Digital Video over Space Systems & Networks

SpaceOps 2010

Rodney Grubbs
NASA MSFC
256-544-4582
Rodney.Grubbs@nasa.gov
Introduction

◆ Space imagery started with film
 ◆ Public saw the footage after the mission
 ◆ Black & White and Color motion picture film
 ◆ Slow frame rates
 ◆ Had to get the film back!

◆ Live TV from space!
 ◆ Black & White
 ◆ Color via Black & White “color wheel” system
 ◆ Long term ground recording via film kinescopes
 ◆ Lots of unique video
 - Field sequential
 - ISS VBSP
Digital Video Parameters

◆ Analog video pretty simple
 ♦ PAL, SECAM and NTSC
 ♦ Interlace, frame rates and resolution differences

◆ Digital Video a bit more complicated
 ♦ Horizontal/Vertical resolution options
 ✦ 480, 720 and 1080
 ♦ Scanning
 ✦ Interlace
 ✦ Progressive
 ♦ Frame Rates
 ✦ You name it
 ♦ Aspect Ratios
 ✦ 4:3
 ✦ 16:9
 ✦ 14:9
 ♦ Color Sampling
 ✦ 4:2:0
 ✦ 4:2:2
 ✦ And a bunch of other schemes
Video over IP

- Digital Video requires a lot of compression
 - SDTV is 270 Mbps uncompressed
 - HDTV is 1.485 Gbps uncompressed
 - MPEG-2
 - Groups of pictures
 - I, B and P frames
 - Frames divided into 8 x 8 pixel blocks
 - MPEG-4
 - MPEG-4 Part 10 = h.264
 - Compression between blocks and frames
 - Motion JPEG2000
 - Intraframe compression
Video over IP

◆ Transport Stream
 ♦ Combines video, audio and other elements together
 ♦ Typically used for real-time video applications such as terrestrial broadcasting or digital video satellite systems

◆ Advantages
 ✦ Video & audio in sync
 ✦ Common hardware solutions for encoding and decoding
 ✦ Easy IP routing or video routing (using Asynchronous Serial Interface)

◆ Dis-Advantages
 ✦ Added bandwidth overhead
 ✦ Packetization stacks are common
 ✦ Susceptible to packet-loss and jitter
Video over IP

◆ Program Element Stream
 ♦ Video and audio are separate
 ♦ Typically used for file-based playback, such as with DVD, or from computers

◆ Advantages
 ✷ Computer to computer friendly
 ✷ Flexibility with audio and video
 ✷ Less bandwidth overhead

◆ Dis-Advantages
 ✷ Re-synchronization of audio and video
 ✷ Hard to take out of the IP world and into the video world (ASI)
Video over IP

◆ Real-time Transport Protocol
 ♦ Typically used for end-to-end multimedia applications like voice-over-IP or video teleconferencing
 ♦ More tolerant of packet drops and jitter, but…
 ♦ ….that requires end-to-end bi-directional links, or “handshakes”….
 ♦ …which makes use of RTP for space links challenging
 ♦ Also, most commercial decoders cannot recognize RTP streams
 ♦ Best when used entirely within the computer domain, not a good candidate for use between computers and conventional video equipment
Link Integrity

- Encoded video creates a high bandwidth synchronous data stream, susceptible to packet loss and network jitter.
- Video is typically the largest data requirement for a spacecraft avionics system compared to telemetry, voice and other data streams.
- Therefore, video drives the link integrity requirements.
- MPEG-4 more susceptible to bit errors, packet loss and jitter problems than MPEG-2.
- Motion JPEG-2000 less susceptible because there is no interframe encoding.
Latency

- Compression creates latency
- Packetization of the data stream adds to that latency since the stream has to be de-packetized on the ground to get back to a signal that can be decoded
- Typically, the better the video quality, the longer the latency, since the encoder takes more time to analyze the incoming video for quality enhancement
- Real-time monitoring on spacecraft and the ground need to consider the latency vs. quality trade-off
 - Rendezvous
 - Interactive conversations
 - Time, voice and metadata synchronization with video
Conclusion

- Digital video provides many improvements but comes with new challenges
- Video as data allows for improved workflows and reusing data systems and avionics for routing of video
- Designers and System Engineers must consider impacts of compression, Video-over-IP options & trades, link integrity and latency on their video system
- End-to-end System Engineering is key!
 - Can’t treat digital video piece-meal and expect good results
 - The payoff can be some incredible imagery, useful for science, engineering, control center monitoring, and engaging the public