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Abstract

The characteristics of convective system populations in West Africa and the western

Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in

convective activity in tropical continental and oceanic environments is driven by variations in the

number of events during the wet season or by favoring large and/or intense convective systems.

Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz

polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The

study database consisted of convective systems in West Africa from May—Sep for 1998-2007

and in the western Pacific from May—Nov 1998-2007. Annual cumulative frequency

distributions for system minimum brightness temperature and system area were constructed for

both regions. For both regions, there were no statistically significant differences among the

annual curves for system minimum brightness temperature. There were two groups of system

area curves, split by the TRMM altitude boost in 2001. Within each set, there was no

statistically significant interannual variability. Sub-setting the database revealed some sensitivity

in distribution shape to the size of the sampling area, length of sample period, and climate zone.

From a regional perspective, the stability of the cumulative frequency distributions implied that

the probability that a convective system would attain a particular size or intensity does not

change interannually. Variability in the number of convective events appeared to be more

important in determining whether a year is wetter or drier than normal.



1. Introduction

In tropical continental regions with wet and dry seasons, an important scientific and

economic objective is a better understanding of the mechanisms responsible for above normal

and below normal wet seasons. The review paper on Sahelian climate by Nicholson (2000)

identified one of the outstanding questions in this area of research: Are above normal years

characterized by more precipitation events or by a tendency of precipitation events to be larger

and/or more intense? Conflicting observations from recent papers on this topic add urgency to

investigating this open question.

In this paper, we show results from the very different environments of West Africa

(Figure 1) and the western Pacific Ocean (Figure 2) to test the hypothesis that interannual

variability in convective system activity in tropical continental and oceanic environments is

driven by variations in the number of events during the wet season and not by favoring large

and/or intense events. Because this study considers two very large regions, we use 85 GHz

orbital resolution data from the Tropical Rainfall Measuring Mission (TRMM) satellite to

analyze convective system number, size, and intensity. Although studies based on microwave

remote sensing are not directly measuring precipitation on the ground, the use of the 85 GHz

brightness temperature is a well established proxy for the intensity of convective updrafts and

thus the potential for precipitation on the ground (e.g., Mohr and Zipser 1996; Nesbitt et al.

2000; Toracinta et al. 2002; Cecil et al. 2005).

Nicholson (2000) summarizes papers on the daily precipitation climatology (1950-90) of

a study site in Niger by Le Barbe´ and Lebel (1997) and precipitation monitoring at the site

(1990-93) by Lebel et al. (1997) then compares them with Nicholson et al. (1988) and Lamb et

al. (1998). In Le Barbe´ and Lebel (1997), almost 90% of the annual rainfall decrease over their
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study period was explained by the decrease of the mean number of precipitation events during

July and August, while both the length of the wet season and the mean event precipitation

remained stable. Using a dense network of recording gauges, Lebel et al. (1997) observed the

same phenomena. In contrast, Lamb et al. (1998) conclude that the interannual variability

1951-87 at four different locations (Dakar, Bamako, Kindi, Niamey) was strongly correlated

with a decrease in the number of strong disturbance lines but an increase in the number of weak

disturbance lines. For the Sahelian rain gauges surveyed by Nicholson et al. (1988), the total

number of precipitation days is described as “somewhat higher” in the wet years, but the increase

is almost exclusively in the number of days with 40 mm or more. Nicholson et al. (1988)

attribute the difference between wet and dry Augusts at their stations to as little as one or two

major systems bringing between 100 and 150 mm d-1.

Papers after 2000 include a follow-up study by Le Barbe´ et al. (2002) of the time period

1950-90 for a larger area of West Africa. Their analysis of daily precipitation data from 300

gauges revealed a systematic decrease since 1970 in the number of precipitation events.

Decreases in interannual precipitation in the Guinea Coast and the Sahel were most closely

correlated to decreases in precipitation events during the core of their wet seasons, May and June

and July and August, respectively. However, the variations of mean precipitation per event were

erratically distributed and uncorrelated to the mean interannual precipitation. Updating and

extending the study by Lamb et al. (1998), Bell and Lamb (2006) attribute the decrease in

rainfall 1970-90 to a decrease in the number of strong disturbance lines and an increase in weak

disturbance lines. They found more variability in the numbers of weak vs. strong disturbance

lines after 1990. For a Niger study area similar to Bell and Lamb’s, Balme et al. (2006) observed

no interannual variability in cumulative frequency distributions (CFD) of precipitation intensity
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(mm h-1 ) derived from recording rain gauge data for 1990-2002. Over a wide swath of sub-

Saharan Africa, Mohr (2004) identified and analyzed convective systems from TRMM data for

1998-2001 but did not find significant interannual variability among the CFDs for the size of the

precipitating area nor among the CFDs for convective intensity. Reconciling our results with

differing conclusions from these previous studies is an important task of the present study.

