Integrated System Health Management: Foundational Concepts, Approach, and Implementation

Fernando Figueroa
NASA Stennis Space Center, MS

September 18, 2009
Acknowledgements

The author wishes to acknowledge the NASA Innovative Partnerships Program (IPP) for supporting the development of the technologies that enable Integrated System Health Management (ISHM) capability. Special thanks to Dr. Ramona Travis, Manager of the IPP at NASA Stennis, and to John Bailey, who as Chief of the Science and Technology Division, has been instrumental in making possible development of the ISHM area.
Outline

• Motivation
• Concepts and Approaches
 – ISHM: Background/Definition
 – ISHM Model of a system
 – Detection of anomaly indicators.
 – Determination and confirmation of anomalies.
 – Diagnostic of causes and determination of effects.
 – Consistency checking cycle.
 – Management of health information
 – User Interfaces
• Implementation
• Conclusions
Support rocket engine test mission with highly reliable, accurate measurements; reduced costs; etc.
Requirements Driving ISHM

Through comprehensive and continuous vigilance

- **Improve quality**
 - By more accurately understanding the state of a system.
- **Minimize costs**
 - Of configuration
 - Of repair and calibration
 - Of operations
- **Avoid downtime**
 - By predicting impending failures
 - By timely intervention
 - By faster diagnosis and recovery
- **Increase safety** (protect people and assets)
ISHM Objectives

- Use available data, information, and knowledge to
 - Identify system state
 - Detect anomalies
 - Determine anomaly causes
 - Predict system impacts
 - Predict future anomalies
 - Recommend timely mitigation steps
 - Evolve to incorporate new knowledge

ISHM implementation is a problem of “management” of data, information, and knowledge (DlaK) focused on achieving the objectives of ISHM
Concepts and Approach
ISHM is Being Done Now ... But

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>International Space Station</th>
<th>Rocket Engine Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle/Test Stand</td>
<td>![ISS Image]</td>
<td>![Rocket Engine Test Stand Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2</th>
<th>International Space Station</th>
<th>Rocket Engine Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronaut/Test Conductor</td>
<td>![Astronaut Image]</td>
<td>![Control Room Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3</th>
<th>International Space Station</th>
<th>Rocket Engine Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Room</td>
<td>![Control Room Image]</td>
<td>![Control Room Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 4</th>
<th>International Space Station</th>
<th>Rocket Engine Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Control Room</td>
<td>![Control Room Image]</td>
<td>![Control Room Image]</td>
</tr>
</tbody>
</table>

- Signal threshold violation detection
- Added DfaK from on-board users.
- Added DfaK from broad group of experts.
- Added DfaK resources from larger community.
Data, Information, and Knowledge Management Architecture for ISHM (Information Architecture)
Classic architecture describing how systems are built
Correspondence between elements in the ISHM Information Architecture and processes taking place in a system.
Anomaly Detection: Leaks, etc.

Intelligent Sensors: IEEE Standard+Health

Embedding of Predictive Models

Root Cause Analysis: Integrated Awareness: 3-D Health Visualization of MTTP

Leak

Pressure Leak

Decreasing Pressure

a-subcomponent-of

is2-pressure-subsystem

pressure_sensor

MTTP Implementation

Health Anomaly Database:
Health Electronic Data Sheets
Repository of anomalies

SSC Integrated System Health Management (ISHM) Capabilities

ISHM Models (Embedded Data, Information, and Knowledge):
MTTP Implementation

Go To Part

View Part
John C. Stennis Space Center
ISHM Partnerships for Rocket Propulsion testing

Rocket Engine Test Stand

Open Systems Architectures

Prognostics & Anomaly Detection

Root Cause Analysis

Integrated Awareness

Test Article

IEEE 1451 Smart & Intelligent Sensor's

MOBITRUM Brings you mobility®

Pratt & Whitney
A United Technologies Company

NVE CORPORATION

Rowan University
Detection and Confirmation of Anomalies Consistency Checking Cycle

