Nondestructive Crack Detection in a Fuel System Component

2010 Aircraft Airworthiness & Sustainment

May 12, 2010

Ajay Koshti, Norman Ruffino, NASA JSC
Russell Wincheski, William Prosser, William Winfree, NASA LaRC
Richard Russell, NASA KSC
Darren Cone, Paul Spencer, NASA WSTF
Craig Bryson, NASA MSFC
Robert Devries and James Engel, Boeing
James Landy, United Space Alliance
Background and Objective

Background

- Space shuttle orbiter uses three cryogenic liquid hydrogen fuel and liquid oxygen oxidizer rocket engines called main engines.
- Space Shuttle Mission STS-126 (December 2008) had a main engine anomaly during launch.
- During ascent, one of the hydrogen flow control valves changed to more open state without command.
 - The flow control valve controls the back pressure of the rapidly depleting liquid hydrogen fuel in the hydrogen tank which is one of the two chambers of the external tank.
- Post-flight, the FCV poppet head was found to be damaged.
- Concerns:
 - ET LH2 tank overboard venting (fire)
 - Potential for liberated material

Objective

- **Provide information on selected NDE development work for detection of cracks in the poppet**
 - Eddy Current and Ultrasonic NDE
Flow Control Valve Assembly and Poppet

Assembly

Poppet

NDE needed in the radius

1.000 in
Cause: High cycle fatigue during several launches. Crack formation and growth. Typical surface crack opening = 0.25 micron
Poppet Material: 440A Steel

- In annealed condition, type 440A steel consist of ferrite and chromium carbides. 440A has large scattered primary carbides. When the alloy is heat treated at 1800-1950°F, austenite is formed, which transforms to martensite upon cooling to room temperature (i.e. air cool or oil quench).

- If retained austenite is known to be present after the austenitizing and quench to room temperature, additional hardening response may be achieved by sub-zero cooling to about -100°F (-73°C). The as quenched structure of fresh martensite is quite brittle and should be stress-relieved or tempered at approximately 400°F to 500°F (204-260°C) to restore some ductility. During tempering between approximately 300°F (149°C) and 600°F (316°C), a relaxation of the martensite structure occurs whereby the volumetric stresses associated with the formation of martensite upon quenching are relieved. As a result, the martensite still exhibits its high hardness and wear resistance properties but some ductility is introduced at the loss of a few points of hardness.
Material Properties

- 440 A Martensitic Steel
- Electrical Resistivity (microhm-cm (at 68 Deg F)) = 360 or
 - 0.48 %IACS
- Maximum Relative magnetic permeability ~ 60 (at ~ 100 Oe).
- All Martensitic steels are ferromagnetic. Due to the residual stresses induced by the hardening transformation, these grades exhibit permanent magnetic properties if magnetized in the hardened condition. For a given grade, the coercive force (Hc ~ 65 Oersted), tends to increase with increasing hardening, rendering these alloys more difficult to demagnetize.
- Stress (applied and residual) may affect magnetic properties (magnetic permeability, residual magnetism and coercive force)
- Varying magnetism due to varying microstructure
Typical Mechanical Properties of Heat Treated Martensitic Stainless Steels