Figure 2 defines the WPTCB and three sub-regions used in our study. There were cold

phases (La Niña) in 1998 and 1999 and a warm phase (El Niño) in 2002. In Figure 2, the shifts

in genesis density among the sub-regions broadly confirm Chan’s (1985) observation that the

anomalous Walker circulations associated with warm and cold phases of the El Niño-Southern

Oscillation (ENSO) shift areas of enhanced and suppressed tropical cyclone activity. Although

interannual variability rather than ENSO is the focus of Chen et al. (1998), the influence of

ENSO on tropical cyclone formation can be inferred from their results. Wang and Chan (2002)

demonstrate that the total number of tropical storms formed in the entire WPTCB does not vary

significantly from year to year, but during El Niño summer and fall, the frequency increases in

the southeast quadrant (0–17N, 140E–180) and decreases in the northwest quadrant (17–30N,

120–140E).

Tropical cyclones are but one part of the total spectrum of precipitation events that may

occur in the tropical oceans. Since smaller precipitating systems may be the seedlings of tropical

cyclones, analyzing the characteristics of oceanic precipitation and precipitating systems is

relevant to assessing probability of tropical cyclone formation. In Mapes and Houze (1993)

analysis of IR cloud clusters during several ENSO events in the 1980s, there are noticeable

differences in the cumulative fraction of cold (< 235 K) cloud between warm and cold events,

implying a reduction in cold cloud events of all sizes in the WPTCB during warm events. Using
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85 GHz data from the Special Sensor Microwave/Imager (SSM/I), Zolman et al. (2000) created a

census of the numbers and properties (size, intensity) of mesoscale convective systems (MCS)

occurring in 18 sub-regions between 35N and 35S during the 1995-96 La Niña. They compared

their results to a similar census of MCSs during the 1993 El Niño compiled by Mohr and Zipser

(1996). The areas with direct ties to ENSO—central Pacific, eastern Pacific, and Maritime

Continent—demonstrated the largest differences in the number of MCSs between the 1995-96

La Niña and the 1993 El Niño. The properties of the MCSs (median and 90 th percentiles for size,

median and 10th percentiles for minimum 85 GHz brightness temperature) did not change

significantly. In Berg et al. (2002), differences in the mean vertical structure of eastern vs.

western Pacific convective systems were pronounced in Dec-Feb 1999-2000, a period lacking a

significant ENSO signal. During a warm event in Dec-Feb 1997-98, the increase in tall and

large cloud systems in the eastern Pacific and the decrease in the western Pacific resulted in

similar mean vertical structures, although regional differences such as a larger fraction of

stratiform rain in the eastern Pacific remained.

We consider whether in some years large and/or intense convective systems constitute a

larger share of the convective system population. Although this is not a new question, the new

contributions of this study include the analysis of a longer time period than previous studies

using microwave remote sensing such as Mohr (2004), a larger area than papers using rain gauge

data, and the contrasting of results in two very different environments.

2. Data and Methods

From November 1997 to late August 2001, the TRMM satellite flew at an altitude of

approximately 350 km. The satellite was raised to an altitude of approximately 402 km to extend
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its operational lifetime. For our analysis of convective systems, we used the TRMM Microwave

Imager (TMI) ungridded brightness temperature data product 1B11. Prior to the 2001 boost, the

resolution of the 1B1 1 product at 85 GHz is 4.4 km with a swath width of 760 km. After the

boost, the resolution degraded slightly to 5.1 km with a swath width of 878 km. Although the

1B1 1 product has all the channels of the TMI, we chose the 85 GHz channels for our analysis.

The minimum 85 GHz polarization-corrected brightness temperature (PCT) is derived from a

simple linear equation combining the horizontally and vertically polarized 85 GHz channels

(Spencer et al. 1989). The use of this polarization-corrected brightness temperature mostly

eliminates identification errors due to emissivity discontinuities resulting from reflective surface

types (e.g., water, desert sand, ice), making it possible to distinguish precipitating cloud from a

non-raining background. Minimum PCT is a useful proxy for system intensity because it is

related to the production by convective updrafts of large ice hydrometeors (graupel and hail) that

scatter high frequency microwave radiation from a satellite’s field of view (Spencer et al. 1989;

McGaughey et al. 1996).

The methodology used to identify convective systems from the 1B1 1 product is described

in Mohr (2004). Since a convective system implies a cluster of convective cells rather than

individual cumulonimbus, we imposed a stricter criterion than Mohr (2004): a convective system

is at least 64 km2, implying at least 4 contiguous 85 GHz pixels with a PCT below 255 K.

