Digital Video over Space Systems & Networks

SpaceOps 2010

Rodney Grubbs
NASA MSFC
256-544-4582
Rodney.Grubbs@nasa.gov
Introduction

◆ Space imagery started with film
 ♦ Public saw the footage after the mission
 ♦ Black & White and Color motion picture film
 ♦ Slow frame rates
 ♦ Had to get the film back!

◆ Live TV from space!
 ♦ Black & White
 ♦ Color via Black & White “color wheel” system
 ♦ Long term ground recording via film kinescopes
 ♦ Lots of unique video
 ♦ Field sequential
 ♦ ISS VBSP
Digital Video Parameters

- Analog video pretty simple
 - PAL, SECAM and NTSC
 - Interlace, frame rates and resolution differences

- Digital Video a bit more complicated
 - Horizontal/Vertical resolution options
 - 480, 720 and 1080
 - Scanning
 - Interlace
 - Progressive
 - Frame Rates
 - You name it
 - Aspect Ratios
 - 4:3
 - 16:9
 - 14:9
 - Color Sampling
 - 4:2:0
 - 4:2:2
 - And a bunch of other schemes
Video over IP

- Digital Video requires a lot of compression
 - SDTV is 270 Mbps uncompressed
 - HDTV is 1.485 Gbps uncompressed
 - MPEG-2
 - Groups of pictures
 - I, B and P frames
 - Frames divided into 8 x 8 pixel blocks
 - MPEG-4
 - MPEG-4 Part 10 = h.264
 - Compression between blocks and frames
 - Motion JPEG2000
 - Intraframe compression
Video over IP

- **Transport Stream**
 - Combines video, audio and other elements together
 - Typically used for real-time video applications such as terrestrial broadcasting or digital video satellite systems

- **Advantages**
 - Video & audio in sync
 - Common hardware solutions for encoding and decoding
 - Easy IP routing or video routing (using Asynchronous Serial Interface)

- **Dis-Advantages**
 - Added bandwidth overhead
 - Packetization stacks are common
 - Susceptible to packet-loss and jitter
Video over IP

♦ Program Element Stream
 ♦ Video and audio are separate
 ♦ Typically used for file-based playback, such as with DVD, or from computers

♦ Advantages
 ✈ Computer to computer friendly
 ✈ Flexibility with audio and video
 ✈ Less bandwidth overhead

♦ Dis-Advantages
 ✈ Re-synchronization of audio and video
 ✈ Hard to take out of the IP world and into the video world (ASI)
Video over IP

- Real-time Transport Protocol
 - Typically used for end-to-end multimedia applications like voice-over-IP or video teleconferencing
 - More tolerant of packet drops and jitter, but…
 - ….that requires end-to-end bi-directional links, or “handshakes”….
 - …which makes use of RTP for space links challenging
 - Also, most commercial decoders cannot recognize RTP streams
 - Best when used entirely within the computer domain, not a good candidate for use between computers and conventional video equipment
Link Integrity

- Encoded video creates a high bandwidth synchronous data stream, susceptible to packet loss and network jitter.
- Video is typically the largest data requirement for a spacecraft avionics system compared to telemetry, voice and other data streams.
- Therefore, video drives the link integrity requirements.
- MPEG-4 more susceptible to bit errors, packet loss and jitter problems than MPEG-2.
- Motion JPEG-2000 less susceptible because there is no interframe encoding.
Latency

- Compression creates latency
- Packetization of the data stream adds to that latency since the stream has to be de-packetized on the ground to get back to a signal that can be decoded
- Typically, the better the video quality, the longer the latency, since the encoder takes more time to analyze the incoming video for quality enhancement
- Real-time monitoring on spacecraft and the ground need to consider the latency vs. quality trade-off
 - Rendezvous
 - Interactive conversations
 - Time, voice and metadata synchronization with video
Conclusion

- Digital video provides many improvements but comes with new challenges
- Video as data allows for improved workflows and reusing data systems and avionics for routing of video
- Designers and System Engineers must consider impacts of compression, Video-over-IP options & trades, link integrity and latency on their video system
- End-to-end System Engineering is key!
 - Can’t treat digital video piece-meal and expect good results
 - The payoff can be some incredible imagery, useful for science, engineering, control center monitoring, and engaging the public