<table>
<thead>
<tr>
<th>Heat Treatment</th>
<th>T410 (0.14 %C)</th>
<th>T420 (0.25 %C)</th>
<th>T425 Mod (0.55 %C)</th>
<th>T440A (0.62 %C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rockwell Hardness</td>
<td>Rockwell Hardness</td>
<td>Rockwell Hardness</td>
<td>Rockwell Hardness</td>
</tr>
<tr>
<td></td>
<td>0.2% YS, Ksi (MPa)</td>
<td>0.2% YS, Ksi (MPa)</td>
<td>UTS, Ksi (MPa)</td>
<td>UTS, Ksi (MPa)</td>
</tr>
<tr>
<td>Annealed*</td>
<td>81 HRB</td>
<td>85 HRB</td>
<td>90 HRB</td>
<td>94 HRB</td>
</tr>
<tr>
<td></td>
<td>45.4 (313)</td>
<td>51.5 (355)</td>
<td>57.4 (396)</td>
<td>51.6 (354)</td>
</tr>
<tr>
<td></td>
<td>(80.4 (554)</td>
<td>(85.8 (592)</td>
<td>(86.3 (595)</td>
<td>(108.4 (747)</td>
</tr>
<tr>
<td>Hardened+Tempered 400°F (204°C)</td>
<td>43 HRC</td>
<td>48 HRC</td>
<td>53 HRC</td>
<td>54 HRC</td>
</tr>
<tr>
<td></td>
<td>156.1 (1076)</td>
<td>190.1 (1311)</td>
<td>200.9 (1385)</td>
<td>229.0 (1579)</td>
</tr>
<tr>
<td></td>
<td>(202.9 (1399)</td>
<td>(255.2 (1759)</td>
<td>(270.9 (1868)</td>
<td>(293.3 (2022)</td>
</tr>
<tr>
<td>Hardened+Tempered 550°F (288°C)</td>
<td>40 HRC</td>
<td>44 HRC</td>
<td>50 HRC</td>
<td>50 HRC</td>
</tr>
<tr>
<td></td>
<td>148.3 (1022)</td>
<td>176.0 (1213)</td>
<td>197.2 (1360)</td>
<td>220.2 (1518)</td>
</tr>
<tr>
<td></td>
<td>(187.0 (1289)</td>
<td>(229.6 (1583)</td>
<td>(250.8 (1729)</td>
<td>(272.6 (1879)</td>
</tr>
<tr>
<td>Hardened+Tempered 600°F (316°C)</td>
<td>40 HRC</td>
<td>45 HRC</td>
<td>53 HRC</td>
<td>53 HRC</td>
</tr>
<tr>
<td></td>
<td>148.8 (1026)</td>
<td>179.0 (1234)</td>
<td>196.0 (1351)</td>
<td>222.0 (1531)</td>
</tr>
<tr>
<td></td>
<td>(186.1 (1293)</td>
<td>(232.9 (1606)</td>
<td>(245.1 (1690)</td>
<td>(273.2 (1883)</td>
</tr>
<tr>
<td>Hardened+Tempered 800°F (427°C)</td>
<td>41 HRC</td>
<td>46 HRC</td>
<td>53 HRC</td>
<td>53 HRC</td>
</tr>
<tr>
<td></td>
<td>132.9 (916)</td>
<td>185.6 (1290)</td>
<td>210.6 (1452)</td>
<td>233.6 (1610)</td>
</tr>
<tr>
<td></td>
<td>(188.5 (1300)</td>
<td>(236.0 (1627)</td>
<td>(255.1 (1759)</td>
<td>(272.8 (1881)</td>
</tr>
<tr>
<td>Hardened+Tempered 900°F (482°C)</td>
<td>41 HRC</td>
<td>46 HRC</td>
<td>52 HRC</td>
<td>52 HRC</td>
</tr>
<tr>
<td></td>
<td>122.6 (845)</td>
<td>179.3 (1236)</td>
<td>198.4 (1368)</td>
<td>212.2 (1466)</td>
</tr>
<tr>
<td></td>
<td>(188.3 (1296)</td>
<td>(233.0 (1606)</td>
<td>(234.8 (1619)</td>
<td>(269.5 (1858)</td>
</tr>
<tr>
<td>Hardened+Tempered 1000°F (538°C)</td>
<td>35 HRC</td>
<td>43 HRC</td>
<td>41 HRC</td>
<td>41 HRC</td>
</tr>
<tr>
<td></td>
<td>127.9 (882)</td>
<td>176.8 (1218)</td>
<td>147.0 (1013)</td>
<td>147.0 (1013)</td>
</tr>
<tr>
<td></td>
<td>(154.3 (1063)</td>
<td>(206.8 (1434)</td>
<td>(177.5 (1224)</td>
<td>(177.5 (1224)</td>
</tr>
<tr>
<td>Hardened+Tempered 1200°F (649°C)</td>
<td>98 HRB</td>
<td>29 HRC</td>
<td>31 HRC</td>
<td>31 HRC</td>
</tr>
<tr>
<td></td>
<td>85.5 (589)</td>
<td>107.8 (743)</td>
<td>105.5 (727)</td>
<td>105.5 (727)</td>
</tr>
<tr>
<td></td>
<td>(111.2 (767)</td>
<td>(135.7 (936)</td>
<td>(135.4 (933)</td>
<td>(135.4 (933)</td>
</tr>
</tbody>
</table>
The part has a low residual field during EC testing. At low levels of residual magnetic field, the relative permeability is measured to be about 25.

