A Ball Bearing as Proposed would contain rail races instead of conventional races. Preferably, the balls, rings and rail-races would be made of a ceramic or similar hard material.

Lightweight Heat Pipes Made From Magnesium
Lyndon B. Johnson Space Center, Houston, Texas

Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

This work was done by John H. Rosenfeld, Sergei N. Zarembo, and G. Yale Eastman of Thermacore, Inc. for Johnson Space Center. Further information is contained in a TSP (see page 1).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:
Thermacore International, Inc.
780 Eden Rd.
Lancaster, PA 17601
Phone No.: (717) 569-6551
Email: info@thermacore.com
Refer to MSC-23397-1, volume and number of this NASA Tech Briefs issue, and the page number.

Ceramic Rail-Race Ball Bearings
NASA's Jet Propulsion Laboratory, Pasadena, California

Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings; instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4-8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18307-1.

This work was done by Albert J. Juhasz of Glenn Research Center. Further information is contained in a TSP (see page 1).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:
Thermacore International, Inc.
780 Eden Rd.
Lancaster, PA 17601
Phone No.: (717) 569-6551
Email: info@thermacore.com
Refer to MSC-23397-1, volume and number of this NASA Tech Briefs issue, and the page number.

https://ntrs.nasa.gov/search.jsp?R=20100019622 2019-06-05T04:35:16+00:00Z