Long-term Lunar Radiation Degradation Effects on Materials

Kristina Rojdev¹, Mary Jane O'Rourke², Steve Koontz³, John Alred², Charles Hill⁴, Rodrigo Devivar⁵, Shakira Morera-Felix⁶, William Atwell⁵, Steve Nutt⁶, Leslie Sabbann⁷

¹NASA Johnson Space Center, Houston, TX 77058 (PhD Candidate, USC)
²NASA Johnson Space Center, Houston, TX 77058
³ESCG — Jacobs Engineering, NASA Johnson Space Center, Houston, TX 77058
⁴ESCG — Hamilton Sundstrand, NASA Johnson Space Center, Houston, TX 77058
⁵The Boeing Company, Houston, TX 77059
⁶University of Southern California, Los Angeles, CA 90089
⁷Michigan Technological University, Houghton, MI 49931

Abstract

The National Aeronautics and Space Administration (NASA) is focused on developing technologies for extending human presence beyond low Earth orbit. These technologies are to advance the state-of-the-art and provide for longer duration missions outside the protection of Earth’s magnetosphere. One technology of great interest for large structures is advanced composite materials, due to their weight and cost savings, enhanced radiation protection for the crew, and potential for performance improvements when compared with existing metals. However, these materials have not been characterized for the interplanetary space environment, and particularly the effects of high energy radiation, which is known to cause damage to polymeric materials. Therefore, a study focusing on a lunar habitation element was undertaken to investigate the integrity of potential structural composite materials after exposure to a long-term lunar radiation environment. An overview of the study results are presented, along with a discussion of recommended future work.
Long-Term Lunar Radiation Degradation Effects on Materials

NASA-JSC/USC: Kristina Rojdev
NASA-JSC: Mary Jane O’Rourke
NASA-JSC: Steve Koontz
NASA-JSC: John Alred
ESCG-Jacobs: Charles Hill
ESCG-Jacobs: Rodrigo Devivar
ESCG-Hamilton Sundstrand: Shakira Morera-Felix
The Boeing Company: William Atwell
University of Southern California: Steve Nutt
Michigan Technological University: Leslie Sabban
University Space Research Association/Intern: Jennifer Franklin
Outline

• Introduction
• Background - Radiation
• Methodology and Test setup
• Some Project Results
• Ongoing Work
• Questions
INTRODUCTION
Introduction

• NASA is focused on technologies that will extend human presence beyond low earth orbit (LEO)
 – To advance state of the art
 – To provide for longer duration missions outside LEO

• Focus: materials for long-term surface habitation
Motivation/Purpose

- Long-term surface habitation requires large structures that must withstand the environment for the duration of the missions.
- Fiber reinforced composites have gained interest:
 - Potential weight savings
 - Potential enhanced radiation protection for the crew and electronics
 - Potential for infusing cutting edge research
Problem/Objectives

- Problem: composite materials have not been characterized for the space radiation environment, which is known to cause damage to polymeric materials.

- Objective: assess composite durability in a simulated long-term lunar radiation environment.
Assumptions

- The habitat is unshielded from radiation on the exterior
 - There is some multi-layer insulation and micrometeorite/surface ejecta shielding, but no galactic cosmic ray shielding (i.e. covering the habitat under regolith)
- The habitat will remain on the surface and be in service for 30 years
- The habitat is pressurized with air at an elevated oxygen concentration
- The habitat is exposed to one large solar particle event during each solar cycle and constant galactic cosmic ray exposure
BACKGROUND
Background – Radiation Environment

- Solar wind protons
- Auroral electrons
- Trapped electrons (inner zone)
- Trapped protons (outer zone)
- Solar storm protons
- Solar flare protons
- Galactic cosmic rays

Concerned with high energy particle radiation

Particle energy, MeV

msis.jsc.nasa.gov/sections/section05.htm
Dominant Radiation on the Lunar Surface

GCR vs. SPE exposure

Mission Lifetime

Dose (cGy)

GCR Dose
SPE Dose

National Space and Missile Materials Symposium 2010
Scottsdale, AZ
June 28-July 1
Doses Materials will See Due to this Radiation Exposure

Dose to Materials over mission
(averaged GCR exposure, 1 large SPE per solar cycle, and FS of 10)

Need to find reference to the above data

Mission Lifetime (years)

Teflon and Silicon material failure
visible damage begins to occur in some plastic materials

Conventional composites failure

Non-Exposed Lunar Dose (cGy)
Exposed Lunar Dose (cGy)
Radiation Effects on Polymeric Materials