Data provided by Russell Wincheski
M&P Evaluation

- SEM evaluation concluded poppet failed due to high cycle fatigue
 - Several unique “thumbnail” features
 - Multiple loading events
 - Transgranular
 - Unsure of effect of hydrogen, but not significant contributor (testing in work)
 - Material change recommended
 - It is believed that failure did not occur within one flight
NDE History

• Inspection by dye pen during manufacture
• Initial examination of flight units included optical, high resolution dye pen and SEM
 – Thought (at the time) that cracks ~0.005” could be found
 • 0.040” Optical
 • 0.005” SEM
 • 0.050” High res dye pen
 – No cracks found
Improved NDE

- The discovery that cracks from unpolished specimens were missed lead to the development of higher fidelity inspection techniques
 - Polish/ Magnetic Particle/SEM
 - Later Eddy Current Technique was Developed and Implemented
 - Used as key flight rationale prior to STS-119
 - Refinement of technique has occurred over next 3 flights
 - POD study completed by NASA Engineering Safety Center
 - Provides the best results among the techniques tried
 - Ultrasonic technique was not implemented due to lower sensitivity
Considerations for Using Eddy Current

• Concerns for regular eddy current inspection
 – Relatively low relative magnetic permeability (up to ~60) material.
 – Expect residual magnetic field due to high coercively (65 Oersted) and its effect on eddy current baseline response
 – Non-uniform magnetic permeability may add noise to eddy current inspection and potentially induce non-uniform Vpp change (amplification or attenuation) of crack indications
 – Localized variation in material composition (higher carbide concentration, microstructure) may provide higher permeability
 – Eddy current phase signature angle from very small magnetic indication may not be always distinguished from non-magnetic crack indications
 – Eddy current indication is a resultant effect from
 • Crack (length, depth, crack face contact)
 • Magnetic permeability (residual stress, martensite/carbide microstructure)
 – Global magnetic permeability and localized changes in the permeability
NDE Notch Standards for EC Technique

Each standard has three EDM notches

Notch opening ≤ 0.005"

Length along circumferential direction

Notch 1: 45 degree Orientation
Pointing through center of radius

Notch at 12 O’clock

Notch 2: Vertical Orientation
Starting at tangential point on flange

Radius tangent point

Notch at 3 O’clock

Notch 3: Horizontal Orientation
Starting at tangential point on the shank

Radius tangent point

Notch at 6 O’clock

S/N 33 Poppet Standard

Poppet Simulator Standard (1 each)

A286 Poppet Standard
Eddy Current Technique

US 1779 (Uniwest) Bolt Inspection Scanner

Ti Bolt Standard with Circumferential Notches

Frequency: 2 MHz

US-454 (UniWest) Eddy Current Flaw Detector

Driver-pickup construction 0.08 inch spacing

Eddy Current Bolt Thread Root Inspection probe
Matlab Analysis of EC Data

Simulator Specimen # 41

0.772 Vpp

Time Scan: One revolution
Vpp – Positive peak to negative peak voltage

Phase Diagram

Provided by Russell Wincheski
POD Study on Simulator Specimens

- 51 poppet simulators
 - Cracks grown in mechanical fatigue load set-up
 - Some with multiple flaws
 - Opposite sides
- 4 unflawed poppets
- Flaws sized with SEM
- 2 Inspectors
 - Recorded call and signal (peak-to-peak voltage)
 - Repeat each poppet 6 times

Simulator crack specimens provided by Robert Piascik and William Prosser
Simulator POD Data

Transformed response vs largest flaw size

$\sigma_{Vpp} = 0.01$
Estimated POD & FC Rate by Threshold Settings on Simulators

- FC=0.00021, T=0.2
- FC=0.01, T=0.1309
- FC=0.05, T=0.0971
- FC=0.1, T=0.0807
Establishing EC Criteria

• Considerations
 – Establish conservative criteria
 • May reject good part
 • Also use Scanning Electron Microscope and magnetic particle examination of suspect high EC reading areas
 • Use trending of EC Scans and assess change in EC reading for each mission
 – Survey EC response from measured cracks, simulator cracks, Titanium bar EDM notches, poppet #33 EDM notches
 – Establish correlation of EC response from simulator cracks
 – Establish calibration on a nonmagnetic material (Titanium bar) electro discharged machined (EDM) notches
 – Establish EC threshold as low as possible to detect tight cracks with no magnetic effect.
Survey of EC Data

Simulator cracks (1 micron) are more open compared to the poppet cracks (0.25 micron). Simulator magnetic permeability = 25.