Although there are precipitating events in oceanic environments that do not have ice scattering,

by defining convective systems using 85 GHz brightness temperatures below 255K, we insured

that deep, glaciated convective cells were part of each of our oceanic events. A

convective/stratiform discrimination algorithm developed by Prabhakara et al. (2000) was

applied to each convective system to determine the area of the stratiform cloud and the locations,
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area, and approximate lifecycle stage of each convective cell (developing, mature, or decaying).

The algorithm used the magnitude of horizontal PCT gradients to make these first-order

distinctions. The information in the study database included the date, overpass time, location,

minimum PCT, and size (total and areas of stratiform and developing, mature, and decaying

convective cloud). Because convective systems were identified from contiguous pixels below

255 K and the altitude boost in 2001 did not change the number of pixels/swath in the 1B11

product and did not bias the number of convective systems identified per year. The boost

increased beam filling and increased the distance between pixel centroids, from which we

calculated system areas. We note where these changes affect our analysis of system size and

intensity.

To avoid biases due to sampling, Negri et al. (2002) determined that an acceptable

estimate from TRMM data of the diurnal cycle of precipitation over a 5  ×5 box required a

minimum of 4-h averaging over a wet season. For our West African database, we recorded

convective systems from 1 May to 30 September for each year 1998-2007. May to September

captures the height of the wet season in the Guinea Coast and later in the Sahel. To avoid

sampling biases identified in Negri et al. (2002), all temporal averaging or counting schemes

used at least 5 days of data. Testing our hypothesis in the highly variable West African

environment required the analysis of a range of wet and dry years. The Joint Institute for the

Study of the Atmosphere and Ocean at the University of Washington

(http://jisao.washington.edu/) maintains precipitation anomaly indices for the Sahel and the

Guinea Coast. We ascertained wet and dry years from their time series graphs, although some

years are missing from the Gulf of Guinea time series. In those cases, we referred to the Bulletin

of the American Meteorological Society annual climate assessments for more information. Some
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years (e.g., 2006) were drier than normal in the Sahel but not in the Guinea Coast, making it

difficult to assign a category on a regional level. The full 10 years of TRMM data captured the

range of conditions, wet, dry and normal, that the analysis required.

For our WPTCB database, we recorded convective systems during the most active

months for tropical cyclones, 1 May to 30 November, for 1998 -2007. Table 1 lists the annual

convective system densities for West Africa and the WPTCB. Interannual contrasts in

convective system density (Table 1) and tropical cyclone formation in the WPTCB (Figure 2)

peaked during anomalies in the Southern Oscillation Index (SOI). In the WPTCB analysis, these

SOI anomalies included two tropical cyclone seasons with a La Niña (1998, 1999) and a season

with an El Niño (2002). There were also two seasons with an SOI as close to neutral as possible

(2000, 2005). These seasons provided the greatest possible contrast between normal and

anomalous SST conditions to test our working hypothesis.

From the seasonal databases, CFDs for system minimum PCT, system area, and system

mean PCT for the mature cells were constructed. Because the ranking of size and intensity from

microwave remote sensing and rain gauge data produces non-normal data distributions (typically

lognormal), a non-parametric but still powerful hypothesis test is required. The non-parametric

Mann-Whitney rank method, whose application was demonstrated in Mohr and Zipser (1996),

was chosen for testing whether or not annual samples were drawn from the same or different

populations. Significance level was set at 95% ( a = 0.05).

A second TRMM product used in the analysis was the 3B43 monthly 0.25° × 0.25°

merged sources precipitation estimate. The 3B43 algorithm combines the TRMM instrument

retrieval (multiple channels), IR geostationary retrievals, and the monthly accumulated rain

gauge analysis from the NOAA Climate Prediction Center. The final gridded product provides
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global high-resolution monthly precipitation totals between 50N and 50S. Monthly accumulated

precipitation was summed from May-Sep for West Africa and May-Nov for the WPTCB to

obtain seasonal totals. We used this quasi-independent data source to examine how anomalies in

size of convective system populations were linked to anomalies in precipitation.

3. Statistics of Convective Systems in West Africa

The CFDs in Figures 3 and 4 were derived from histograms of the entire database of

convective systems for each respective year during the TRMM era in West Africa. Figure 3a

contains the CFDs for total convective system size. Because of the five orders of magnitude

difference between the largest and smallest convective systems, the abscissa has a logarithmic

scale. There are two sets of curves in Figure 3a. The set of curves on top are the curves for

1998-2001 (“pre-boost”), and the set of curves on the bottom is for 2002-07 (“post-boost”)

The gap between the sets of curves is not visually pronounced, although it is largest for the many

small convective systems below 300 km 2. Below 300 km2, the differences between pre- and

post-boost curves are greater than 5%. Differences between CFDs greater than 5% produced a

statistically significant result in hypothesis testing, implying that the pre- and post-boost sets of

curves were drawn from different populations. Within each set, the annual samples were drawn

from the same population. The results from 2001 were affected by the boost in August such that

it is slightly to the right of 1998-2000 but not significantly so, implying that 2001 belongs to the

pre-boost set of curves. Because large convective systems contribute the majority of seasonal

precipitation (e.g., Mathon and Laurent 2001; Mohr 2004), the high-low chart in Figure 3b

focuses on the upper bins of the CFDs in Figure 3a. The difference in the cumulative

frequencies for large convective systems 2 000-40 000 km 2 is less than 2%. There is less
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variability in the CFDs even between pre- and post-boost years for large, well-organized

convective systems than for small, less well-organized convective systems.

