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Abstract

The National Aeronautics and Space Administration (NASA) is focused on developing
technologies for extending human presence beyond low Earth orbit. These technologies are to
advance the state-of-the-art and provide for longer duration missions outside the protection of
Earth's magnetosphere. One technology of great interest for large structures is advanced
composite materials, due to their weight and cost savings, enhanced radiation protection for the
crew, and potential for performance improvements when compared with existing metals.
However, these materials have not been characterized for the interplanetary space environment,
and particularly the effects of high energy radiation, which is known to cause damage to
polymeric materials. Therefore, a study focusing on a lunar habitation element was undertaken to
investigate the integrity of potential structural composite materials after exposure to a long-term
lunar radiation environment. An overview of the study results are presented, along with a
discussion of recommended future work.
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0 Introduction
• Background -Radiation
• Methodology and Test setup
• Some Project Results
• Ongoing Work
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Introduction

is NASA is focused on technologies that will
extend human presence beyond low earth
orbit (LEO)
— To advance state of the art
— To provide for longer duration missions

outside LEO

• Focus: materials for long-term surface
habitation
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Motivation/Purpose

Long-term surface habitation requires large
structures that must withstand the
environment for the duration of the missions
Fiber reinforced composites have gained
interest
— Potential weight savings
— Potential enhanced radiation protection for the

crew and electronics
— Potential for infusing cutting edge research
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Problem/Objectives

• Problem: comaosite materials have not
been characterized for the space radiation
environment, which is known to cause
damage to polymeric materials

• Objective: assess composite durability in a
simulated long-term lunar radiation
environment
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Assumptions

n The habitat is unshielded from radiation on the
exterior

There is some multi-layer insulation and
micrometeorite/surface ejects shielding, but no galactic
cosmic ray shielding (i.e. covering the habitat under
regolith)

• The habitat will remain on the surface and be in
service for 30 years

• The habitat is pressurized with air at an elevated
oxygen concentration

• The habitat is exposed to one large solar particle
event during each solar cycle and constant galactic
cosmic ray exposure
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Background —Radiation Environment
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Dominant Radiation on the Lunar Surface
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Radiation Effects on Polymeric
Materials

• Previous radiation research on polymers is mainly
electron radiation or gamma radiation

• Cross-linking — bonds that link one polymer chain to
another through chemical reaction
— Pro: increases stiffness of material, potentially making it stronger
— Con: if the stiffness is increased too much, the material becomes

brittle and easily fractured
• Chain scission — a chemical reaction that breaks the

bonds of the backbone polymer chain
— Con: weakens the polymer strength
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METHODOLOGY AND TEST
SETUP



Experimental Methodology
Material 1:	 Material 2:	 Material 3:

Boron/carbon mix 	 Carbon fiber	 High modulus Polypropylene fiber

Group 1: Control
(no tension, no

radiation exposure)

Group 2: Tension
only (no radiation

exposure)

Group 3: Tension
and radiation

exposure

Group 4: Control
(no tension, no

radiation exposure)

I& ---------- a

Group 5: Radiation
only (no tension)

Group 6: Tension
and radiation

exposure
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Radiation Test Setup

Strain gauge in center of sample —	 Sample in Test
	

Beam Exit
gather a pre-exposure and post-	 Stand

exposure reading
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Characterization Completed

Non-Destructive '.
n C-scan
• Fourier Transform Infrared Spectroscopy (FTIR): bulk chemical

composition
• Raman Spectroscopy: bulk chemical composition (better for Carbon)
• Scanning Electron Microscopy (SEM): look at surface for visual

changes
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Characterization Completed
Destructive
• Tension: tensile stress, strength, strain, ultimate strain, chord modulus,

poisson's ration, stress vs. strain
• Flexure: Flexural stress, strength, offset yield strength, chord modulus,

strain, tangent modulus of elasticity, secant modulus, stress vs. strain
• Dynamic Mechanical Analysis (DMA): Creep and/or stress relaxation

information
• Gas Chromatography - Mass Spectrometry (GCMS): analysis of compounds

and molecular weight information
• Optical microscopy. look at edge of sample to gather fiber volume fraction

and porosity
• Thermogravi metric Analysis (TGA): weight change as a function of time
n Differential Scanning Calorimetry (DSC): heat capacity as a function of

temperature, and changes in glass transition temperature
n Post-Fracture Analysis: Scanning Electron Microscopy (SEM): look at fracture

edge after tension/flexure tests
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FTIR Procedure

• Before radiation exposure, each
sample was characterized by FTIR
in 9 locations

• After radiation exposure, each
sample was again characterized by
FTIR in the same 9 locations

• The pre-exposure scan was
subtracted from the post-exposure
scan to better locate new signals
observed after radiation exposure
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FTIR Results —Boron/Carbon

Potential supporting evidence for destruction of
aromatic network structure.
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FTIR Results -Carbon

Aromatic structure is intact and no other structural
changes are visible.
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• 3 coupons made from one sample
-coupons were cut perpendicular to
0° plys

• to highlight any matrix
sensitivities in tensile properties

• Each tensile coupon included
• tabs to protect the material
during test
• single strain gauge in the
center to collect tensile data
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Tensile Test Procedure



Tensile Results —
Boron/Carbon

Corrected Stress vs. Strain for all coupons
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SEM of Fracture Edge —
Boron/Carbon

Control — Surface Micrograph Radiation and Tension — Surface
Micrograph
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Corrected Stress vs. Strain for all coupons
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Ongoing Work

• Continued data analysis of coupons
already characterized

• Anew study looking at the dose rate
during radiation exposure and its effect

• Anew study looking at how irradiated
composites respond to hypervelocity
impacts
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Summary —Boron/Carbon

• FTIR

— Possible evidence of destruction of aromatic
network structure

— Possible evidence of oxidative degradation

• Tensile
— Possible evidence of enhanced cross-linking

of the matrix

• SEM
— Possible evidence of surface damage
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Summary -Carbon

0

0

FTIR
— No evidence of changes yet

Tensile
—Possible evidence of enhanced cross-linking

of the matrix



Conclusions and Future Work

• Data shows that something is changing
the material properties, even though it is
inconsistent at this point

• Continue to analyze collected data
• Further work needs to be completed

—Validate repeatability of data

—Increase data sets for statistical significance

— Control variables of time and environment
better



A-t I-I.,­19

Acknowledgements

• Lab Staff at NASA-JSC
• Materials and Processes Branch at NASA-JSC
• University of Southern California
• The Boeing Company

National Space and Missile Materials Symposium 2010
Scottsdale, AZ
June 28-July 1
	 31



Y.

4
 o

l

A
bL

ia

0


