FLORIDA WATER RESOURCE MANAGEMENT

MONITORING INVASIVE AQUATIC VEGETATION IN LAKE OKEECHOBEE, FLORIDA, USING NDVI DERIVED FROM MODIS DATA

KATE WOODS, MADELINE BROZEN, SADAF MALIK, ANGELA MAKI
NASA DEVELOP PROGRAM, JOHN C. STENNIS SPACE CENTER

INTRODUCTION

- Lake Okeechobee is approximately 1,700 km² in size with a drainage basin covering 12,000 km² (Flaig and Reddy, 1995; Philips et al., 1995).
- The lake provides drinking water for several small towns in central and southern Florida (Earthjustice, 2006) and is also host to recreational activities.
- High phosphorus levels caused by agricultural run-off have threatened the lifespan of the lake by increasing the rate at which algae species and aquatic vegetation multiply (Mackool, 2007).

INVASIVE SPECIES OF CONCERN

- Excessive vegetative growth is both aesthetically displeasing and harmful to the human environment and surrounding ecology.
- Uncontrolled algae growth can lead to dense vegetative mats on the water’s surface that deplete resources for native organisms.

RESEARCH GOALS

- Apply MODIS data to water resource and water quality management.
- Use NDVI to monitor aquatic, rather than terrestrial, vegetation.
- Show growth and movement of invasive aquatic vegetation spatially and temporally.

METHODS

- Acquired MOD09 daily surface reflectance imagery from 1 May 2008 to 1 October 2008.
- Processed raw images using TPST, which performed the following operations:
 - Projection: all images set to UTM WGS84 Zone 17N.
 - NDVI: calculated NDVI on each image.
 - Clear: removed pixels with cloud cover and shadow.
 - Maxvza: removed pixels with view zenith angle ≥50°.
 - Fuse: combined MOD09QK (original surface reflectance) and MOD09GA (includes observation data and geolocation statistics) data.
 - Outlier: removed NDVI values outside of set thresholds.
 - Time: replaced missing pixel values using temporal interpolation.
- Processed raw images using TPST, which performed the following operations:
- Stacked processed images into a single image with 116 layers in ERDAS IMAGINE®.
- Color-coded each layer to show areas of suspected aquatic vegetation, which included NDVI values >0.2 and <1, with all other values suspected to be water.
- Used a STACK MAX model to show total maximum NDVI values for all five months and for each month individually.
- Compared visual results with U.S. Army Corps of Engineers spray treatment data.

RESULTS

- Maximum NDVI Values by Month:
 - May 2008
 - June 2008
 - July 2008
 - August 2008
 - September 2008

REFERENCES

CONCLUSIONS

- NDVI values can be calculated from MODIS-derived products and applied to aquatic vegetation.
- Spatial and temporal change can be deduced from time analysis assessment.
- Individual images should be correlated against meteorological and nutrient level in-situ data; however, current data is limited.
- Temporal analysis of NDVI values could be conducted to assess impacts of sugarcane harvesting (to the south) and cattle farming (to the north) on nutrient levels in the lake.
- The time period could be broadened to gain an understanding of long-term NDVI changes associated with land use change.