The CFDs for system minimum PCT are in Figure 4a. The curves were derived from

convective systems in all stages of their lifecycles. Figure 4b, the CFDs for the mean PCT of

mature cells, was composed from a sub-set of convective systems that had 4 or more

cumulonimbus clouds identified as mature by the Prabhakara et al. (2000) algorithm. Neither

Figure 4a nor Figure 4b has statistically significant gaps among the curves. The separation

among curves is less than 5% for all bins. Mohr and Thorncroft (2006) classified intense

convective systems in 1998 as having a system minimum PCT of less than 135 K, the 10 th

percentile for system minimum PCT in 1998, a near to slightly above average year for

precipitation. In Figure 4a, the median value of the 10 th percentile is 135 K, making it a useful

representative of the 10 th percentile for the classification of intense convective systems in any

year of the TRMM era.

Documented intraseasonal modes of variability of precipitation during the West African

wet season include the 15-20 day mode and the 40 day mode of the Madden-Julian Oscillation

(Mounier and Janicot 2004; Mounier et al. 2007; Mounier et al. 2008). We made daily counts of

convective systems for the study region and constructed a time series by calculating 5-day

running means of the daily counts. The 5-day running means eliminated the effect of the diurnal

cycle and easterly (i.e., synoptic timescale) waves. The selected wet seasons in Figure 5 include

one with near-normal precipitation (1998), one drier than average (2001), and one wetter than

average (2003). Each of these years displays the same 15-20 day mode of variability. The other

years in the database (not shown) also display this mode of variability. The amplitudes of the
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oscillations vary between wet and dry years. Wetter years have higher crests and shallower

troughs, whereas drier years have lower crests and deeper troughs.

Figure 6 contains the CFDs for minimum PCT for the individual wet and dry periods of

2001 and 2003. The seasonal mean is plotted for comparison. In both years, the wet and dry

periods of May and June tend to cluster above the seasonal mean, and the wet and dry periods of

July—September tend to cluster on and below the seasonal mean. Seasonally, the month group

May—Jun corresponds to the peak of the wet season in the Guinea Coast and Jul—Sep to the wet

season in the Sahel. Tests between wet and dry samples within the May—Jun group and within

the Jul—Sep group revealed that they were drawn from the same population, although the spread

is smaller (< 3%) in 2003 than in 2001 (< 5%). Tests between samples in the May—Jun group

and samples in the Jul—Sep group did rise to the significant level, indicating that May—Jun

samples (the height of the wet season on the Guinea Coast) and Jul—Sep samples (the wet season

in the Sahel) are from different populations. Tests of samples across years within the same

group (May—Jun 2001 vs. May—Jun 2003 and Jul—Sep 2001 vs. Jul—Sep 2003) were not

statistically significant.

4. Statistics of Convective Systems in the Western Pacific Tropical Cyclone Basin

Climate assessments describe La Nifia conditions beginning in the spring of 1998,

becoming fully established by July, and persisting through 1999 into early 2000 (Bell et al. 1999;

Adler et al. 2000; Bell et al. 2000; Lawrimore et al. 2001). Almost all of the 13 tropical cyclones

plotted in Figure 2a originated in the west region during the 1998 La Nifia. During the 1999 La

Nifia, 20 tropical cyclones developed, 9 in the north region and 11 in the west region. Compared

to 1998, there were stronger La Nifia conditions in 1999 throughout the entire tropical cyclone
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season. A transition to El Niño conditions took place in 2001, becoming fully established in

spring of 2002 (Waple and Lawrimore 2003). During 2002, almost all of the tropical cyclones

plotted in Figure 2c developed in the east region. From 2003-2006, the equatorial Pacific

experienced near-neutral to El Niño conditions (Levinson and Waple 2004; Levinson 2005;

Shein 2006; Arguez et al. 2007). The year 2005 began in a weak warm phase of ENSO that

ended in March, followed by near-normal SSTs throughout the tropical cyclone season with deep

convection and tropical cyclone activity (number, distribution) only slightly below average,

although the number of typhoons was at the climatological mean (Shein 2006). A transition to

La Niña conditions took place during mid-2007, becoming fully established in the fall (Levinson

and Lawrimore 2008).

