Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function

Barry A. Spiering1,2, Stuart M.C. Lee1, Ajitkumar P. Mulavara3, Jason R. Bentley1, Roxanne E. Buxton4, Emily L. Lawrence1, Joseph Sinka1, Mark E. Guilliams1, Lori L. Ploutz-Snyder3, Jacob J. Bloomberg5

1Wyle Integrated Science and Engineering Group, Houston, TX; 2California State University, Fullerton, CA; 3Universities Space Research Association, Houston, TX; 4University of Houston, Houston, TX; 5National Aeronautics and Space Administration Lyndon B. Johnson Space Center, Houston, TX
Introduction

- Spaceflight affects nearly every physiological system

- Spaceflight-induced alterations in physiological function translate to decrements in functional performance
Introduction

• **Challenge:**
 – How do we develop countermeasures to offset the plethora of physiological decrements?

• **Solution:**
 – Identify the physiological factors *most critical* for functional outcomes
 – Develop countermeasures *targeted* toward the most critical factors
Introduction

Functional Performance
- Seat Egress and Walk
- Ladder Climb
- Construction Activity
- Rock Translation
- Torque Generation
- Jump Down
- Recovery from Fall/Stand

Physiological Measures

Muscle
- Strength
- Power
- Endurance
- Control
- Neuromuscular Drive

Sensorimotor
- Posture
- Gait
- Dynamic Visual Acuity
- Fine Motor

Cardiovascular
- Plasma Volume
What “Neuromuscular Performance Variables” Do We Assess?

• Reduced **strength** is a hallmark consequence of spaceflight

 – Strength is strongly associated with functional performance (Visser et al. 2000)

 – “Neural factors” (e.g., central activation) clearly contribute to unloading-induced strength loss (Clark et al. 2006)

• **Power** is perhaps the strongest predictor of functional performance (Puthoff et al. 2008)

• Force **steadiness** might relate to functional performance (Seynnes et al. 2005; Manini et al. 2005)
Purpose

• To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance

 – Quickly:
 • Battery of tests must be completed in ~30 min

 – Safely:
 • Increased susceptibility to muscle damage after spaceflight
 • Impaired postural stability post-spaceflight

 – Diverse indices:
 • Strength
 • Central activation
 • Power
 • Endurance
 • Force steadiness
Methods

• Subjects
 – 10 healthy volunteers (5 women, 5 men)
 – Age: 31 ± 5 y
 – Height: 173 ± 11 cm
 – Weight: 73 ± 14 kg

• Procedures
 – Completed a battery of neuromuscular performance tests on 3 occasions separated by at least 48 h
Knee Extension Tests

Test #1: Interpolated Twitch Test
- Central Activation

Test #2: Force Steadiness Test
- With and without Visual Feedback
Leg Press Tests

Test #3: Maximal Isometric Force Test
- Maximal Strength
- Rate of Force Development

Test #4: Power Endurance Test
- Maximal Power
- Fatigue Index
- Total Work
Bench Press Tests

Test #5: Maximal Isometric Force Test
- Maximal Strength
- Rate of Force Development

Test #6: Force Steadiness Test
- With and without Visual Feedback

Test #7: Power Endurance Test
- Maximal Power
- Fatigue Index
- Total Work
Statistical Analyses

• Reliability of each test was assessed via
 – Standard error of the measurement (SEM)
 • SEM reported as percent of the mean
 – Intraclass correlation coefficient (ICC)

• Time required to set up and conduct each test is reported as mean ± SD
Results: Knee Extension Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Dependent Variable</th>
<th>SEM</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolated Twitch</td>
<td>Central Activation Capacity (%)</td>
<td>3%</td>
<td>0.87</td>
</tr>
<tr>
<td>Force Steadiness</td>
<td>Force Steadiness with Visual Feedback (CV)</td>
<td>35%</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Force Steadiness without Visual Feedback (CV)</td>
<td>35%</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Results: Leg Press Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Dependent Variable</th>
<th>SEM</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal Isometric Force</td>
<td>Maximal Isometric Force (N)</td>
<td>4%</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Rate of Force Development</td>
<td>9%</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(N/ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Endurance</td>
<td>Maximal Power (W)</td>
<td>3%</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Fatigue Index (%)</td>
<td>18%</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Total Work (J)</td>
<td>4%</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Results: Bench Press Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Dependent Variable</th>
<th>SEM</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal Isometric Force</td>
<td>Maximal Isometric Force (N)</td>
<td>3%</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Rate of Force Development (N/ms)</td>
<td>14%</td>
<td>0.93</td>
</tr>
<tr>
<td>Force Steadiness</td>
<td>Force Steadiness with Visual Feedback (CV)</td>
<td>20%</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Force Steadiness without Visual Feedback (CV)</td>
<td>33%</td>
<td>0.26</td>
</tr>
<tr>
<td>Power Endurance</td>
<td>Maximal Power (W)</td>
<td>9%</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Fatigue Index (%)</td>
<td>16%</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Total Work (J)</td>
<td>4%</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Results: Time Requirements

<table>
<thead>
<tr>
<th>Testing Device</th>
<th>Test</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee Extension</td>
<td>ITT Current Optimization</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Interpolated Twitch</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Force Steadiness</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Leg Press</td>
<td>Maximal Isometric Force</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Power Endurance</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bench Press</td>
<td>Maximal Isometric Force</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Force Steadiness</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Power Endurance</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>46</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>
Conclusions

- **Purpose:** To develop a test battery for **quickly and safely** assessing **diverse indices** of neuromuscular performance
 - **Quickly:**
 - Battery of tests can be completed in ~30-40 min
 - **Safely:**
 - No eccentric muscle actions or impact forces
 - Tests present little challenge to postural stability
 - **Diverse indices:**
 - Strength: Excellent reliability (ICC = 0.99)
 - Central activation: Very good reliability (ICC = 0.87)
 - Power: Excellent reliability (ICC = 0.99)
 - Endurance: Total work has excellent reliability (ICC = 0.99)
 - Force steadiness: Poor reliability (ICC = 0.20 – 0.60)
Acknowledgments

- This work was supported by the Exercise Physiology and Countermeasures Project of the National Aeronautics and Space Administration

- We thank Brent Crowell, Kirk English, Jamie Guined, Mark Leach, Peggy Lynn, and Leah Stroud for invaluable assistance during data collection