The Vpp from the EDM notch of the S/N 33 poppet EDM standard provides response close to simulator response. Titanium standard provides slightly lower Vpp responses compared to the poppet simulator response.

Higher responses have been observed for some cracks compared to the comparable EDM notches indicating Vpp change possibly due to the higher magnetic permeability at crack locations.

Greater variation in poppet crack responses compared to the simulator responses.

Acceptance criteria to account for the lowest crack responses from the poppets.
Poppet s/n 40 Mission Duty Cycle Testing

- In order to create crack growth data, one poppet (s/n 40) is subjected to a test environment that simulates a single mission (launch load). The cycle is called mission duty cycle (MDC).
- EC data is taken before and after every MDC run.
- Four indications
 - Two from visible cracks
 - Two from surface gouges (changes slightly more than the measurement error)
- Minimum change in Vpp of 0.02 (2σ) is considered credible
- Trend in poppet indications
 - Vpp growth without surface crack (SEM analyzed) growth (Pretest through post MDC# 4, Post MDC# 5 through post MDC # 8)
 - Vpp drop (0.33 Vpp) with surface crack (SEM analyzed) growth (post MDC# 4 to Post MDC# 5)
 - Small Vpp drop (0.03 Vpp) without surface crack (SEM analyzed) growth (post MD # 8 to post MDC #9)
- Many causes have been investigated including the set-up error, effect of residual stress (increase and relief) on magnetic permeability, crack closure, branching growth of the crack
Gouge signatures are not cracklike. They can mask small crack signatures.
HFCV Poppet S/N 00040 Eddy Current Vpp Trends
Quick Glance (03/04/2010)

Chart Provided by Darren Cone
Poppet NDE Criteria

- Ensure that each poppet is demagnetized (no residual magnetic field) using a Gaussmeter before the EC inspection
- EC Matlab scans of all flight poppets will be tracked for comparison
 - Matlab analysis will measure individual indications and evaluate phase of the indication
- Criteria
 - Individual indications ≥ 0.2 Vpp result in “NDE rejection” of the poppet
 - Individual indications ≤ 0.05 Vpp will be accepted
 - Rationale
 - Not all EC responses ≤ 0.05 Vpp with correct phase angle have been verified to be from cracks yet.
 - It may be difficult to identify cracklike indications from non-cracklike indication under 0.05 Vpp due to permeability and surface roughness noise.
 - Vpp measurement < 0.05 Vpp may not be individually measured if no localized indications can be identified. In this situation, Vpp measurements are obtained in a time window covering at least one rotation.
 - Any indication between 0.05 to 0.2 Vpp may be flagged “suspect”
 - All indications are identified “individually”; measured and tracked
 - Any change > 0.02 Vpp (phase angle and positive response) will be considered to be growth in the indication and flagged suspect
 - An indication may be accepted, if its current reading shows growth of ≤ 0.02 Vpp from the previous reading
- All poppets with “suspect” EC crack indications should be also evaluated under SEM and other NDE (magnetic particle*) before the decision is made about the poppet acceptance/rejection
 - MPS PRT is responsible for acceptance of suspect poppets
 - * Post magnetic particle, complete demagnetization of the poppet will be ensured
Ultrasonic Surface Wave for Crack Detection

Detects cracks longer than 0.050”
A 286 Notch Standard - B Scan Display of Olympus Omniscan

Surface distance along axial direction or pulse time

Indication width for Notch on shank

Notch in radius

Axial location

Notch on flange side

Keyway signal

Transducer tip region

Inspection window (Radius region)

Flange tip region

Surface distance along axial direction or pulse time

Circumferential location

Rotation 1

Rotation 2

1" of scale = 45 degree
Typical small indication 60 degree ≈ 0.025" Beam width

Two rotations of data acquisition to establish consistency in results
Conclusions

• Conclusions
 – Current EC criteria is conservative
 – Provides allowance for high/low readings (due to localized change in magnetic permeability and other factors)
 – Effect of stress induced permeability needs to be further assessed using lab tests
 – Continue to assess new crack EC data to determine if it meets the current criteria

• Future Work
 – Investigate magnetic permeability dependence on stress and its effect on EC response
 – Poppet #40 MDC testing may provide some data towards this work
Acknowledgements