In Table 1, the east region has pronounced variability in convective system density due to

ENSO. The CFDs for the east region for 1998-2007 are depicted in Figure 7. As in Figure 3a,

there is a separation in Figure 7b due to the boosting of the TRMM satellite in 2001. Aside from

the statistically significant difference between the pre-boost and post-boost set of curves, there

are no other statistically significant differences in Figures 7a or 7b. The effect of the 2001

TRMM altitude boost is apparent in Figure 7c. In Jun—Sep 2000, there was a near-neutral SOI,

and the east region had near-normal SSTs, making it possible to compare a near-neutral pre-

boost year to neutral post-boost 2005 (Lawrimore et al. 2001). The differences between the area

CFDs for convective systems less than 300 km2 are 6%-12%, greater than the 5% threshold

required to attain statistical significance. Above 300 km2, the differences between pre-boost and

post-boost area CFDs decrease with increasing convective system area. The change in the

viewing angle due to the altitude boost increased the distances between pixels in TMI imagery,

most notably at the edges of the swath. Small convective systems at swath edge, composed
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solely of edge pixels, would exhibit the greatest impact of the altitude boost. Some of these

small convective systems would be counted in higher bins in post-boost years than they would

occupy if they were identified in pre-boost years. Both Figure 3b and Figure 7c demonstrate the

negligible effect of altitude boost on large convective systems. Beam filling due to the altitude

boost also had a negligible effect on the minimum PCT CFDs. For 2005 vs. 2000, the

differences in the minimum PCT CFDs were -0.03% — -0.75%.

In Figure 8 are CFDs for system minimum PCT and system total area for the three sub-

regions of the WPTCB, focusing on the La Niña (1998, 1999), El Niño (2002), and neutral

(2005) years. We intended to make any ENSO-related differences more apparent by

constructing Figure 8 without the other years in the TRMM database. However, no statistically

significant differences emerge. The El Niño and neutral seasons (post-boost) have less than 2%

separation between their area CFDs, as do the two La Niña seasons (pre-boost). The minimum

PCT curves for the west and east regions (Figures 8a and 8c) have a less than 3% separation.

Separation among the curves for the north region (Figure 8e) is slightly higher but still less than

5%.

Using the neutral season, 2005, as the basis for comparison to the seasons with ENSO

events, Table 2 contains the percent change in the number of convective systems in each region

vs. the number occurring in 2005. The values in Table 2 that are associated with the 1999 La

Niña and 2002 El Niño are typical of those phases of ENSO and consistent with previous studies

assessing the large-scale dynamics of those years. For the 1998 La Niña, there are decreases in

the west and north regions and a larger than expected decrease in the east region. Bell et al.

(1999) list five primary precipitation anomalies related to the 1998 La Niña, of which two are

relevant to this study: 1) increased rainfall across Indonesia, and a nearly complete disappearance
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of rainfall across the east-central equatorial Pacific; 2) above-normal rains across northwestern,

eastern, and northern Australia. Although the positive precipitation anomalies in the east region

disappeared during the transition to La Niña, the Walker circulation was not fully re-established

until the fall of 1998. The positive precipitation anomalies associated with La Niña occurred

after and thus south of the peak of both the wet and tropical cyclone seasons in the west region.

The analysis of the WPTCB had to account for effects of ENSO and the effects of the

altitude boost. It is noteworthy that the pre-boost years were largely dominated by La Niña

conditions and most of the post-boost period dominated by neutral to El Niño conditions.

Because much of the 2000 study period was near-neutral, it was possible to separate those values

affected by ENSO and those affected by the altitude boost of TRMM. The values in Table 1 and

Table 2 are representative of the expected interannual and regional variability associated with the

documented phases of ENSO from 1998-2007. The altitude boost affected the area and intensity

CFDs, although this was statistically significant only for the left hand side of the area CFDs

(convective systems < 300 km2).

5. Synthesis of Results from Both Study Regions

In Figures 3 and 4 for West Africa and Figures 7 and 8 for the WPTCB, the CFDs for

size and intensity for both study regions display no statistically significant differences

attributable to natural causes. The probability that a convective system will have a particular

area or intensity appears to be stable interannually. In Tables 1 and 2, the number of convective

systems with a particular area or intensity is not. The number of West African convective

systems in wetter than average years (1999, 2003) is only about 10% greater than in average

years (1998, 2005) and about 20% greater than in drier than average years (2000-2002). In
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Figures 7 and 8, convective systems in the WPTCB have the same proportion of large and/or

intense convective systems regardless of the value of the SOI. From Table 2, the number of

convective systems in a WPTCB sub-region during warm SST anomalies can be expected to be

10% greater than in neutral conditions, and 10%-20% fewer during cold SST anomalies. In the

Sahel, a 1%–2% reduction in the convective systems at the top of the curves in Figures 3 and 4 is

a reduction on the order of the one or two major systems cited in Nicholson et al. (1988) as the

difference between a wet year and a dry year.