- Previous radiation research on polymers is mainly electron radiation or gamma radiation
- Cross-linking – bonds that link one polymer chain to another through chemical reaction
 - Pro: increases stiffness of material, potentially making it stronger
 - Con: if the stiffness is increased too much, the material becomes brittle and easily fractured
- Chain scission – a chemical reaction that breaks the bonds of the backbone polymer chain
 - Con: weakens the polymer strength
METHODOLOGY AND TEST SETUP
Experimental Methodology

<table>
<thead>
<tr>
<th>Material 1: Boron/carbon mix</th>
<th>Material 2: Carbon fiber</th>
<th>Material 3: High modulus Polypropylene fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1: Control (no tension, no radiation exposure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2: Tension only (no radiation exposure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3: Tension and radiation exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 4: Control (no tension, no radiation exposure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 5: Radiation only (no tension)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 6: Tension and radiation exposure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiation Test Set up

Strain gauge in center of sample – gather a pre-exposure and post-exposure reading

Sample in Test Stand

Beam Exit

Radiation Beam
Characterization Completed

- Non-Destructive:
 - C-scan
 - Fourier Transform Infrared Spectroscopy (FTIR): bulk chemical composition
 - Raman Spectroscopy: bulk chemical composition (better for Carbon)
 - Scanning Electron Microscopy (SEM): look at surface for visual changes
Characterization Completed

- **Destructive**
 - **Tension**: tensile stress, strength, strain, ultimate strain, chord modulus, poisson’s ration, stress vs. strain
 - **Flexure**: Flexural stress, strength, offset yield strength, chord modulus, strain, tangent modulus of elasticity, secant modulus, stress vs. strain
 - **Dynamic Mechanical Analysis (DMA)**: Creep and/or stress relaxation information
 - **Gas Chromatography - Mass Spectrometry (GCMS)**: analysis of compounds and molecular weight information
 - **Optical microscopy**: look at edge of sample to gather fiber volume fraction and porosity
 - **Thermogravimetric Analysis (TGA)**: weight change as a function of time
 - **Differential Scanning Calorimetry (DSC)**: heat capacity as a function of temperature, and changes in glass transition temperature
- **Post-Fracture Analysis**: **Scanning Electron Microscopy (SEM)**: look at fracture edge after tension/flexure tests
SOME PROJECT RESULTS
FTIR Procedure

• Before radiation exposure, each sample was characterized by FTIR in 9 locations

• After radiation exposure, each sample was again characterized by FTIR in the same 9 locations

• The pre-exposure scan was subtracted from the post-exposure scan to better locate new signals observed after radiation exposure
FTIR Results – Boron/Carbon

Potential supporting evidence for destruction of aromatic network structure.

- Increase in C-H stretch
- Increase in Hydroxyl band
- Increase in C=C=C type of structure
FTIR Results – Boron/Carbon

Aromatic structure is intact and no other structural changes are visible.
Aromatic structure is intact and no other structural changes are visible.
Tensile Test Procedure

- 3 coupons made from one sample
- Coupons were cut perpendicular to 0° plys
 - to highlight any matrix sensitivities in tensile properties
- Each tensile coupon included
 - tabs to protect the material during test
 - single strain gauge in the center to collect tensile data
Tensile Results – Boron/Carbon

Corrected Stress vs. Strain for all coupons

- G1-1
- G1-2
- G1-3
- G2-1
- G2-2
- G2-3
- G3-1
- G3-2
- G3-3
- G4-1
- G4-2
- G4-3
- G5-1
- G5-2
- G5-3
- G6-1
- G6-2

National Space and Missile Materials Symposium 2010
Scottsdale, AZ
June 28-July 1
SEM of Fracture Edge – Boron/Carbon

Control – Surface Micrograph

Radiation and Tension – Surface Micrograph
Tensile Results – Carbon

Corrected Stress vs. Strain for all coupons

National Space and Missile Materials Symposium 2010
Scottsdale, AZ
June 28-July 1
Ongoing Work

- Continued data analysis of coupons already characterized
- A new study looking at the dose rate during radiation exposure and its effect
- A new study looking at how irradiated composites respond to hypervelocity impacts
Summary – Boron/Carbon

• FTIR
 – Possible evidence of destruction of aromatic network structure
 – Possible evidence of oxidative degradation

• Tensile
 – Possible evidence of enhanced cross-linking of the matrix

• SEM
 – Possible evidence of surface damage
Summary - Carbon

- FTIR
 - No evidence of changes yet
- Tensile
 - Possible evidence of enhanced cross-linking of the matrix
Conclusions and Future Work

• Data shows that something is changing the material properties, even though it is inconsistent at this point
• Continue to analyze collected data
• Further work needs to be completed
 – Validate repeatability of data
 – Increase data sets for statistical significance
 – Control variables of time and environment better
Acknowledgements

• Lab Staff at NASA-JSC
• Materials and Processes Branch at NASA-JSC
• University of Southern California
• The Boeing Company
Questions