Intelligent System Subsystem Processes

Activated Model

Tank Processes:
- Over-Pressurization
- Leaking
- Pressure collapse

Valve Processes:
- Opening
- Closing
- Leaking

Intelligent Sensor Processes

Intelligent Components

Health

Health

Health

Health

Health

Health
MTTP Embedded DlaK

MTTP Model

Test Time
TS Marker: 27.86

Example Rules

Component Electronic Data Sheets for MV-1135-GO

Basic CEDS
Extended CEDS

Template ID: 100
Component
Manufacturer ID: Worcester Controls
Model Number: 10 30 S2M2120 P DC 06
Version Letter:
Serial Number: FOFF 5681

Go To Part
View Part

GOX

pressurizable-subsystem
PRESURIZABLE

IGN-CURRENT

GOX-1
Root-Cause Tree

Leak within-the-active-range-of Gas Detection Alarm

Leak is a subcomponent of is2_process-equipment

Leak through is2_valve

Abnormally changing pressure encompassing

Abnormally changing pressure

is2_flow-subsystem

is2_flow-subsystem

pressure_sensor
ISHM Enabling Technologies: Root Cause Analysis
Virtual Intelligent Sensors

- Provides benefits of ISHM capabilities to existing data acquisition systems by adding Virtual Intelligent Sensor capability.
ISHM Implementations
Generic Architecture to implement ISHM capability for systems with conventional equipment, with option to incorporate advanced smart/intelligent sensors and actuators.
Top level view of the ISHM model of the Launch Complex 20 Facility at NASA Kennedy Space Center
Sensor anomaly indicators detected by an intelligent sensor during a pump test using the LC-20 facility at NASA Kennedy Space Center.
Screenshot of the ISHM model of the LC-20 facility at KSC showing detection of a valve leak created by opening the valve manually.
Expanded causal-directed graph generated by the detection of a leak in the subsystem where a valve was opened manually (injected leak)

Causal directed graph dynamically generated from events detected during the simulated leak at GNCP104
Pilot ISHM Implementation
Chemical Steam Steam Generator (CSG)
Pilot ISHM Implementation

Chemical Steam Generator (CSG)
Pilot ISHM Implementation
Chemical Steam Generator (CSG)
Conclusions

• A sound basis to guide the community in the conception and implementation of ISHM capability in operational systems was provided.

• The concept of “ISHM Model of a System” and a related architecture defined as a unique Data, Information, and Knowledge (DIAK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc.

• It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIAK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications).

• A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIAK, and an infrastructure to focus DIAK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.
MTTP End-to-End System
Methane Thruster Testbed Project
A1 and J2-X ISHM MODEL
Checking for Pressure Leaks

1. Wait for Valve State Change
 - If No, check if Closed Elements Form a Boundary?
 - If Yes, Define Pressurizable Subsystem
 - If No, go back to Wait for Valve State Change

2. Pressurizable Subsystems
 - For Each PS
 - Mark All Elements of PS SUSPECT for Leak Anomaly
 - For Each Element
 - Check All Pressure Sensors
 - If Yes, Do Sensors Indicate a Change in Pressure?
 - If Yes, Change Health Parameters in Leak Process Model to SUSPECT
 - Do Root-Cause-Analysis
 - Root Cause
 - If No, go back to Check All Pressure Sensors
Electronic Datasheets

- Electronic Data Sheets (EDS)
 - Transducer Electronic Data Sheets (TEDS)
 - Calibration
 - Health Electronic Data Sheet (HEDS)
 - Codified fault conditions and system phases
 - Key detection algorithms w/ parameters
 - Component EDS (CEDS)
 - Manufacturing details
 - Engineering data
 - Traceability
 - Other EDS
Intelligent Sensors

- **Smart sensor**
 - NCAP (Go Active, Announce)
 - Publish data
 - Set/Get TEDS
- **Intelligent sensor**
 - Set/Get HEDS
 - Publish health
- **Detect classes of anomalies using:**
 - Using statistical measures
 - Mean
 - Standard deviation
 - RMS
 - Polynomial fits
 - Derivatives (1st, 2nd)
 - Filtering—e.g., Butterworth HP
 - FFT—e.g., 64-point
 - Algorithms for
 - Flat
 - Impulsive ("spike") noise
 - White noise
 - Other (ANN, etc.)

Intelligent Sensors have embedded ISHM functionality and support *Smart Sensor* standards.