Table 3 illustrates how subtle differences in the number of convective systems may result

in larger differences in the amount of seasonal precipitation. The figures in Table 3 are derived

from the 3B43 gridded monthly precipitation product. We chose 1999 and 2002 for comparison

because 1999 is wetter than normal in West Africa and a La Niña year in the WPTCB, and 2002

is drier than normal in West Africa and an El Niño year in the WPTCB. The percent change in

the number of convective systems recorded in Tables 1 and 2 is accompanied by a change in

precipitation in Table 3 that is 5%-15% larger than the change in the number of convective

systems. Tables 1-3 display statistics for entire regions. Precipitation in individual 3B43

gridcells varied as much as 50% from regional figures, with the variability in West Africa

highest north of 10N, emphasizing the greater impact of anomalies on dry regions.

Bell and Lamb (2006) explain the conflicts between their conclusion and the work of Le

Barbe´, Lebel, and colleagues as due to differences in spatial scale and sampling. Bell and Lamb

used all available daily rain gauges in 440 km × 440 km catchments in Senegal, Niger, Mali, and

Burkina Faso. Le Barbe´ et al. (2002) used widely dispersed daily rain gauges from the Guinea

Coast to the Sahel. Figure 9 depicts the effect of accumulating statistics from individual storms

for two areas roughly the same size as Bell and Lamb but from two different climate zones.
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There is more variability in the CFDs in the Niger graph (Figure 9a). The dry years at the top of

the cluster of curves, 2000, 2001, 2004, are significantly different (5%-10%) from the normal

and wet years at the bottom, 1998, 1999, 2003. There are no statistically significant differences

between CFDs for wet vs. dry years in the Ivory Coast/Ghana graph (Figure 9b). Because the

more humid zone south of 10N dominates the West African regional mean, different conclusions

could arise from analysis of a regional-scale sampling area that incorporates humid climate zones

vs. small sampling areas in the same semi-arid zone.

During an anomalously dry period, the probability that a large convective system will

pass through a small sampling area is smaller than it would be during normal conditions. For a

reduced regional population, a small study area in Niger is more likely to observe a

proportionally larger reduction in the number of large convective systems than one in Ghana.

For the anomalously dry decades 1970-90, this is the effect that Bell and Lamb observed in their

small sampling areas, magnified by normalizing their intensity indices by the standard deviation

of mean daily precipitation for 1951-98. In Figures 6 and 9, the CFDs vary as much as 10%,

depending on sampling period, the size of the sampling area, and climate zone. In constructing

Figure 7, we found that at least 4-5 days of convective system counts were required. Although

40 x 40 may be insufficient in a semi-arid region, it appears to be adequate in a humid one.

In Tables 1 and 2, an anomalous SOI appears to affect the number of convective systems

in the WPTCB, depending on the time of year and the pace and magnitude of the changes in the

Walker circulation and SSTs associated with the value of the anomalous SOI. Convective

system activity during the 1999 La Niña and 2002 El Niño increases moderately in the regions

with warm SST anomalies and decreases in regions with cold SST anomalies. In Figures 7 and
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8, the value of the SOI does not change the shape of the CFDs. Large and/or intense convective

systems are the same proportion of the population, regardless of the value of the SOI.

A season with increases in the number of convective systems would have a

contemporaneous increase in the numbers of large convective systems, including tropical

cyclones, according to the shifts observed by Chan (1985). This would result in a change in the

mean vertical structure as observed by Berg et al. (2002). Because the study database does not

classify by structure, it is not possible to tell directly if the 2% of convective systems over 10 000

km2 are large MCSs or tropical cyclones. From Figure 2, it is possible to suggest that within

each sub-region there may be variability in the probability of a particular structure even if the

probabilities of its size and intensity classes do not change. In the north region, a strong La Niña

would increase the number of large convective systems and perhaps increase the probability that

more of them are tropical cyclones rather than MCSs. Additional research is required to

investigate this phenomenon.

At regional scales, the interannual stability of the CFDs in Figures 3, 4, 7, and 8 suggests

that essentially fixed conditions such as geography and the seasonal cycle largely determine the

shape of these spectra. As mentioned earlier, the stability of these spectra is affected by

sampling scheme and climate zone. Intraseasonal and interannual modes of variability are

important in determining the number of convective systems along the CFD curves. Even in very

dry years during dry periods, the reduced regional population of convective systems in the less

favorable environment still attains the full spectra of sizes and intensities. Convective systems

with a minimum PCT < 135K are still approximately 10% of the population in the driest period

of 2001 (6/15-19) as they are in the wettest period in 2003 (9/14-18). It seems intuitive that a

region’s particular dynamical and thermodynamical environment would set up a range of
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possible convective systems. It remains to be seen why the same entire range occurs despite the

phase of the modes of variability, whether intraseasonal or interannual.

