_o + 2U'}$$

Zero lift fluct.

Re=68,000

Limit: 0.2 Hz (not fast enough)
Use ‘dynamic models’ to obtain faster response

- Principal limitation is the phase lag (time delay) associated with change of lift force relative to
 - Actuator input
 - Unsteady freestream
- Amplitude/phase empirically determined from measured lift response as a function of freestream/actuation modulation frequencies

\[\tau^+ = \frac{t_d}{t_{conv}} = 5.8 \pm 0.5 \]

\[k = \pi \frac{f_c}{U} \]
Feed forward control increases time response 5X

Suppressing & enhancing 1.0 Hz oscillation

\[a' = -G_{act}^{-1}G_{aero} \cdot U' \]
Further increase in bandwidth by considering actuator transient- pushing for 5 Hz

Lift response to single pulse

\[w(k) = C \sum_{j} K(j)u(k - j) \]

- \(u = \) input signal
- \(K = \) kernel (single-pulse response)
- \(C = \) calibration
- \(w = \) output signal

Note: wiggles are sting vibrations

Lift response curves similar to results of Woo, et al. (2008) for 2D airfoil with pulse-combustion actuators
Lift response to 3, 5, & 10 pulses

- Actuator input at fixed pressure
- Pulse duration .017s on/0.017s off
- Convective time $c/U = 0.04s$

3-pulse input to actuator

Graph showing the lift response with different pulse inputs and convective time.
Quasi-linear behavior of lift response to actuation

INPUT = sequence of 0.017s pulses, 50% dtc used to create square wave pattern as input signal

OUTPUT = convolution between kernel and input

0.4 Hz

No forcing C_L

1.4 Hz

Shift in mean C_L

5 Hz
Black-box model agrees with pulse-response

- System Identification of a ‘black-box’ model (6th order state space) of the separated flow
 - Impulse response of black-box model matches single pulse response in experiment
 - Phase variation with frequency matches experimental measurements
Summary

• Time varying control of C_L is necessary for integrating AFC and Flight Control
 - Biasing allows for +/- changes in lift

• Time delays associated with actuation are long ($\sim 5.8 \text{ c/U}$) and must be included in controllers

• Convolution of input signal with single pulse kernel gives reasonable prediction of lift response