The stability of the CFDs and the similarity of results in two very different regions add

weight to the claims in previous literature such as Le Barbe´ et al. (2002) that numbers, not size

and/or intensity of events, determines a wet or dry year or a year with more or fewer large

convective systems. It is possible for a small scale study, most likely in a semi-arid or arid

region, to conclude otherwise, although it can also be viewed as supporting the idea that during a

dry period, we can expect to observe fewer large convective systems and a proportionally larger

decrease in precipitation.

6. Summary

This study tested the hypothesis that interannual variability in convective activity in

tropical continental and oceanic environments is driven by variations in the number of events

during the wet season and not by favoring large and/or intense systems. Convective system

populations were identified and analyzed from 10 years of TRMM data from West Africa and

selected years of TRMM data from the western Pacific tropical cyclone basin.

Convective systems were defined as a cluster of pixels with a PCT below 255 K and with

an area at least 64 km2. The study database consisted of West African convective systems from

May to Sep for 1998-2007 and convective systems in the WPTCB from May to Nov for

1998-2007. From the regional databases, CFDs for system minimum PCT and system area were

constructed. Hypothesis testing used the non-parametric but powerful Mann-Whitney rank

method at 95% to test whether samples were drawn from the same or different populations.

From the analysis of the regional databases arose the following common points:
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• The CFDs for system minimum PCT exhibited no statistically significant interannual

variability.

• The CFDs for system area had two groups of curves, one set of curves 1998-2001 (pre-

boost) and the other set 2002-2007 (post-boost). Within each set, there was no

statistically significant interannual variability.

• Anomalously wet periods had about 10% more convective systems than in average (SOI-

neutral) years and 20% more than in anomalously dry periods.

• Anomalies in the number of convective systems resulted in larger anomalies in

precipitation.

• Differences in the number of large/and intense systems could be explained by the number

of convective systems occurring each year.

The time series analysis performed on the West Africa database produced additional

results:

• The amplitude of intraseasonal oscillations displayed interannual variability. Wet years

had higher numbers and dry years lower numbers of convective systems during both wet

and dry periods.

• The shapes of the CFDs were affected by the seasonal cycle but not by intraseasonal and

interannual modes of variability.

• The stability of CFDs was sensitive to the size of the sampling region, sampling period,

and climate zone.

The analysis of the regional databases supports the hypothesis of this study and the

conclusions of some earlier studies with a more limited scope. Our results also put into context

those studies that may have reached a different conclusion based on their sampling methodology
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and study area. Essentially fixed conditions such as geography and the seasonal cycle could

explain the stability in the shape of these spectra in both continental and oceanic environments.

This leaves intraseasonal and interannual modes of variability responsible for determining the

number of convective systems along the CFD curves. Because of the stability of the spectral

curves, they could be used as important benchmarks against which populations of convective

systems in regional and global model simulations could be compared. Future work should

consider why even during dry phases, when it is difficult for any convection to organize, the

large and/or intense convective systems still develop, and in the same proportion of the

population as in more favorable phases. If models are to create convective system populations

matching the observed ranges of sizes and intensities, it is necessary to understand why the

regional environment produces these ranges every wet season during each phase of intraseasonal

or interannual modes of variability.
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Figure 1. The study area in West Africa. The large box defines the region in which convective

systems were identified and analyzed, approximately 18W-30E, 4-20N.

Figure 2. The Western Pacific tropical cyclone basin and three sub-regions. Shading denotes

mean SST for May through November, light shading for regions 300-302 K and darker shading

above 302 K. Storm symbols denote the formation locations of tropical cyclones between May

and November in a) 1998 La Niña event, b) 1999 La Niña event, c) 2002 El Niño event.

Figure 3. a) CFDs for total convective system area in km 2 for each year in the TRMM era for

West Africa. The blue-to-red gradient color scheme represents pre-boost years in blues with

closed symbols and post-boost years in reds with open symbols. b) High-low chart depicting the

spread among the CFDs 1998-2007 for large convective systems. The square denotes the median

value in each area bin.

Figure 4. CFDs for a) system minimum PCT (K) and b) mean PCT (K) of mature convective

cells of convective systems with a minimum of 4 cells in the mature lifecycle stage. Series

markers are consistent with Figure 3a.

Figure 5. Time series of the 5-day running mean of daily total convective systems for all of West

Africa for the wet seasons of 1998 (near normal precipitation, dotted black line), 2001 (drier than

normal, solid gray line), 2003 (wetter than normal, dashed black line).

Figure 6. CFDs for system minimum PCT for wet and dry periods of a) 2001 and b) 2003. The

wet and dry periods are 4 days centered on the peaks and troughs of Figure 5. There is a gap in

August 2001 due to missing data during the boosting of the TRMM satellite. Red lines with open

symbols denote dry periods. Blue lines with closed symbols denote wet periods. The thick gray

line is the seasonal mean CFD.
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Figure 7. East region CFDs for a) system minimum PCT in K and b) total system area in km 2. c)

The difference in the area CFDs for 2000 vs. 2005. Series markers are consistent with Figure 3a.

Figure 8. CFDs for system minimum PCT in K (left column) and total system area (right

column) in km2 for the ENSO events in a) and b) west region W, c) and d) east region E, e) and

f) north region N. La Niña years are in blue, El Niño in red, neutral in gray.

Figure 9. CFDs for system minimum PCT for a 4° × 4° box centered on a) southern Niger and b)

the Ivory Coast and Ghana. Each year of the TRMM era is represented. “N” (green, hashed

markers) refers to wet seasons in which regional total precipitation was near-normal, “D” (red,

open markers) to below normal, and “W” (blue, closed markers) to above normal. The thick gray

line is the regional mean for 1998, a near-normal wet season.
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Figure 1. The study area in West Africa. The large box defines the region in which convective
systems were identified and analyzed, approximately 18W-30E, 4-20N.
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Figure 2. The Western Pacific tropical cyclone basin and three sub-regions. Shading denotes
mean SST for May through November, light shading for regions 300-302 K and darker shading
above 302 K. Storm symbols denote the formation locations of tropical cyclones between May
and November in a) 1998 La Niña event, b) 1999 La Niña event, c) 2002 El Niño event.
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West Africa	 WPTCB

Convective Convective
Year	 Systems	 Systems

per box	 per box
West	 North	 East

1998 18 60 27 29

1999 20 77 29 43

2000 17 75 25 44

2001 16 66 28 52

2002 17 57 21 55

2003 21 70 26 55

2004 17 62 25 60

2005 19 71 27 52

2006 20 60 24 52

2007 19 76 28 48

Boxes 751 492 918 788

Table 1. Convective system densities for 1998-2007, normalized by a fixed area, a 1  × 1  box on
the equator.
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Year	 West	 North	 East

1998 La Niña -16% -1% -44%

1999 La Niña 7% 9% -17%

2002 El Niño -20% -22% 6%

Table 2. Percent change in the number of convective systems in the WPTCB during the ENSO
events vs. the neutral season, 2005. Percentages were calculated from regional counts used to
calculate the entries in Table 1.
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Year	 West	 North	 East	 West Africa

1999

2002

Neutral Year
(mm d-1 gridcell-1)

Gridcells
(0.25  x0.25  )

17% 19% -29% 19%

-29% -32% 14% -13%

7.0 3.6 5.1 4.2

8000 13420 12880 12545

Table 3. Percent change in the daily total precipitation per 3B43 gridcell for 1999 and 2002. For
the WPTCB, the comparison is to SOI-neutral 2005 for May—Nov. For West Africa, the
comparison is to near-normal 1998 for May—Sep.
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The interannual stability of cumulative frequency distributions for convective system size
and intensity

Karen I. Mohr (GSFC, Code 613.1)
John Molinari (University at Albany, SUNY)
Chris D. Thorncroft (University at Albany, SUNY)

Citation: Mohr, K. I., J. Molinari, and C. D. Thorncroft, 2009: The interannual stability of
cumulative frequency distributions for convective system size and intensity. J. Climate, 19,
5218-5231.

We analyzed the characteristics of convective system populations in West Africa and the
western Pacific tropical cyclone basin. We asked whether a wetter than average year is driven
by an increase in the number of events during the wet season or by favoring large and/or intense
convective systems. This question has been answered differently in previous work, although this
the first study to ask the question for two very different tropical regions. We used TRMM TMI
data at 85 GHz to identify and classify convective systems in West Africa from May—Sep

1998-2007 and in the western Pacific from May—Nov 1998-2007. We constructed annual
cumulative frequency distributions for system minimum brightness temperature (a proxy for
system intensity) and system area. For both regions, there were no statistically significant
differences among the annual curves for system minimum brightness temperature. There were
two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set,
there was no statistically significant interannual variability. Sub-setting the database revealed
some sensitivity in distribution shape to the size of the sampling area, length of sample period,
and climate zone. Comparing our results to previous work revealed that these sensitivities were
responsible for differing conclusions. From our regional perspective, the probability that a
convective system will attain a particular size or intensity does not change interannually.
Variability in the number of convective events appeared to be more important in determining
whether a year is wetter or drier than normal.


